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Abstract

There are prime numbers p for which the Fibonacci recurrence xn+1 = xn +xn−1 modulo p
has solutions that do not visit 0. We identify primes for which such zero-avoiding solutions

exist. Further, for such primes we determine the number of all zero-avoiding solutions.

1 Introduction

The many and varied properties of the solutions of the Fibonacci recurrence

xn+1 = xn + xn−1 n = 1, 2, 3 . . . (1)

modulo a positive integer are well-known; see, e.g., [1]-[7], [10] and [11]. As is customary,
we denote the particular solution of (1) with the initial values F0 = 0, F1 = 1, namely, the

Fibonacci sequence by {Fn}. We consider the general solution of (1) modulo a prime p, i.e., a
solution with arbitrary initial values in the field Zp = Z/(pZ).

In modular form {Fn} is periodic in Zp and its zeroth term is 0 so {Fn} visits zero repeat-
edly. Let the period of {Fn} be kp and let zp be the first positive index at which Fn is zero;

e.g., k5 = 20, z5 = 5 and k7 = 16, z7 = 8. Well-known relations determine zp if kp is known;
see [2] or Lemma 2 below.

Let a zero-avoiding solution of (1) in Zp be a solution that does not visit 0; i.e., there are
initial values x0, x1 such that xn 6≡ 0(modp) for all n ≥ 0. A solution of (1) may visit 0 even

if x0, x1 6= 0. Routine calculation shows that (1) has no zero-avoiding solutions in Z2, Z3, Z7

regardless of the initial values. But for the primes 5, 11, 13, 17, 19 zero-avoiding solutions
exist in Zp. These observations raise some natural questions: For which primes p does the

Fibonacci recurrence have a zero-avoiding solution in Zp? For such primes, how abundant are
the zero-avoiding solutions? More precisely, how many solutions of (1) avoid 0 entirely?

In this paper, primes p for which (1) has zero-avoiding solutions in Zp are identified. Where
zero-avoiding solutions exist, their number is determined and information about their periods

is obtained.
The existence of a zero-avoiding solution has an interesting structural implication for (1).

If for some p this difference equation has a solution that avoids 0 in Zp then it can be split
into a pair of difference equations of order 1. This decomposition is known as a semiconjugate

factorization, a concept that is defined for both linear and nonlinear difference equations; see
[8] for an introduction to this concept. A general study for linear difference equations with
variable coefficients in rings appears in [9].
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2 Zero-avoiding solutions

All additions and multiplications of numbers in Zp in this paper are performed modulo p
without explicit mention. The collection of all nonzero elements, i.e., the (multiplicative) unit

group of Zp is denoted Gp. As may be readily verified by induction, the general solution of
the second-order difference equation (1) with arbitrary initial values x0, x1 may be written as

xn = Fnx1 + Fn−1x0 (2)

If {xn} is an arbitrary solution of (1) in Zp then by (2) xkp
= x0 and xkp+1 = x1. It follows

that the period of every solution of the Fibonacci recurrence must divide kp.

Lemma 1 If {xn} is a zero-avoiding solution of (1) in Zp then the period of {xn} divides kp.

Further, for every u 6= 0 the sequence {xnu} is also a zero-avoiding solution of (1) with the
same period as {xn}.

In the light of Lemma 1 consider a solution {xn} of (1) with x0 = 1 and x1 6= 0 so that

xn = Fnx1 + Fn−1 for n ≥ 1. Define the subset Hp of Gp as consisting of all initial values x1

such that xn = 0 for some n ≥ 2; i.e., Hp is the set of units that do not generate zero-avoiding

solutions in Zp.
For 1 ≤ n ≤ zp−1 setting xn = 0 gives Fnx1+Fn−1 = 0 which yields x1 = −Fn−1/Fn ∈ Gp.

It follows that for all primes p ≥ 2,

{

−
Fj

Fj+1

: j = 1, 2, . . . , zp − 2

}

⊂ Hp.

In fact, it is true that the above set of zp − 2 ratios in Gp is actually equal to Hp. Before

proving this and other results, it is convenient to list some known facts from the literature as
a lemma. The proofs of these statements may be found in, e.g., [2], [5], [10], [11].

Lemma 2 (a) kp is even for all primes p ≥ 3.

(b) If p > 5 and p ≡ 1, 4(mod5), i.e., p = 10j±1 for some positive integer j then kp|p−1.
(c) If p > 5 and p ≡ 2, 3(mod5), i.e., p = 10j±3 for some positive integer j then kp|2(p+1).

(d) If p ≡ 2, 3(mod5) then every solution of (1) has period kp.
(e) If kp = 2(2j + 1) for some integer j ≥ 0 then zp = kp.

(f) If kp = 4(2j + 1) for some integer j ≥ 0 then zp = kp/4.
(g) If kp = 2m(2j + 1) for integers j ≥ 0 and m ≥ 3 then zp = kp/2.

(h) For each prime p, Fjzp+m =
(

Fzp−1

)j
Fm in Zp for all integers j, m ≥ 0.

Lemma 3 For every prime p ≥ 2,

Hp =

{

−
Fj

Fj+1

: j = 1, 2, . . . , zp − 2

}

. (3)

Proof. We show that Hp is contained in the above set of ratios. Let y1 ∈ Hp. Then yn = 0 for
a least integer n ≥ 2. If n ≤ zp − 1 then 0 = yn = Fny1 + Fn−1 so y1 = −Fn−1/Fn which is in

the set of ratios on the right side in (3). So suppose that n ≥ zp. Then there are integers j ≥ 1
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and m ∈ {0, 1, . . . , zp − 1} such that n = jzp + m and by Lemma 2(h), Fn =
(

Fzp−1

)j
Fm. If

m = 0 then Fn = 0 so yn = Fn−1 6= 0, a contradiction. Further, if m = 1 then n − 1 = jzp

so Fn−1 = 0. This implies that Fn 6= 0 so yn = Fny1 6= 0, again a contradiction. Thus

2 ≤ m ≤ zp − 1 and since
(

Fzp−1

)j
6≡ 0(modp),

y1 = −
Fn−1

Fn

= −

(

Fzp−1

)j
Fm−1

(

Fzp−1

)j
Fm

= −
Fm−1

Fm

.

Hence, y1 is in the set on the right hand side of (3) whether n < zp or n ≥ zp and the
proof is complete.

Lemma 4 Hp = Gp if and only if zp = p + 1.

Proof. By definition, Hp ⊂ Gp and Gp has p − 1 elements. By Lemma 3, Hp has at most
zp −2 elements. If all of these elements are distinct then Hp = Gp if and only if zp −2 = p−1;

i.e., if and only if zp = p + 1.
To complete the proof it is necessary to show that

−
Fi

Fi+1

6= −
Fj

Fj+1

(4)

for all integers i, j such that 1 ≤ i < j ≤ zp − 2. Suppose on the contrary that

Fi

Fi+1

=
Fj

Fj+1

for some pair i, j ∈ {1, . . . , zp − 2} with i < j. Then

Fi+1

Fi

=
Fj+1

Fj

⇒
Fi + Fi−1

Fi

=
Fj + Fj−1

Fj

⇒
Fi−1

Fi

=
Fj−1

Fj

.

Reducing the indices may be continued in this way for i steps to yield

F0

F1

=
Fj−i

Fj−i+1

which is clearly false. This contradiction establishes (4) and completes the proof.

The following is an immediate consequence of Lemmas 2 and 4.

Corollary 5 (a) If p ≡ 1, 4(mod5) or p = 5 then the Fibonacci recurrence (1) has a zero-

avoiding solution modulo p whose period divides kp.
(b) If p ≡ 2, 3(mod5) and zp < p+1 then the Fibonacci recurrence (1) has a zero-avoiding

solution modulo p with period kp.

The condition zp < p + 1 is satisfied in particular for all of the primes less than 2000 that

are listed in the table in [11]. The table in [1] contains the values of zp for primes between
2000 and 3000 which makes it easy to tell which ones possess the zero-avoidance property. A

table of zeros for primes between 3000 and 10000 appears in [4].
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3 Equivalence classes and eigensequences

If {xn} is a zero-avoiding solution of the Fibonacci recurrence (1) in Zp then by Lemma 1 so
is the sequence {xnu} for every nonzero u ∈ Zp. Let us call two zero-avoiding solutions {xn}

and {yn} equivalent if yn = xnu for all n ≥ 0 and some nonzero u ∈ Zp. This is an equivalence
relation in the set of zero-avoiding solutions for a fixed prime p where zero-avoiding solutions

exist. Not all zero-avoiding solutions are equivalent; consider the following two zero-avoiding
solutions of (1) in Z29

1, 6, 7, 13, 20, 4, 24, 28, 23, 22, 16, 9, 25, 5, 1, 6, . . .

1, 4, 5, 9, 14, 23, 8, 2, 10, 12, 22, 5, 27, 3, 1, 4, . . .

each of which has period 14. These solutions are not equivalent because the first term is 1 in

both cases but the second terms are not equal. We may ask, in what essential sense are these
sequences different? An answer to this question is found by checking the ratios of consecutive
terms (mod 29) in each case:

6

1
= 6,

7

6
= 7(5) = 6,

13

7
= 13(25) = 6,

20

13
= 20(9) = 6, . . .

4

1
= 4,

5

4
= 5(22) = 23,

9

5
= 9(6) = 25,

14

9
= 14(13) = 8, . . .

To gain a deeper understanding of the zero-avoiding solutions of (1) we now examine the

sequences of ratios of their consecutive terms in the multiplicative group Gp. These ratios are
subject to greater restrictions and yet, zero-avoiding solutions are easily recovered from them.

Specifically, let {xn} be a zero-avoiding solution of (1) so that xn 6= 0 for all n ≥ 0. Then
the sequence {xn/xn−1} with x0 = 1 is well-defined and

xn+1

xn

=
xn + xn−1

xn

= 1 +
xn−1

xn

.

If rn = xn/xn−1 then the sequence {rn} satisfies the first-order rational recurrence

rn+1 = 1 +
1

rn

(5)

in Gp. Conversely, if a solution {rn} for (5) exists in Gp then a zero-avoiding solution exists

for the Fibonacci recurrence (1) with x0 = 1 and xn = rnxn−1 for n ≥ 1. Since rn 6= 0 for all
n it follows that xn 6= 0 also.

Unlike the solutions of the second-order equation (1), a solution of (5) repeats as soon as

rn = r1 = x1 for some n ≥ 2. Thus, each period or cycle of the sequence {rn} consists of
distinct terms in the complement Gp\Hp.

The following lemma answers the question as to whether zero-avoiding solutions having
the same sequence of ratios are equivalent. This lemma has the same flavor as the result in

calculus which states that two functions having the same derivative are different by at most a
constant.

Lemma 6 Two zero-avoiding solutions of the Fibonacci recurrence (1) are equivalent if and

only if they have the same sequence of consecutive ratios.
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Proof. Suppose that {xn} and {yn} are zero-avoiding solutions with the same sequence {rn}

of consecutive ratios. Let u = y0/x0 and note that

y1 = r1y0 = r1x0u = x1u.

Now, by straightforward induction yn = xnu for all n; i.e., {xn} and {yn} are equivalent.
Conversely, assume that yn = xnu for all n and some u 6= 0 and let {rn} be the sequence of

consecutive ratios for {xn}. Then for every n ≥ 1,

yn

yn−1

=
xnu

xn−1u
=

xn

xn−1

= rn

so {rn} is also the sequence of consecutive ratios for {yn}.

We call the ratios sequence {rn} an eigensequence of (1) because a constant eigensequence,
i.e., a solution of the equation r = 1+1/r or equivalently, a solution of the quadratic r2−r−1 =

0 in Gp is just an eigenvalue of (1).
In this paper we consider eigensequences of a difference equation with constant coefficients

but as might be expected eigensequences are especially relevant to difference equations with
variable coefficients. See [9] for applications of eigensequences to linear difference equations
with variable coefficients in rings including, for difference equations with periodic coefficients,

conditions that imply the existence of periodic eigensequences of units and thus, semiconjugate
factorizations.

Theorem 7 (a) If p ≡ 1, 4(mod5) then each r ∈ Gp\Hp generates an eigensequence of the
Fibonacci recurrence whose period is either 1 (i.e., r is an eigenvalue) or else it has period zp

which divides p − 1. The total number of eigensequences is Ep = (p − 1)/zp + 1. If p = 5 then
Gp\Hp = {3} and the unique eigenvalue 3 is the only eigensequence. If zp = p − 1 then the

only eigensequences are the two eigenvalues.
(b) If p ≡ 2, 3(mod5) and zp < p + 1 for some prime p then each r ∈ Gp\Hp generates

an eigensequence with period zp which divides p + 1. The number of eigensequences is Ep =
(p+1)/zp−1. If zp = p+1 then there are no eigensequences in Zp for the Fibonacci recurrence.

Proof. (a) By Lemma 2(b) zp|p − 1. Also Lemma 4 implies that Gp\Hp is nonempty and
by quadratic reciprocity, there are two eigenvalues λ−, λ+ in Gp\Hp. Removing these from

Gp\Hp leaves the set S = Gp\(Hp∪{λ−, λ+}) which contains p−1−zp elements. If zp = p−1
then we are done. Otherwise, r = r1 ∈ S generates a non-constant eigensequence {rn} whose

period must be zp. To see this, note that by (2), xn = Fnx1 + Fn−1 for n ≥ 1 with x0 = 1 and
x1 = r1x0 = r1. Therefore, if m is the period of {rn} then

r1 = rm+1 =
xm+1

xm

=
Fm+1r1 + Fm

Fmr1 + Fm−1

The above equality can be rearranged as

0 = Fmr2
1 + (Fm−1 − Fm+1)r1 − Fm = (r2

1 − r1 − 1)Fm.

Since r1 is not an eigenvalue it follows that Fm = 0, i.e., zp ≤ m. Further, m ≤ zp because

rzp+1 =
Fzp+1r1 + Fzp

Fzp
r1 + Fzp−1

=
Fzp−1r1

Fzp−1

= r1.
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Therefore, m = zp as claimed. Thus, all (non-constant) eigensequences have the same

period zp and they are all contained in the set S. If E ′

p is the number of these eigensequences
then zpE

′

p equals the number of elements in S, i.e.,

zpE
′

p = p − 1 − zp, or E ′

p =
p − 1

zp

− 1.

Now adding in the two eigenvalues λ−, λ+ and denoting the total number of eigensequences
(constant and non-constant) by Ep we obtain Ep = (p− 1)/zp + 1, as claimed. The assertion

about p = 5 has already been verified in the previous discussion above.
(b) By Lemma 2(c) zp|2(p + 1). Since p + 1 is even, by Lemma 2(f),(g) zp ≤ p + 1. If

zp = p+1 then Lemma 4 implies that Gp = Hp and there are no eigensequences. If zp < p+1
then Gp\Hp is nonempty again by Lemma 4. There are no eigenvalues in Gp\Hp since 5 is

not a square in this case. Next, as in (a), the eigensequences in Gp\Hp all have period zp so if
their number is Ep then zpEp is the number of elements in Gp\Hp, i.e., p + 1− zp. This gives

Ep =
p + 1

zp

− 1

and completes the proof.

Since there are p − 1 nonzero terms in Zp, Lemmas 1 and 6 imply that the number of
zero-avoiding solutions in Zp is (p− 1)Ep. Hence Theorem 7 readily implies the following.

Corollary 8 (a) If p ≡ 1, 4(mod5) then there are (p− 1)2/zp + p− 1 zero-avoiding solutions

of the Fibonacci recurrence in Zp. Also, there are four zero-avoiding solutions in Z5.
(b) If p ≡ 2, 3(mod5) then there are (p2 − 1)/zp − p + 1 zero-avoiding solutions of the

Fibonacci recurrence in Zp.

The table below lists the number Ep of eigensequences (including eigenvalues, where they
exist) of the Fibonacci recurrence in Zp for all primes less than 100. From this table we may

infer, for instance, that for p = 61 there are 5 eigensequences (equivalence classes of zero-
avoiding solutions) of which two are constants (eigenvalues) and the other three are sequences
of period 15 each.

p 2 3 5 7 11 13 17 19 23 29 31 37 41

zp 3 4 5 8 10 7 9 18 24 14 30 19 20

Ep 0 0 1 0 2 1 1 2 0 3 2 1 3

- - - - - - - - - - - - - -

p 43 47 53 59 61 67 71 73 79 83 89 97

zp 44 16 27 58 15 68 70 37 78 84 11 49

Ep 0 2 1 2 5 0 2 1 2 0 9 1
TABLE 1. Zeros and Eigensequences

4 Two related problems

An extension of the results in the preceding sections to finite rings of type Zm may be consid-

ered, where m is a positive integer. In this setting eigensequences correspond to zero-divisor -
avoiding sequences, or more precisely, sequences of units. Some reflection and experimentation

suggest that the following may be true:
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Conjecture: The Fibonacci recurrence (1) has an eigensequence in Zm if and only if

m 6≡ 0(modp) for all primes p where zp = p + 1.

Since the condition zp = p + 1 applies only to primes of type p ≡ 2, 3(mod5), if the
conjecture is true then eigensequences exist in Zm when, in particular, all of the prime factors

of m are of type p ≡ 0, 1, 4(mod5). The smallest composite integer that satisfies the conditions
of the conjecture is m = 25 and indeed, Z25 contains the following eigensequence with period

5
3, 18, 8, 23, 13, 3, . . .

On the other hand, routine arguments show that rings Z2j and Z3j contain no eigense-
quences of (1) for every positive integer j. In such rings, every solution of the Fibonacci

recurrence contains zero divisors.
Going in a different direction, there is the inverted problem of identifying all primes p for

which a particular solution of the Fibonacci recurrence modulo p, e.g., the sequence {Ln} of
Lucas numbers (L0 = 2, L1 = 1) is zero-avoiding. These primes must satisfy the hypotheses
of Theorem 7 which yield necessary conditions for {Ln} to be zero-avoiding. These conditions

are not sufficient though; for p = 29, 47 in the above list of Zeros and Eigensequences we find
that L10 ≡ 0(mod29), L8 ≡ 0(mod47). Using the same table and straightforward calculations

we find that {Ln} is zero-avoiding modulo the following primes less than 100

5, 13, 17, 37, 53, 61, 73, 89, 97.

Further, in [1] we count 49 prime numbers between 2000 and 3000 for which Lucas sequences
are zero-avoiding.
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