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R-semiconjugate maps are defined as a natural means of relating a map F of Rm to a mapping f
of the interval via a link map H. Invariants are seen to be special types of semiconjugate links
where f is the identity. Basic relationships between the dynamical behaviors of f and F are
established, and conditions under which a link map H is a Liapunov function are obtained.
Examples and applications involving concepts from stability to chaos are discussed.
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1 INTRODUCTION

Given that the dynamics of maps of the real line R are considerably better

understood than the higher dimensional maps, it is natural to ask if we can

use the theory of maps on R to study higher dimensional maps in a

systematic way. In this paper, we look at a special type of semiconjugacy
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where a map of Rm is linked to a map defined on a subset of R (usually an

interval). In particular, we consider the relationships between semiconju-

gacy and such familiar concepts as Liapunov functions and invariants. The

central idea is the following.

Definition 1 Let F [ CðDÞ; where D , Rm is nonempty and CðDÞ ¼

CðD;DÞ is the space of all continuous self maps of D. If there is a non-

constant function H [ CðD;RÞ such that

H + F ¼ f + H

on D for some f [ CðHðDÞ;RÞ; then F is a (D, H, f )-semiconjugate map

of Rm. The mapping H is called a link map and f is the (topological) factor

map (or the real factor of F ). Where there is no confusion, we may also use

the term R-semiconjugate in referring to F. For each t [ HðDÞ; the level set

H 21ðtÞ> D; denoted H21
t for short, is called a fiber of H in D.

Within the context of self maps of a topological space, semiconjugacy is

a natural extension of topological conjugacy, although this is not an

interpretation that we dwell on in this paper. Also, we may profitably define

semiconjugates relative to sets other than R (e.g. the circle) as long as the

dynamics of the reference set is well understood. The next result lists some

of the elementary properties of R-semiconjugates.

Lemma 1 Let F be a (D, H, f )-semiconjugate map.

(a) If G is (D, H, f0)-semiconjugate, then F + G is (D, H, f +f0)-

semiconjugate. In particular, for each positive integer n, H + F n ¼

fn + H; and the iterate F n is (D, H, f n)-semiconjugate.

(b) H is a Liapunov function for F on D if and only if fðtÞ # t for all

t [ HðDÞ:

(c) H(D ) is invariant under f, i.e. fðHðDÞÞ , HðDÞ:

(d) FðH21
t Þ , H21

fðtÞ for all t [ HðDÞ:

(e) If D1 , D is a nonempty subset, then F1 8 FjD1
is (D1, H1, f1)-

semiconjugate, where f1 8 fjHðD1Þ; provided that H1 8 HjD1
is not

constant.

(f) If f is an odd function, then F is also (D, 2H, f )-semiconjugate. If f

is even, then F is also (D, 2H, 2f )-semiconjugate.

(g) If H is linear and G is (D, H, f0)-semiconjugate, then the sum F þ G is

(D, H, fþ f0)-semiconjugate and the scalar multiple aF is (D, H,

af )-semiconjugate.
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Part (a) is a crucial property, since dynamics would not be possible

without it. Regarding Part (b), a more detailed discussion of Liapunov

functions in the context of R-semiconjugate maps appears later in this

paper. In the special case where f is the identity function fðtÞ ¼ t; the link

map H is called an invariant, since for every x, we have HðFðxÞÞ ¼ HðxÞ: In

particular, by Part (d) of Lemma 1, FðH21
t Þ , H21

t for each t, so that each

fiber of H will retain a trajectory that starts in it. There is currently a sizable

literature on invariants; see, e.g. Refs. [1–3,8–10,17] for theoretical

discussions, additional references and some applications of this concept.

Invariant links are somewhat exceptional types of links, and they have

properties that are not generally shared by semiconjugate link maps; for

instance, if H is an invariant for F, then so is g + H for each g [ CðRÞ: On

the other hand, many mappings of interest in applications have only trivial

invariants. For instance, if F has a globally attracting fixed point p [ D;

then for every x [ D; HðxÞ ¼ HðpÞ; i.e. H is constant on D. At the other

extreme, if F has a dense trajectory in D (as is common among chaotic

maps), then the constancy of an invariant H on such a trajectory clearly

implies that H is constant on D.

The first case above in particular excludes linear mappings whose

spectral radius is less than 1. In fact, for a linear mapping FðxÞ ¼ Ax to have

a nonconstant invariant, it is necessary and sufficient that either the matrix

A has an eigenvalue of unit modulus, or that A has eigenvalues l, m with

0 , jlj , 1 , jmj; see Ref. [1]. However, if we allow the factor f to be

any linear mapping of the line (not just the identity), then it can be

established with a little effort that all linear maps of Rm are R-

semiconjugates with either linear or quadratic link maps (see Ref. [18]).

Part (d) of Lemma 1 states that F must map each fiber of H into another

fiber. This is a characteristic property of R-semiconjugate maps. Since

fibers of H are nonintersecting manifolds, to find an H that works with a

given F we look for families of nonmutually intersecting surfaces that

satisfy Lemma 1(d) and which can be fibers of some mapping H. This is not

generally easy, but there exist interesting and nontrivial examples of such

nonintersecting manifolds, namely, the level sets of norms, or "spheres."

Let k·k denote any norm on Rm, and note that if some function F satisfies

the identity

kFðxÞk ¼ fðkxkÞ ð1Þ

for some f [ Cð½0;1Þ; then F is semiconjugate to f with the norm as the
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link map. A mapping F that satisfies Eq. (1), also satisfies Lemma 1(d),

since the norm of F(x ) depends only on the norm of x for every x; i.e. the

sphere that contains x is mapped into the sphere that contains F(x ). The

mapping in Example 3 below is essentially of this type; for more examples

satisfying Eq. (1), see Ref. [18].

SOME BASIC THEORY

In this section, we consider how the dynamics of the one-dimensional

factor map influences the dynamics of the original higher dimensional map.

We also examine the relationship between semiconjugate links and

Liapunov functions. The proofs of Theorems 1–3 and related results below

are straightforward; see Ref. [18] for more details.

Lemma 2 Let F be a (D,H, f )-semiconjugate map.

(a) If �x [ D is a fixed point of F, then �t ¼ Hð�xÞ is a fixed point of f.

(b) If C is an invariant subset of H(D ) under f, then H 21ðCÞ> D ¼ H21
C

is invariant under F.

(c) �t [ HðDÞ is a fixed point of f if and only if the corresponding fiber

H21
�t is invariant under F.

Fibers of link maps may, in general, be "thick,", i.e. they may contain

open sets. To avoid certain undesirable consequences, we assume the

following about semiconjugate links in the sequel:

Assumption Every fiber H21
t of a link map H has an empty interior.

A link map H satisfying the above assumption may be called everywhere

bending, since its graph is not flat over any open set. With this intuitively

agreeable restriction on links, the following is not hard to prove.

Theorem 1 (Stability and instability) Let x̄ be a fixed point of a (D, H, f )-

semiconjugate mapping F. If we set �t ¼ Hð�xÞ; then the following are true:

(a) If x̄ is stable under F, then t̄ is a stable fixed point of f.

(b) If x̄ is asymptotically stable under F, then t̄ is asymptotically stable

under f.

(c) If t̄ is unstable under f, then x̄ is unstable under F.
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Corollary 1 Let F be a(D, H, f )-semiconjugate map, with D , Rm:

Then:

(a) If f has no stable cycles, then neither does F.

(b) If f has no asymptotically stable cycles, then neither does F.

(c) If f has a trajectory that does not converge to a cycle, then so does F.

Next, we want to derive suitable restrictions on H that ensure the truth of

converse statements (a) and (b) in Theorem 1. Let us begin with a

boundedness result that is reminiscent of a similar result in Liapunov

theory (see, e.g. Ref. [12, p.9]) and the proof is also similar.

Theorem 2 (Boundedness) Let F be a(D, H, f )-semiconjugate map

(a) Assume that jHðxÞj! 1 if kxk! 1: If the sequence {f n(t0)} is

bounded for some t0 [ HðDÞ; then every trajectory {F n(x0)} with

x0 [ H21
t0

is bounded.

(b) If jHðxÞj! 1 for x [ D with kxk! 1 and either H(D ) is a bounded

set or f is a bounded function, then every trajectory of F is bounded in

D.

Example 1 Some condition on H like the one in Theorem 2(a) is

necessary for boundedness, even if f is a bounded function. An example is

provided by the difference equation [14]

xnþ1 ¼
a

xn

þ bxn21; a . 0; b $ 1; x0; x21 . 0: ð2Þ

Let us rewrite this equation as

xnþ1 ¼
a

xn

þ
b

yn

ynþ1 ¼
1

xn

which corresponds to the mapping Fðx; yÞ ¼ ½a=xþ b=y; 1=x�: Define

Hðx; yÞ8 y=x and note that

HðFðx; yÞ ¼
1

aþ bðx=yÞ
¼

1

aþ b=Hðx; yÞ
¼

Hðx; yÞ

aHðx; yÞ þ b

ONE-DIMENSIONAL MAPS 653
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So if fðtÞ8 t=ðat þ bÞ then F is (D, H, f )-semiconjugate. In this case, f

is a monotonically increasing function on HðDÞ ¼ ð0;1Þ; it is bounded

above by the constant 1/a, and fðtÞ , t with fðtÞ! 0 as t ! 0: Suppose

that the trajectory ðxn; ynÞ ¼ F nðx0; y0Þ is bounded for some (x0,y0) in the

positive quadrant. Since

ynþ1

xnþ1

¼ HðF nðx0; y0Þ ¼ fnðHðx0; y0Þ ¼ fn y0

x0

� �
it follows that the ratio yn=xn ! 0 as n ! 1: Since xn is bounded above by

our assumption and yn ¼ 1=xn21; it follows that yn is bounded away from

zero. But this contradicts the fact that yn/xn approaches zero. Therefore,

every solution of Eq. (2) is unbounded.

The following is a R-semiconjugate analog of LaSalle’s invariance

principle [12, p.9] (or [6, p.188]). As with LaSalle’s result, here too the

smaller the fibers of H, the stronger the conclusions.

Theorem 3 (Attractivity of invariant fibers) Suppose that F is a (D, H,

f )-semiconjugate map, and let t̄ be an isolated fixed point of f which

attracts all points in an interval I , HðDÞ: If x0 [ D > H 21ðIÞ and

{F n(x0)} is a bounded trajectory, then all limit points of {F n(x0)} are

contained in H21
�t ; i.e. the F-trajectory converges to the invariant fiber.

Corollary 2 (Asymptotic stability) Let F be a(D, H, f )-semiconjugate

map, with jHðxÞj! 1 as kxk! 1: Assume that F has a fixed point �x [ D

at which H has either a local minimum or a local maximum. If �t ¼ Hð�xÞ is

asymptotically stable under f, then x̄ is asymptotically stable under F.

We now consider R-semiconjugate links as Liapunov functions. We

assume that D is closed to reduce technical details, and make references to

the following sets:

E ¼ {x [ D : HðFðxÞÞ ¼ HðxÞ}

L ¼ {t [ HðDÞ : fðtÞ # t}:

Also we define S 8 H 21ðIÞ> D where I is the largest invariant (under

f ) subset of L. The following shows in particular that as long as E is

nonempty, the link map H is always a Liapunov function for F on some

invariant subset of D.
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Lemma 3 Let F be a(D, H, f )-semiconjugate map and assume that E is

nonempty. Then:

(a) HðEÞ , I is the set of all fixed points of f and FðEÞ , E:

(b) S is closed and contains E, FðSÞ , S; and H is a Liapunov function for

F on S.

(c) If f has a fixed point t̄ such that �t # fðtÞ # t for t [ ð�t; �tþ dÞ for some

d . 0; then S has nonempty interior in the relative topology of D.

Proof (a) We note that for each x [ E;

fðHðxÞÞ ¼ HðFðxÞÞ ¼ HðxÞ

so that H(x ) is a fixed point of f. Conversely, if t [ HðDÞ is a fixed point of

f, then t ¼ HðxÞ for some x [ D and thus

HðFðxÞÞ ¼ fðtÞ ¼ t ¼ HðxÞ

so x [ E: It follows that H(E ) is the set of all fixed points of f and thus, the

maximality of I implies that HðEÞ , I: Further, if x [ E; then for Y ¼

FðxÞ;

HðFðYÞÞ ¼ fðfðHðxÞÞÞ ¼ fðHðxÞÞ ¼ HðYÞ

from which it follows that FðxÞ ¼ Y [ E:

(b) Since I is closed, so is S, and from Part (a),

E , H 21ðHðEÞÞ> D , S:

Further, if x [ S; then HðxÞ [ I so by the invariance of I it is true that

fðHðxÞÞ [ I: This means that HðFðxÞÞ [ I; i.e. FðxÞ [ S; and furthermore,

HðFðxÞÞ ¼ fðHðxÞ # HðxÞ

so that H is a Liapunov function on S.

(c) The condition on f ensures that the interval (t̄, �tþ d) is contained in I.

Therefore, S contains the D-open set H 21ðð�t; �tþ dÞ> D: A

If one knows that a mapping F is R-semiconjugate, then it is usually not

necessary to invoke Liapunov theory. However, there are circumstances, as

in the next theorem, when the two concepts can be used together in a

nontrivial way.
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Theorem 4 Let G [ CðD;RmÞ and assume that there is a (D, H, f )-

semiconjugate map F and a nonempty subset T , S such that GðTÞ , T

and

HðGðxÞÞ # HðFðxÞÞ; x [ T :

Then the following are true:

(a) H is a Liapunov function for G on T. Further, if S ¼ D; then we may

take T ¼ D:

(b) Assume that G has an isolated fixed point x̄ in T and that H is locally

minimized at x̄. Then the function

VðxÞ8 HðxÞ2 Hð�xÞ; x [ S

is a positive definite Liapunov function relative to x̄. In particular, x̄ is a

stable fixed point of F.

(c) If H is locally maximized at x̄ and f is an odd function, then

VðxÞ8 2HðxÞ þ Hð�xÞ; x [ S

is a positive definite Liapunov function relative to x̄. In particular, x̄ is a

stable fixed point of F.

Proof

(a) This is clear from Lemma 3 and the definition of a Liapunov function.

(b) There is an open ball Bd(x̄ ) such that Vð�xÞ ¼ 0 and VðxÞ . 0 for all

other x [ Bdð�xÞ: Further, since H is Liapunov, so is V, and it follows

that V is a positive definite Liapunov function. The stability of x̄ now

follows (see Ref. [12, p.8] or [6, p185]).

(c) The argument is the same as that in Part (b), since F is (D, 2H, f )-

semiconjugate by Lemma 1. Thus 2H is Liapunov on S. A

Remark Theorem 4 applies in particular when H is an invariant. This

special case appeared in Ref. [10] together with some interesting examples

of its use. These examples, like their generalization in Theorem 4, do not

pertain to asymptotic stability, a topic that was the subject of earlier

discussion (e.g. Theorem 3 and Corollary 2 above).
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SENSITIVITY AND CHAOS

In this section, we consider chaotic R-semiconjugate maps. Here, the

existence of a link to a one-dimensional map allows certain types of chaotic

behavior for the associated map of the interval to be carried up to the higher

dimensional mapping. In particular, certain conclusions of the Li-Yorke

Theorem [13] are seen to be directly useful in this way. For convenience,

we quote the statement of that theorem here as a lemma.

Lemma 4 (Li-Yorke) Let J be an interval and let f [ CðJÞ: Assume that

there is a point a [ J such that

f3ðaÞ # a , fðaÞ , f2ðaÞ;

or

f3ðaÞ $ a . fðaÞ . f2ðaÞ:

Then the following are true:

(a) For each positive integer k there is a periodic point in J with period k.

(b) There is an uncountable set S , J such that S contains no periodic

points of f and S satisfies the following conditions:

2.1. (b1) For every p; q [ S with p – q;

n!1
lim supjfnðpÞ2 fnðqÞj . 0 ð3Þ

n!1
lim infjfnðpÞ2 fnðqÞj ¼ 0:

2.2. For every p [ S and periodic q [ J;

n!1
lim supjfnðpÞ2 fnðqÞj . 0:

The set S above is called the scrambled set of f.

Theorem 5 Let F be a (D, H, f )-semiconjugate map, with H [ C 1ðD;RÞ

and D , Rm a compact and convex set. If there are p; q [ HðDÞ satisfying

Eq. (3), then for each x [ H21
p and y [ H21

q ;

n!1
lim supkF nðxÞ2 F nðyÞk . 0: ð4Þ

In particular, if f has a scrambled set S, then trajectories starting in H21
S

cannot converge to periodic points of F.

ONE-DIMENSIONAL MAPS 657
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Proof By the mean value theorem [11, p.314], for all u; v [ D and every

n $ 1;

jHðF nðuÞ2 HðF nðvÞÞj # kF nðuÞ2 F nðvÞk
w[Lðu;vÞ

supk7HðwÞk

where L(u, v ) is the line segment that joins F n(u ) to F n(v ). Since D is

convex, Lðu; vÞ , D; so that

w[Lðu;vÞ
supk7HðwÞk # s 8

z[D
supk7HðzÞk:

Note that 0 , s , 1: Now for each pair x, y as in the statement of the

theorem, HðxÞ ¼ p and HðyÞ ¼ q; so we obtain

kF nðxÞ2 F nðyÞk $
1

s
jHðF nðxÞÞ2 HðF nðyÞÞj ¼

1

s
jfnðpÞ2 fnðqÞj:

The proof of Eq. (4) is complete upon taking limit supremum and using

Eq. (3) for f.

Next, suppose that f has a scrambled set S , HðDÞ: If y is a periodic

point of F, then there is a positive integer k such that

fkðHðyÞ ¼ HðF kðyÞ ¼ HðyÞ

Thus, H(y ) is a periodic point of f, i.e. HðyÞ Ó S and the preceding

results apply. A

We show next that a factor’s property of sensitivity to initial conditions is

preserved by semiconjugate link maps under reasonable restrictions.

Corollary 3 Let F be a (D, H, f )-semiconjugate map, with H [

C 1ðD;RÞ and D , Rm a compact and convex set. If f has sensitive

dependence on initial conditions, then so does F.

Proof Suppose that x [ D and 1 . 0; and let t 8 HðxÞ [ HðDÞ: The set

HðB1ðxÞ> DÞ is a nontrivial subinterval of H(D ) containing t. Due to the

sensitivity of f, there is s [ HðB1ðxÞ> DÞ such that

m 8
n!1

lim supjfnðtÞ2 fnðsÞj . 0:
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Now if we choose y [ H21
s > B1ðxÞ; then Theorem 7 implies that

n!1
lim supkF nðxÞ2 F nðyÞk $

m

s

which proves that F has sensitive dependence on initial conditions. A

Notably absent from Theorem 5 are the periodic points that are so

prominent in Lemma 4 and similar results for chaotic maps of the interval

[4]. The next example shows what may happen in a compact set in R2.

Example 2 Let D ¼ {ðr; uÞ : r [ ½0; 1�; u [ R} be the unit disk in R2 and

define F [ CðDÞ as

Fðr; uÞ8 ½arð1 2 rÞ; uþ a�; 2 , a , 4; 0 # a , 2p:

This map is semiconjugate to the logistic map f ðrÞ8 arð1 2 rÞ with a

link Hðr; uÞ8 r: If a/p is irrational, then it is not hard to prove that:

(a) Except for the fixed point at the origin, F has no periodic points in D;

(b) If the factor f(r ) is sensitive to initial conditions, then so is F

(Corollary 3) and for each point (r0, u0) in the compact annulus

D1 8 {ðr; uÞ : r [ ½m; g�; u [ R}; g 8
a

4
; m 8 agð1 2 gÞ;

the trajectory {F n(r0,u0)} is dense in D1 if {f n(r0)} is dense in [m, g ].

Each phase space trajectory of F in D1 is, in effect, a time series of the

logistic map that wraps around the annulus at a rate determined by a. In

particular, periodic trajectories of f turn into almost periodic trajectories for

F; the latter can be periodic (with a typically larger period than f ) only if

a/p is rational.

Example 3 This example illustrates the application of some of the

preceding theory to a complicated map of the plane. Consider the function

Fðx; yÞ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x2 þ y2

p
2 a2x2 2 y2

� �
½cosðbðxþ yÞ; a sinðbðxþ yÞ�

where we assume that 0 , a # 4 and b . 0: Set Hðx; yÞ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x2 þ y2

p
and note that

HðFðx; yÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x2 þ y2

p
j1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x2 þ y2

p
j
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If fðtÞ ¼ atð1 2 tÞ; then fð½0; 1�Þ , ½0; 1� for a [ ð0; 4�; so that on the

compact elliptical region

D 8 {ðx; yÞ : a2x2 þ y2 # 1}

F is (D, H, f )-semiconjugate. With t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x2 þ y2

p
; the fibers H21

t are

concentric ellipses within D for t [ ð0; 1�; while H21
0 ¼ {ð0; 0Þ} is just the

origin. The behavior of f in [0,1] is very familiar, and we use this

knowledge to detail some of the dynamical properties of F in D.

Case (i) 0 , a # 1: In this case the only fixed point of f is 0, so by

Lemma 2(a) the origin has to be the only fixed point of F in D. Further, the

origin is clearly an isolated minimum for H, so by Corollary 2 the origin is

asymptotically stable, attracting every point in D. Note that the stability,

though not attractive, of the origin could also be infered from Theorem

4(b).

Case (ii): 1 , a # 3: In this situation f has an asymptotically stable

fixed point p 8 1 2 1=a: Since p attracts every point of f in (0,1), by

Theorem 3 the ellipse H21
p attracts every point of D0 8 Do 2 {ð0; 0Þ},

where D o is the interior of D. It may also be noted that H21
p bifurcates from

the origin as the parameter a crosses 1, in a manner that is entirely

analogous to the Hopf bifurcation. Clearly the origin in D is unstable in this

case; this fact also follows from Theorem 1(c).

The asymptotic behavior of F in this case is determined by the behavior

of the restriction Fp of F to the attracting ellipse H21
p : If ðu; vÞ [ H21

p ; then

a2u2 þ v2 ¼ p2 and it follows that

Fpðu; vÞ ¼ pð1 2 pÞ½cosðbðuþ vÞÞ; a sinðbðuþ vÞÞ�

¼
p

a
ðbðuþ vÞÞ; a sinðbðuþ vÞ�:

Set s 8 bðuþ vÞ8 Gðu; vÞ to get

GðFpðu; vÞ ¼ bp
cos s

a
þ sin s

� �
8 cðsÞ ¼ cðGðu; vÞÞ:

Therefore, Fp is (H21
p ; G, c )-semiconjugate where s [ R: The fibers are

the sets G21
s > H21

p ; i.e. the intersections of lines uþ v ¼ s=b with the

ellipse H21
p : These fibers consist of one of two points each (if nonempty) so

it is relatively simple to translate the dynamics of c into the dynamics of Fp

in H21
p :
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As for c, finding the maximum and the minimum of G on the ellipse H21
p

is easily done using the Lagrange multiplier method; we get

jGðu; vÞj # b
p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p þ

apffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

� �
¼

bða 2 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

a2
8 r:

Thus, js # rj: Also, using elementary calculus, we find that for all s,

jcðsÞj # cðarctan aÞ ¼ r;

since cosðarctan aÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

and sinðarctan aÞ ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

: Inequal-

ities above imply that cð½2r; r�Þ ¼ ½2r; r�:

Let us consider the case a ¼ 2 for illustration. Then p ¼ 1=2 and r ¼

b
ffiffiffi
5
p
=4; so that, e.g. the interval I 8 ½24; 4� is invariant under c if b #

16=
ffiffiffi
5
p

, 7:16: The map c has at least one and at most three fixed points in

I. As b increases towards its upper bound, a complex sequence of fixed

points and cycles of c appear in I, and these in turn imply a similar behavior

for Fp on the fiber H21
1=2; i.e. the ellipse 4x2 þ y2 ¼ 1=4: For b sufficiently

close to 7 (e.g. b . 6:2) c is chaotic in I with a dense trajectory; hence,

orbits of F in D0 will approach a limit set that is dense in H21
1=2: Of course,

chaos in a portion of H21
1=2 arises at even smaller values of b, e.g. b . 4:85

where a period 3 orbit for c exists in I and Lemma 4 applies.

Case (iii): 3 , a # 4: In this case, the positive fixed point p becomes

unstable and cycles emerge for f in [0,1] in the familiar period doubling

fashion. For each limit cycle of f of length k, the behavior noted in Case (ii)

above occurs for F k (Theorem 3) on a particular invariant ellipse in D0, or

equivalently, for F on k concentric ellipses in D0. For a sufficiently close to

4 (e.g. a . 3:84 which results in the appearance of a period 3 orbit) chaotic

behavior occurs for f. In particular, since D is convex, Corollary 3 implies

that F is sensitively dependent on initial values. In fact, orbits of F

eventually become dense in open sets in D0 as a approaches 4 and as b gets

larger.

Remark It is worth noting in the previous example that the intra-fiber

semiconjugacy of Fp is a secondary semiconjugacy that proved useful.

Since Fp is not injective on H21
p ; it would be more diffcult to look at the

intra-fiber situation in H21
p in terms of a mapping of a non-Euclidean

manifold. We may refer to the secondary semiconjugacy of Fp on H21
p as an

imbedded semiconjugacy.
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A MODEL FROM ECONOMICS

A model of consumer behavior is represented by a bounded, smooth map

F [ C 1ð½0;1Þm) that is defined as follows:

Fðx1; . . .; xmÞ8

x1 exp a1 2
Pm

j¼1 cijxj

� �
..
.

xm exp am 2
Pm

j¼1 cijxj

� �
2666664

3777775 ð5Þ

This is derived in Ref. [5], where it is also shown that if all the ai are

equal, then under certain conditions on the matrix C ¼ ½cij�; the unique

positive equilibrium of F is a snap-back repeller and thus, the iterates of F

are chaotic [15]; also see Ref. [18] for a more comprehensive treatment of

this model.

The mapping in Eq. (5) can exhibit chaotic behavior even when there are

no snap-back repellers and the ai are not equal. Suppose that all rows of the

matrix C are identical, i.e.

cij ¼ ci . 0; i; j ¼ 1; . . .;m: ð6Þ

In this case, demand is attenuated by the same factor exp½2
Pm

j¼1cjxj� for

each good i, and F takes the form

Fðx1; . . .; xmÞ ¼ e2c1x12· · ·2cmxm ½ea1 x1; . . .; e
am xm�:

This is economically feasible if the first m goods are similar to (and can

be substituted for) each other. In particular, such comparable goods may

compete for the consumer’s attention through prices and other means; see

the Remarks following the next theorem. We now give a complete

description of the dynamics of Eq. (5) under conditions (6), which are

complementary to those in Ref. [5].

Theorem 6 Assume that C satisfies Eq. (6). Then the following are true:

(a) The map F is R-semiconjugate on (0, 1)m to a linear mapping fðtÞ ¼

vt with v $ 1 and t . 0: If v . 1; then each trajectory {F n(x0)}

approaches a subspace of (0, 1)m obtained by setting one of the

coordinates equal to zero.
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(b) If none of the ai are equal, and ak is the largest among them, then

{F n(x0)} approaches a subset of the positive k-th axis. On the latter

axis, F is topologically conjugate to the map hðtÞ8 t expðak 2 cktÞ:

Thus, if h is periodic or chaotic, then all positive trajectories {F n(x0)}

converge to, respectively, a periodic or chaotic attractor on the

positive k-th axis.

(c) If ai ¼ a . 0 for i ¼ 1; . . .;m; then F is radial and R-semiconjugate to

the function gðtÞ8 texpða 2 tÞ: Further, for each vector x0 of initial

values, the restriction of F to the ray Rx0
¼ {rx0 : r $ 0} is

topologically conjugate to g. In particular, if a is large enough that

g is chaotic (e.g. a $ 3:13) then F is chaotic.

Proof We may suppose without loss of generality that a1 is the least

among ai. Then, in particular, ðm 2 1Þa1 # a2 þ · · ·þ am: Define

Hðx1; . . .; xmÞ8
x2x3· · ·xm

xm21
1

; v 8 ea2þ· · ·þam2ðm21Þa1 :

Note that v $ 1: Semiconjugacy to f with H as link is readily verified,

since

HðFðx1; . . .; xmÞÞ ¼
ea2þ· · ·þam

e ðm21Þa1

x2x3· · ·xm

xm21
1

¼ vHðx1; . . .; xmÞ:

Let x0 be any point in (0, 1)m. Since all ci are positive, F is bounded on

(0, 1)m. In particular, there is 0 , m # b such that each component

FiðxiÞ # m for xi . 0: It follows that the trajectory {F n(x0)} is in (0, m ]m

for all n $ 1: Writing F nðx0Þ ¼ ðx1;n; . . .; xm;nÞ; we note that

x2;nx3;n· · ·xm;n

xm21
1;n

¼ HðF nðx0ÞÞ ¼ fnðHðx0ÞÞ ¼
x2;0x3;0· · ·xm;0

xm21
1;0

vn:

If v . 1; then HðF nðx0ÞÞ! 1 as n ! 1; although the product

x2;nx3;n· · ·xm;n # mm21 is bounded. It follows that x1;n ! 0 as n ! 1 and

therefore, {F n(x0)} approaches the subspace x1 ¼ 0; as claimed in the

statement of the theorem.

(b) We may suppose that 0 , a1 , · · · , am (so k ¼ m). By applying

Part (a) repeatedly to maps

e2cjxj2· · ·2cmxm ½0; . . .; 0; eaj xj; . . .; e
am xm�
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where 1 # j # m; we observe that the only coordinate that does not vanish

asymptotically is m. Further, the mapping e 2cmxm[0,. . .,0,e amxm] is

topologically conjugate to the map h. So if h is periodic or chaotic, then

{F n(x0)} exhibits the same type of behavior.

(c) In this case, F takes the following form:

Fðx1; . . .; xmÞ ¼ exp a 2
Xm

j¼1

cjxj

 !
½x1; . . .; xm�

which is obviously radial (i.e. trajectories are confined to rays through the

origin in [0, 1)m that contain the initial point). Defining Hðx1; . . .; xmÞ8Pm
j¼1cjxj; it is easy to see that

HðFðx1; . . .; xmÞ ¼ Hðx1; . . .; xmÞe
a2Hðx1;...;xmÞ ¼ gðHðx1; . . .; xmÞ

which shows F on [0, 1)m to be R-semiconjugate to g on [0, 1). The H-

fibers are the parts of hyperplanesXm

j¼1

cjxj ¼ t $ 0

that are contained in the cone [0, 1)m (clearly, all such fibers are compact).

To complete the proof, note that for each x0 the ray Rx0
is homeomorphic to

[0, 1) and the restriction of F to Rx0
is topologically conjugate to g. The

latter satisfies the conditions of Lemma 4 if a is sufficiently large (e.g.

a $ 3:13) and is thus chaotic. A

Remarks

1. Since by Lemma 4, the mappings g, h in Theorem 6 exhibit sensitivity

to initial values for large enough a values, Corollary 3 immediately

implies the same for Eq. (5) under the conditions of Theorem 6.

However, in Theorem 6 we were able to use the specific form of the

function F and its radial trajectories under hypothesis (6) to obtain

information beyond sensitivity.

2. (Competition among similar goods) We argued above that Eq. (6) is

economically feasible if the m goods are similar enough to be

substitutable for each other. In such a case, the consumer may choose

one among them and ignore the rest. According to Theorem 6, the

consumer chooses the good with the largest ai value (in the exceptional
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case that two or more ai have the same highest value, then the consumer

chooses a mix of these latter goods, with the proportions in the mix

arbitrarily determined by x0).

In Ref. [5], the parameters ai are defined as ai ¼ lnðb=piÞ þ ki;

where b is the budget and the ki are structural constants. Thus ai , aj if

and only if

ln
pj

pi

� �
, kj 2 ki ð7Þ

In particular, if goods i and j are viewed equally by the consumer

(e.g. neither is a "brand name" or particularly prefered for some

reason), then kj 2 ki ¼ 0; so Eq. (7) implies that pj , pi: Thus, as

might be expected, the consumer buys the lower priced good when all

else is equal.

3. The mapping F is entirely similar to those used in Refs. [16,19] to

model biological populations. Therefore, some of the results here apply

to these population models. On the other hand, the exclusion aspect of

Theorem 6 (i.e. goods with lower ai value are dropped) holds under

weaker conditions than those stated above. In Ref. [7], the problem of

exclusion in a general class of competition models is discussed which

include Eq. (5) as a special case.

CONCLUSION

The preceding study shows that R-semiconjugate maps are abundant and

include many familiar examples. Additional examples and related topics

appear in Ref. [18] that may be helpful in starting further pursuits in this

area.

Explicit link maps for arbitrary F are not generally easy to find, and it

may be difficult to establish whether a given function is R-semiconjugate

(or not). In this respect, there is a similarity between R-semiconjugates and

Liapunov functions and invariants; however, semiconjugacy is a more

flexible concept that is likely to have more immediate applications to

models in social and natural sciences. The appeal is easy to understand:

Semiconjugate relations translate higher dimensional problems into
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one-dimensional ones, thus covering a broad range of issues from basic

stability to the occurrence of chaos and complicated behavior.
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