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Abstract. We discuss the occurrence and nature of periodic and chaotic behavior in a class

of nonlinear second order difference equations and present criteria for the attractivity of the

periodic solutions.

Consider the second order difference equation

xn+1 = axn + bxn−1 + fn(xn − cxn−1) (1)

where fn : R → R is a given sequence of functions and a, b, c are real constants satisfying the

conditions

c 6= 0, b + c(a− c) = 0. (2)

Equations bearing some similarity to the autonomous version of (1) have been considered in
the literature; see, e.g. [4, Sec.2.5]. These studies have concentrated on the global stability of

equilibrium. Equation (1) also generalizes equations introduced in some of the heuristic business
cycle models in macroeconomics. For example, special cases of (1) includes Hicks’ model (its

2nd order case) and Goodwin’s model (its discrete version) as well as Puu’s discrete second order
equation. A detailed comparative analysis of the mathematics behind these classical models appears

in [7].
In this note we take a close look at Equation (1) and obtain criteria for the occurrence of

attracting periodic solutions as well as conditions that imply the occurrence of chaotic behavior.
We use the fact that under conditions (2), Equation (1) decomposes into a weakly coupled system

of first order difference equations. Such decompositions are instances of semiconjugacy; see [7] for
some background on this subject.

1 Main Results.

Equation (1) may be restated as

xn+1 − cxn = (a − c)xn + bxn−1 + fn(xn − cxn−1). (3)
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If a − c 6= 0 then we may factor out a − c and using (2) transform (3) into

tn+1 = (a− c)tn + fn(tn)
.
= gn(tn) (4a)

xn+1 = tn+1 + cxn (4b)

Note that if a = c then b = 0 by (2) so we may still obtain (4a) directly from Equation (1) with
gn = fn.

Equations (4) define a triangular system of first order equations in the sense that the first
equation is independent of the second. A general result on the structure of periodic solutions of

(4) in terms of the periodic orbits of its two first order equations appears in [1] for the autonomous
case, i.e. when fn = f0 for all n. Here, since the system (4) is specific in its second equation,
we derive the needed relationships directly with fn variable and also establish attractivity when

|c| < 1.
For a given sequence of real numbers {tn}, the general solution of (4b) is

xn = cnx0 +
n

∑

j=1

cn−jtj , n ≥ 1. (5)

The sum in (5) is of convolution type but here the sequence {tn} is rarely given explicitly.

Lemma 1. Assume that |c| 6= 1.
(a) Let {tn} be a periodic sequence of real numbers with period p. If {τ0, . . . , τp−1} is one cycle

of {tn} and

ξi =
1

1− cp

p−1
∑

j=0

cp−j−1τ(i+j) mod p i = 0, 1, . . . , p− 1 (6)

then the solution {xn} of Eq.(4b) with x0 = ξ0 and t1 = τ0 has period p and {ξ0, . . . , ξp−1} is a

cycle of {xn}.
(b) If for a given sequence {tn} of real numbers Eq.(4b) has a solution {xn} of period p then

{tn} is periodic with period p.

Proof. (a) With x0 = ξ0 and t1 = τ0 we get x1 = cx0 + t1 = cξ0 + τ0. Using (6) for ξ0 gives

x1 =
c

1− cp





p−1
∑

j=0

cp−j−1τj



 + τ0 =
1

1 − cp





p−2
∑

j=0

cp−j−1τj+1 + τ0



 = ξ1

Proceeding in an inductive fashion, we show in this way that xi = ξi for i = 0, . . . , p− 1. Next,

we show that xp = x0. Using (5) we have

xp = cpξ0 +

p−1
∑

j=0

cp−j−1τj =
cp

1 − cp

p−1
∑

j=0

cp−j−1τj +

p−1
∑

j=0

cp−j−1τj = ξ0 = x0.
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Hence {xn} is a solution of (4b) with period p, as claimed.

(b) Suppose that for a given sequence {tn} of real numbers, the corresponding solution of (4b)
is periodic with period p. Let t1 = x1 − cx0 and from (4b) obtain

tp+1 = xp+1 − cxp = x1 − cx0 = t1.

It follows that {tn} is periodic with period p.

Theorem 1. (periodic solutions and limit cycles)

(a) Assume that |c| 6= 1 and let {tn} be a periodic solution of the first order equation (4a) with
prime period p. If {τ0, . . . , τp−1} is one cycle of {tn} then (1) has a solution {xn} of prime period

p with a cycle {ξ0, . . . , ξp−1} given by (6).
(b) Assume that the functions fn are continuous. If |c| < 1 and {tn} is an attracting periodic

solution of (4a) then {xn} is an attracting periodic solution of (1).

Proof. (a) In light of Lemma 1(a) we only need to show that p is the prime or minimal period
for {xn}. Let q be the prime period of {xn} so that q ≤ p. Then by Lemma 1(b) {tn} has period

q ≥ p since p is the prime period for {tn}. Therefore, q = p.
(b) Let {τ0, . . . , τp−1} be an attracting cycle for (4a) with

lim
n→∞

tpn+i = τi−1, i = 1, 2, . . . , p.

Let sn =
∑n

j=1 cn−jtj . Then by rearranging terms in the summation we find that

spn = cpn−1t1 + cpn−2t2 · · ·+ cpn−ptp

+ cpn−p−1tp+1 + cpn−p−2tp+2 · · ·+ cpn−2pt2p

+ · · ·
+ cp−1tp(n−1)+1 + cp−2tp(n−1)+2 · · ·+ cpn−pntp(n−1)+p

= cp−1(cpn−pt1 + cpn−2ptp+1 + · · ·+ tpn−p+1)

+ cp−2(cpn−pt2 + cpn−2ptp+2 + · · ·+ tpn−p+2)

+ · · ·
+ cpn−ptp + cpn−2pt2p + · · ·+ tpn

=

p
∑

i=1

cp−i
n−1
∑

k=0

(cp)n−k−1tpk+i.

Now for i = 1, 2, . . . , p define

σi
n =

n−1
∑

k=0

(cp)n−k−1tpk+i and γi
n =

n−1
∑

k=0

(cp)n−k−1τi−1 = τi−1

n−1
∑

k=0

cpk.
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Notice that
∣

∣

∣

∣

σi
n − τi−1

1 − cp

∣

∣

∣

∣

≤
∣

∣σi
n − γi

n

∣

∣ +

∣

∣

∣

∣

γi
n − τi−1

1 − cp

∣

∣

∣

∣

≤
n−1
∑

k=0

|cp|n−k−1|tpk+i − τi−1|+
∣

∣

∣

∣

γi
n − τi−1

1 − cp

∣

∣

∣

∣

Clearly the second term on the right hand side approachs 0 as n → ∞. As for the first term,

let m ≥ 1 and define

δ = max
1≤i≤p

{

sup
k≥1

|tpk+i − τi−1|
}

< ∞, δi
m = sup

k≥m
|tpk+i − τi−1|

and observe that for m < n

n−1
∑

k=0

|cp|n−k−1|tpk+i − τi−1| =

m−1
∑

k=0

|cp|n−k−1|tpk+i − τi−1| +
n

∑

k=m

|cp|n−k−1|tpk+i − τi−1|

≤ |cp|n−m δ

m−1
∑

k=0

|cp|k + δi
m

n
∑

k=m

|cp|n−k−1

By taking n and m sufficiently large, each of the last two terms above can be made arbitrarily
small. Therefore,

lim
n→∞

σi
n =

τi−1

1 − cp
i = 1, . . . , p.

It follows that

lim
n→∞

xpn = lim
n→∞

spn =

p
∑

i=1

cp−iτi−1

1 − cp
=

cp−1τ0 + · · ·+ cτp−2 + τp−1

1 − cp
.

Therefore, xpn → ξ0 as n → ∞ with ξ0 as in Lemma 1. From this and (4b) we obtain

lim
n→∞

xpn+1 = lim
n→∞

(tpn+1 + cxpn) = τ0 + cξ0 = ξ1.

Inductively, we find that xpn+i → ξi for i = 0, 1, . . . , p−1. This implies that {xn} is an attracting
periodic solution of (1).

Examples. 1. Consider the difference equation

xn+1 = cxn + αn(xn − cxn−1)
q (7a)

0 < |c|, |q| < 1, α2m = α0 > 0, α2m+1 = α1 > 0, m = 0, 1, . . . (7b)
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In this case, gn(t) = αntq for t > 0 and straightforward calculations show that all positive

solutions of the first order equation tn+1 = αntqn converge to the 2-cycle

t2n → α
q/(1−q2)
0 α

1/(1−q2)
1 = τ0, t2n+1 → α

1/(1−q2)
0 α

q/(1−q2)
1 = τ1

Therefore, every solution of (7a) in the invariant region {(x, y) : x > cy} converges to the
attracting cycle

ξ0 =
cτ0 + τ1

1 − c2
, ξ1 =

cτ1 + τ0

1 − c2
.

Note that in this example αn can be taken as a sequence with any period p with slightly more
calculating effort.

2. For the difference equation

xn+1 = c2xn−1 + α(xn − cxn−1)
q (8)

α > 0, 0 < |c| < 1, q = 2j/(2k + 1) < 1, k ≥ j ≥ 1

we have gn(t) = g(t) = −ct + αtq for all real t and straightforward calculations show that all

solutions of the first order equation tn+1 = −ctn + αt
q
n converge to its unique fixed point

t̄ =

(

α

1 + c

)1/(1−q)

=

(

α

1 + c

)
2k+1

2(k−j)+1

.

Hence the fixed point x̄ = t̄/(1 − c) of (8) is globally attracting.

Now we consider conditions that imply chaotic behavior. For difference equations a chaotic

solution is typically a non-periodic, oscillatory solution that is sensitive to initial values. See [2],
[5], [6] and [7] for some background on this concept. For first order difference equations a more

refined definition of chaotic solutions was given in [3]. We first give conditions for solutions of (1)
to be uniformly bounded.

Lemma 2. (boundedness) Let |c| < 1. If {tn} is a bounded sequence with |tn| ≤ B for some

B > 0, then the corresponding solution {xn} for Eq.(4b) is also bounded and there is a positive
integer N such that

|xn| < |c|+ B

1 − |c| for all n ≥ N. (9)

Proof. From (5) we obtain

|xn| ≤ |c|n|x0|+
n

∑

j=1

|c|n−jB < |c|n|x0| + B

∞
∑

k=0

|c|k = |c|n|x0| +
B

1− |c| .

Now if n is large enough, then |c|n|x0| ≤ |c| from which (9) follows.
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In light of Lemma 2, the following result is easy to prove using Theorem 3.3.3 in [7].

Theorem 2. (chaotic behavior) Assume that |c| < 1 and let fn = f for all n where f is continuous
on an invariant closed interval [µ, ν] on the line. If the first order equation (4a) is chaotic within

[µ, ν] then the second order equation (1) is chaotic in the following invariant compact, convex set
in the plane:

{(x, y) : cx + µ ≤ y ≤ cx + ν} ∩
[

−|c| − max{|µ|, |ν|}
1 − |c| , |c|+ max{|µ|, |ν|}

1 − |c|

]2

.

A straightforward example for illustration is the autonomous equation

xn+1 = cxn + α(xn − cxn−1)(1− xn + cxn−1) (10)

where we have picked a = c ∈ (−1, 1) and f(t) = αt(1 − t) in (1). As α varies in the interval

[0,4] the familiar behavior of f(t) on the interval [0,1] is translated via Theorems 1 and 2 into the
analogous behavior for the solutions of (10) in the compact invariant region

{(x, y) : cx ≤ y ≤ cx + 1} ∩
[

−|c| − 1

1− |c| , |c|+
1

1 − |c|

]2

in the plane. Similar observations apply to

xn+1 = c2xn−1 + (xn − cxn−1)(α − xn + cxn−1), 0 < |c| < 1 ≤ α ≤ 4.

A less routine example is the one parameter family of autonomous rational equations

xn+1 =
6x2

n − 5xnxn−1 + x2
n−1 + 4

4xn − 2xn−1
− α, 0 < α < 2 (11)

obtained from (1) by setting a = 3/2, c = 1/2, f(t) = 1/t − α and g(t) = t + f(t). For α >
√

2

it can be shown that all iterates of g will eventually enter and remain in the invariant interval
[2 − α, g(2 − α)]. With increasing value of α a sequence of bifurcations of periodic orbits ensues

that progresses through the Sharkovski ordering. This behavior can then be translated into the
analogous behavior for (11) using Theorems 1 and 2.

2 Extensions and future directions.

The results of the previous section can be readily extended to the equation

xn+1 = anxn + bnxn−1 + fn(xn − cxn−1) (12)
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where the sequences {an} and {bn} satisfy

c 6= 0, bn + c(an − c) = 0, for all n. (13)

This would lead to essentially the same type of triangular system as (4) but with a slightly

greater range of possibilities. Theorems and Lemmas 1 and 2 apply to Equation (12) essentially
as they are presented above. A more distant generalization is to higher order equations of the

following type:

xn+1 = cnxn−k+1 + fn(xn − cn−1xn−k) (14)

where k is a fixed positive integer, {cn} is a given sequence of real numbers and { fn} is a sequence of

real valued functions all defined on a given interval I. Equation (14) is equivalent to the triangular
system

tn+1 = fn(tn) (15a)

xn+1 = tn+1 + cnxn−k+1 (15b)

Equation (15b) produces different results from those seen in Theorems 1 and 2 above, especially

if cn does not converge to a limit.
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