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Abstract

In this paper we study a multiparameter, nonlinear second order differ-
ence equation that is motivated by the Euler discretization of deriva-
tives in the autonomous, second order differential equation derived
from Newton’s second law in mechanics. Our objective is mainly to
analyze qualitative properties of the second order difference equation
such as convergence, periodicity and chaos. With proper restrictions,
two different semiconjugate factorizations facilitate our work.
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1 Introduction

Euler’s simple method of rendering derivatives discrete in time has, over the
centuries led to interesting classes of difference equations that have inspired
a significant amount of research. The bulk of this research has been done
during the past 30 years when digital computing has been available and
increasingly accessible.

We start with the differential equation

x′′ = φ(x, x′) (1)

of classical mechanics. Using Euler’s forward difference method (1) may be
transformed into a second order difference equation. The time axis is made
discrete as t0, t1, t2, . . . with a fixed step size τ so that for each n = 0, 1, 2, . . .
we have tn+1 − tn = τ. Then we estimate the first and second derivatives of
the function x(t) using forward differences as

x′(tn) ≈
x(tn + τ ) − x(tn)

τ
=

xn+1 − xn

τ
,

x′′(tn) ≈
x′(tn + τ ) − x′(tn)

τ
=

1

τ

[
xn+2 − xn+1

τ
− xn+1 − xn

τ

]
.

Inserting these into (1) yields

1

τ

[
xn+2 − xn+1

τ
− xn+1 − xn

τ

]
= φ

(
xn,

xn+1 − xn

τ

)
. (2)



This is the Euler discretization of (1) with a fixed step size. For sufficiently
small τ and a wide range of functions φ Eq.(2) gives good estimates of the
solutions of (1) over a chosen time interval [a, b], in which case t0 = a and
tN = b where N is the largest index that one would consider. For more details
on Euler’s and other methods for solving differential equations a standard
numerical analysis text such as [4] may be consulted.

In this paper we consider a slightly more general form of (2) that is
capable of producing a much richer variety of asymptotic behavior through
parameter adjustments. Our discussion is focused on the asymptotics of that
general difference equation rather than on estimating solutions of (1) using
(2).

Relabling xn+1/τ as yn and rearranging terms in Equation (2) gives

yn+1 = 2yn − yn−1 + τφ(τyn−1, yn − yn−1). (3)

This is a special case of the second order difference equation

xn+1 = axn + bxn−1 + f(xn−1, xn − cxn−1) (4)

where the parameters a, b, c are given real numbers and f : R2 → R is a given
function. This equation may also be written succinctly as

xn+1 = F (xn, xn−1)

which is reminicent of (1) but with

F (u, v) = au + bv + f(v, u− cv). (5)

It may be mentioned in passing that difference equations may be used
directly as equations of motion in mechanics. An interesting study of this
approach is given in [7].

2 General Concepts and Results

Each fixed point or equilibrium x̄ of Eq.(4) is given by the equation

x̄ = ax̄ + bx̄ + f(x̄, (1 − c)x̄)

or equivalently,
(1 − a− b)x̄ = f(x̄, (1 − c)x̄). (6)



For example, if f is a homogeneous function of degree k, i.e. f(tu, tv) =
tkf(u, v) then the origin x̄ = 0 is a fixed point (if the domain of f contains
it) and for k 6= 1 another isolated fixed point

x̄ =

[
1 − a − b

f(1, 1 − c)

]1/(k−1)

may exist provided that the various quantities are well defined. For k = 1 if
1−a−b = f(1, 1−c) then all points on the diagonal (and in the domain of f)
are fixed and thus none are isolated; otherwise, origin is the unique isolated
fixed point if it is in the domain of f. We refer the reader to texts such as [1],
[6], [12], [13] and [17] for basic background material, including the definitions
of stability, asymptotic stability and instability for fixed points and cycles of
difference equations.

2.1 Global stability

Let x̄ be an isolated fixed point of (4) and let F be the function defined in
(5). If f is continuously differentiable, then so is F and through linearization
it may be shown that x̄ is locally stable if

∣∣∣∣
∂F

∂u
(x̄, x̄)

∣∣∣∣ < 1 +
∂F

∂v
(x̄, x̄) < 2.

If x̄ is the only fixed point of (4) then we also have the following general
result in which f is only assumed to be continuous.

Theorem 1. Assume that f is continuous on R2 and define g(u, v) =
f(v, u − cv). If x̄ is the only fixed point of (4) and there is δ ∈ (0, 1) such
that

|a|+ |b| + δ < 1

and
|g(u, v)− g(x̄, x̄)| ≤ δ max{|u− x̄|, |v − x̄|}, (u, v) ∈ R2 (7)

then x̄ is globally asymptotically stable.
Proof. Note that

|F (u, v)− x̄| = |F (u, v)− F (x̄, x̄)|
≤ |a||u− x̄| + |b||v − x̄| + |f(v, u− cv)− f(x̄, (1 − c)x̄)|
≤ (|a|+ |b| + δ)max{|u − x̄|, |v − x̄|}.



Therefore, by Corollary 4.3.5 in [17] x̄ is globally asymptotically stable.

Example 1. Consider the difference equation

xn+1 = 0.5xn−1 + 1 + 3
√

xn + 1. (8)

which is a special case of (4) with a = c = 0, b = 0.5 and f(v, u) = 1+ 3
√

u + 1.
Equation (8) has a unique fixed point x̄ with a value of approximately 5.8.
Inequality (7) holds for (8) because

|g(u, v)− g(x̄, x̄)| = |f(v, u)− f(x̄, x̄)|
= | 3

√
u + 1 − 3

√
x̄ + 1|

=
|u− x̄|∣∣∣ 3

√
(u + 1)2 + 3

√
u + 1 3

√
x̄ + 1 + 3

√
(x̄ + 1)2

∣∣∣

and using the approximate value of x̄ we find that the denominator of the
fraction above exceeds 5/2 for all real u, so we may set δ = 2/5 = 0.4 in
Theorem 1 and conclude that the unique fixed point x̄ of (8) is globally
asymptotically stable.

Remark. Condition (7) in particular holds if f is a contraction on the plane,
i.e.

|f(x, y) − f(s, t)| ≤ γ max{|x− s|, |y − t|}, γ <
1

1 + |c| . (9)

If (9) holds then

|g(u, v)− g(x̄, x̄)| = |f(v, u − cv) − f(x̄, (1 − c)x̄)|
≤ γ max{|v − x̄|, |u− cv − (1 − c)x̄|}
≤ γ max{|v − x̄|, |u− x̄| + c|v − x̄|}
≤ γ(1 + |c|)max{|u − x̄|, |v − x̄|}

and (7) follows if γ(1 + |c|) < 1.
Inequality (7) is essentially weaker than (9) because the latter inequal-

ity is assumed to hold globally whereas the former only requires sufficient
flatness of the graph of g near the point (x̄, x̄). For instance, in Example 1
above the function f(v, u) is not a contraction on the plane (in fact, f is not
differentiable when u = −1), but near the point (x̄, x̄) the cylindrical surface
1 + 3

√
u + 1 flattens out significantly. See [17, Sec.4.3] for further general

remarks with regard to the geometric aspects of Theorem 1.



2.2 Persistent oscillations

Suppose that x̄ is an isolated fixed point of F. Then the following inequalities
imply that both eigenvalues of the linearization of (4) have modulus greater
than 1 (see, e.g. [17, p.168]):

∣∣∣∣
∂F

∂v
(x̄, x̄)

∣∣∣∣ > 1,

∣∣∣∣
∂F

∂v
(x̄, x̄) − 1

∣∣∣∣ >

∣∣∣∣
∂F

∂u
(x̄, x̄)

∣∣∣∣ . (10)

These inequalities and a basic result from [17, p.166] imply the next
theorem. We say that a bounded solution of (4) will oscillate persistently if
it has at least two distinct limit points.

Theorem 2. Suppose that inequalites (10) hold at an isolated fixed point x̄
of (4) and further, the equation

ax̄− bv + f(v, x̄− cv) = x̄ (11)

has no real solution v 6= x̄. Then all bounded, non-constant solutions of (4)
oscillate persistently.

Example 2. In Equation (4) let c = 1 and assume that f(v, u − cv) =
g(u − v)− bv for some real function g so that (4) takes the form

xn+1 = axn + g(xn − xn−1). (12)

We make the following additional assumptions:
(a) 0 ≤ a < 1;
(b) g is continuous, nondecreasing and bounded below on R;
(c) There is α ∈ (0, 1) and t0 > 0 such that g(t) ≤ αt for all t > t0;
Then (12) has a unique fixed point x̄ = g(0)/(1−a) and all of its solutions

are bounded ([17, T4.1.1]). If we also assume that:
(d) g is continuously differentiable at 0 with g′(0) > 1,

then every solution of (12) with at least one initial value different from x̄
oscillates persistently.

To prove this last assertion, we note with regard to (10) that if F (u, v) =
au + g(u − v) then

∣∣∣∣
∂F

∂v
(x̄, x̄)

∣∣∣∣ = g′(0) > 1,

∣∣∣∣
∂F

∂v
(x̄, x̄) − 1

∣∣∣∣ = | − g′(0) + 1| > |a + g′(0)| =

∣∣∣∣
∂F

∂u
(x̄, x̄)

∣∣∣∣ .



Further, Eq.(11) takes the form

g(x̄ − v) = g(0)

whose only solution by assumptions (b) and (d) is v = x̄. Thus by Theorem
2 all nontrivial solutions of (12) oscillate persistently. A specific example of
g that satisfies (a)-(d) above is g(t) = tan−1 βt with β > 1.

3 Semiconjugate factorizations

A second order equation such as (4) may be viewed as a mapping of the
two dimensional space upon unfolding in vector form. Such an equation
in principle admits factorizations into two mappings of the real line ([17]).
When a difference equation is stated in scalar form as (4) is, we may obtain
the semiconjugate factors through substitutions. We obtain our first (of
two) such factorization by subtracting the term cxn from both sides of (4)
and rearrange terms to obtain

xn+1 − cxn = (a− c)xn + bxn−1 + f(xn−1, xn − cxn−1).

We now make two assumptions:

(SC1) f is linear in the first coordinate, i.e., f(u, v) = du + g(v)
where d is a real number (possibly 0) and g is a function.

Then the terms on the right hand side of the preceding expression may
be rearranged to give

xn+1 − cxn = (a − c)xn + (b + d)xn−1 + g(xn − cxn−1). (13)

Our second assumption is as follows:

(SC2) The constants a, b, c, d satisfy

b + d = c(c − a). (14)

Note that the constant values in Eq.(3) namely, a = 2, b = −1, c = 1
satisfy condition (14) if we assume hypothesis (SC1) above with d = 0. The
case d = 0 corresponds to the function φ in (1) being “space independent”.



Under assumptions (SC1) and (SC2), we substitute tn = xn − cxn−1 into
Eq.(13) and obtain the equivalent system of first order difference equations

tn+1 = (a − c)tn + g(tn) (15a)

xn+1 = cxn + tn+1 (15b)

These two first order equations represent the first semiconjugate factor-
ization of (4) that we discuss here. We may call this type of factorization
semiconjugacy by sums. For reference, we note that under the assumptions
(SC1) and (SC2) Eq.(4) takes the following form:

xn+1 = axn + c(c − a)xn−1 + g(xn − cxn−1). (16)

The second type of semiconjugate factorization requires the following as-
sumption:

(SC3) f is homogeneous of degree one, i.e. f(tu, tv) = tf(u, v)
for all real values of t for which f is defined.

Examples of mappings that satisfy (SC3) include linear maps f(u, v) =
αu + βv as well as the following:

|αu + βv|,
√

αu2 + βuv + γv2,
αu2 + βuv + γv2

δu + ξv

under suitable domain restrictions where necessary. Under (SC3) we may
divide both sides of (4) by xn to obtain

xn+1

xn
= a + b

xn−1

xn
+

1

xn
f(xn−1, xn − cxn−1)

= a + b
xn−1

xn
+

xn−1

xn
f(1,

xn

xn−1
− c).

In the preceding expression we substitute

rn =
xn

xn−1
(17)

to obtain

rn+1 = a +
b + f(1, rn − c)

rn

.



Note that this is a first order difference equation that together with (17)
gives the following factorization of (4) that we call semiconjugacy by ratios:

rn+1 = a +
b + f(1, rn − c)

rn
(18a)

xn+1 = rn+1xn (18b)

The essential or structural difference between (15) and (18) is in their sec-
ond equations (15b) and (18b), respectively. These latter equations translate
the dynamics of fibers given by equations (15a) and (18a) in different ways
into behaviors for solutions of (4). For instance, even if in both (15a) and
(18a) all solutions converge to a unique fixed point, the resulting behaviors
for (4) will be quite different in the two cases because (15b) and (18b) give
different outcomes.

We note that these two semiconjugate types are essentially complemen-
tary, becasuse if both of the assumptions (SC1) and (SC3) hold then f is
linear, which reduces (4) to a linear equation. It may also be mentioned that
equations (15) and (18) are examples of “triangular” systems; these types
of systems have been studied at a general level for their periodic structure;
see, e.g. [2] and [11]. Since we are dealing with somewhat specific systems,
we can obtain substantial information (some of which go beyond periodicity)
without having to appeal to the more general results.

3.1 Semiconjugacy by sums

Throughout this section, we assume that (SC1) and (SC2) hold. We demon-
strate that solutions of Eq.(16) exhibit a wide variety of dynamic behaviors
ranging from periodic to chaotic. Solutions of Eq.(15a) are orbits, or se-
quences of iterates {tn} = {hn(t0)} where

h(t) = (a − c)t + g(t), t0 = x0 − cx−1.

For each given sequence of real numbers {tn}, the general solution of
(15b) is

xn = cnx0 +
n∑

j=1

cn−jtj, n ≥ 1. (19)

For nontriviality, we assume that c 6= 0 in the sequel. The sum in (19) is
of convolution type but here the sequence {tn} is rarely given in explicit form.



Often we only know some of the qualitative features of {tn} as a solution of
(15a), e.g. whether it is stable or periodic. We use (19) to translate those
qualitative properties into properties of solutions of Eq.(16).

Lemma 1. Assume that |c| 6= 1.
(a) Let {tn} be a periodic sequence of real numbers with period p, and let

{τ0, . . . , τp−1} be one cycle of {tn}. If

ξi =
1

1 − cp

p−1∑

j=0

cp−j−1τ(i+j) mod p i = 0, 1, . . . , p − 1 (20)

then the solution {xn} of Eq.(15b) with x0 = ξ0 and t1 = τ0 has period p
and {ξ0, . . . , ξp−1} is a cycle of {xn}.

(b) If for a given sequence {tn} of real numbers Eq.(15b) has a solution
{xn} of period p then {tn} is periodic with period p.

Proof. (a) With x0 = ξ0 and t1 = τ0 we find that

x1 = cx0 + t1 = cξ0 + τ0

which upon using (20) for ξ0 gives

x1 =
c

1 − cp

(
p−1∑

j=0

cp−j−1τj

)
+ τ0 =

1

1 − cp

(
p−2∑

j=0

cp−j−1τj+1 + τ0

)
= ξ1

Proceeding in an inductive fashion, we show in this way that xi = ξi for
i = 0, . . . , p − 1. Next, we show that xp = x0. Using (19) we have

xp = cpξ0 +

p−1∑

j=0

cp−j−1τj =
cp

1 − cp

p−1∑

j=0

cp−j−1τj +

p−1∑

j=0

cp−j−1τj = ξ0 = x0.

Hence {xn} is a solution with period p, as claimed.
(b) Suppose that for a given sequence {tn} of real numbers, the corre-

sponding solution of (15b) is periodic with period p. Let t1 = x1 − cx0 and
from (15b) obtain

tp+1 = xp+1 − cxp = x1 − cx0 = t1.

It follows that {tn} is periodic with period p.



Theorem 2 (periodic solutions) Assume that |c| 6= 1 and let {tn} be a
periodic solution of the first order equation (15a) with prime period p. If
{τ0, . . . , τp−1} is one cycle of {tn} then (16) has a solution {xn} of prime
period p with a cycle {ξ0, . . . , ξp−1} given by (20).

Proof. By Lemma 1(a) the periodic sequence {tn} generates a periodic
solution of (15b). By construction, this periodic solution is also a solution
of (16) if {tn} is a solution of (15a). It remains to show that p is the prime
or minimal period. Let q be the prime period of {xn} so that q ≤ p. Then
by Lemma 1(b) {tn} has period q ≥ p since p is the prime period for {tn}.
Therefore, q = p.

The periodic orbits in iterates of a continuous one dimensional map of an
interval satisfy the following ordering known as the Sharkovski ordering of
cycles; see [5], [17], [20].

3 B 5 B 7 B · · · 2 · 3 B 2 · 5 B · · · 22 · 3 B 22 · 5 B · · · 2k B 2k−1 B · · · B 2 B 1.

In particular, if a continuous mapping has an orbit with period 3, then it
has periodic orbits with all possible periods. The following is an immediate
consequence of Theorem 2.

Corollary 1. (coexisting periods) If Eq.(15a) has a solution of period 3 (e.g.
satisfies the Li-Yorke conditions; see[14]) then Eq.(16) has periodic solutions
with all possible periods that are arranged in the Sharkovski ordering.

Lemma 2 (boundedness) Let |c| < 1. If {tn} is a bounded sequence with
|tn| ≤ B for some B > 0, then the corresponding solution {xn} for Eq.(15b)
is also bounded and |xn| < |x0|+ B/(1− |c|) for all n ≥ 1. Further, there is
a positive integer N such that

|xn| ≤ 1 +
B

1 − |c| for all n ≥ N. (21)

Proof. From (19) we obtain

|xn| ≤ |c|n|x0| +
n∑

j=1

|c|n−jB < |x0| + B
∞∑

k=0

|c|k = |x0| +
B

1 − |c| .

From the preceding inequalities it also follows that if n is large enough,
then |c|n|x0| ≤ 1 from which (21) follows.



In the literature, the term “chaotic” usually indicates non-periodic, oscil-
latory behavior that is sensitive to initial values. See [5], [14], [15] and [17]
for some background on this concept. In particular, Theorem 3.3.3 in [17]
implies the following:

Theorem 3 (chaotic behavior) Assume that |c| < 1 and that the first order
equation (15a) is chaotic within an invariant closed interval [A,B] on the
line. Then the second order equation (16) is chaotic in the following invariant
compact, convex set in the plane

{(u, v) : cu + A ≤ v ≤ cu + B}∩
[
−1 − max{|A|, |B|}

1 − |c|
, 1 +

max{|A|, |B|}
1 − |c|

]2

.

Example 3. Consider the one parameter family of rational second order
equations

xn+1 =
6x2

n − 5xnxn−1 + x2
n−1 − α(2xn − xn−1) + 4

4xn − 2xn−1
, 0 < α < 4 (22)

which is obtained from (16) by setting a = 3/2, c = 1/2 and g(t) = 1/t−α/2.
We may write the mapping h in (15a) as

h(t) = t − α

2
+

1

t
.

h has a positive fixed point t̄ = 2/α and a positive global minimum value of
hmin = 2 − α/2 at t = 1, so h(t) > 0 for all t > 0 if 0 < α < 4. If α ≤ 2

√
2

then the fixed point t̄ attracts all positive iterates of h. To see this, we note
that if

h2(t) = h(h(t)) = t +
1

t
− α +

t

t2 − (α/2)t + 1

then

h2(t) − t =
−α[t− (2/α)][t2 − (α/2)t + 1/2]

t[t2 − (α/2)t + 1]

Since both of the quadratic terms in the preceding expression are positive
for all t if α ≤ 2

√
2 it follows that h2(t) > t for 0 < t < 2/α so by Theorem

2.1.2 of [17] t̄ = 2/α is a global attractor of all positive orbits of h. Thus
when α ≤ 2

√
2, Eq.(22) has a fixed point x̄ = t̄/(1 − c) = 4/α (this can also

be computed directly from (22)) which attracts all positive solutions of (22).



The attractivity of x̄ can be established directly using (19) or by observing
that the invariant fiber v = u/2 + t̄ is attracting and all points on this fiber
approach x̄.

If α > 2
√

2 then it is not hard to see that all iterates of h will eventually
enter and remain in the invariant interval [2 − α/2, h(2 − α/2)] and with
increasing value of α, a sequence of bifurcations of periodic orbits ensues
that progresses through the Sharkovski ordering to lead to a period 3 orbit
at about α = 3.48. Since for each point (u, v) in the plane, v − u/2 = t, it
follows that for 2 < α < 4, each solution of Eq.(22) eventually enters the
invariant bounded set
{

(u, v) :
u

2
+ 2 − α

2
≤ v ≤ u

2
+ h

(
2 − α

2

)}
∩ (0, 1 + 2h(2 − α/2)]2 (23)

For α up to 3.48, each period-p orbit of h uniquely generates a period-p
trajectory of (22) in the set (23) according to (20). For instance, solving the
equation

t = h2(t) = t +
1

t
− α +

2t

2t2 − αt + 2

for α > 2
√

2 yields the period-2 orbit

τ0 =
α −

√
α2 − 8

4
, τ1 =

α +
√

α2 − 8

4
.

Now using (20) we obtain a period-2 solution of (22) as

ξ0 =
cτ0 + τ1

1 − c2
=

3α +
√

α2 − 8

6
,

ξ1 =
cτ1 + τ0

1 − c2
=

3α −
√

α2 − 8

6
.

On the other hand, if α is close enough to 4, e.g. α > 3.48, then the
trajectories of (22) will exhibit sensitivity to initial conditions and undergo
nonperiodic oscillations within the set (23).

Remark. As the preceding results show, when |c| < 1 then Eq.(16) rather
faithfully duplicates the qualitative behavior of solutions of Eq.(15a). When
|c| > 1 then it is evident from (19) that solutions of (16) are typically un-
bounded and thus any bounded solutions (including periodic ones) of (16)



that correspond to bounded behavior in (15a) must be unstable. There-
fore, different qualitative behaviors will be exhibited by (16) and (15a) when
|c| > 1.

The relationship between the solutions of (16) and (15a) in cases c = ±1
is also different from |c| 6= 1. It is worth noting that if φ is linear in its
first coordinate, then (2) becomes a special case of Eq.(16) with c = 1 (upon
re-scaling the mapping φ). With c = 1 (19) changes into a sum (or discrete
integral) so the nature of solutions of (16) will be qualitatively different from
that of the solutions of (15a). In particular, a periodic solution of (15a) with
a cycle {τ0, . . . , τp−1} can translate into periodic solutions of (16) if and only
if
∑p−1

i=0 τi = 0. Thus there is a significant loss of periodicity in the second
order equation. For more details on the case c = 1 in certain special cases of
Eq.(16) see [16], [17] and [19].

3.2 Semiconjugacy by ratios

In this section we assume only that (SC3) holds, i.e., f is homogeneous
of degree 1. We do not put any further restrictions such as (14) on the
coefficients a, b, c in Eq.(4). The solutions of (4) under (SC3) exhibit a very
different type of behavior than was the case with (SC1) and (SC2). In order
to avoid singularities in (18), solutions of (4) that contain zero may be singled
out and treated differently.

Since for each given solution {rn} of (18a) the corresponding solution of
(4) is obtained from (18b) as

xn = rnrn−1 · · · r0x−1 (24)

the following result is easy to establish.

Theorem 4. Let x0, x−1 be given initial values with x−1 6= 0 and let {rn}
be a solution of Eq.(18a) with r0 = x0/x−1. Assume that rn is a real number
for all n ≥ 0 (e.g. rn is contained in an invariant set of (18a) which does
not contain 0). Then the following is true:

(a) If there is n0 ≥ 0 such that |rn| < 1 for all n ≥ n0 then the corre-
sponding solution {xn} of (4) converges to 0.

(b) If there is n0 ≥ 0 such that |rn| > 1 for all n ≥ n0 then the corre-
sponding solution {xn} of (4) is unbounded.

(c) If {rn} converges to a cycle {ρ1, . . . , ρp} with ρ1ρ2 · · · ρp = 1 then
{xn} converges to a periodic solution of (4) with period p.



(d) If {xn} converges to a nonzero value, then the infinite product
∏∞

n=0 rn

is convergent; in particular, there are disjoint, infinite sets of positive integers
K0 and K1 such that |rn| < 1 (or |xn| < |xn−1|) for n ∈ K0 and |rn| > 1
(or |xn| > |xn−1|) for n ∈ K1.

The following corollary illustrates the various points made in Theorem
4 as well as the fact that semiconjugates can sometimes be useful in the
derivation of solutions in quantitatively explicit form. If we set β = a − αc
for arbitrary a, c then the difference equation given in next corollary is a
version of (4) with b = 0 and

f(v, u − cv) =
α(u − cv)2

v
+ αc(u − cv).

Corollary 2. Consider the following rational difference equation

xn+1 =
αx2

n + βxnxn−1

xn−1

, x−1 6= 0 (25)

(a) If for n ≥ 0 we set xn+1 = 0 when xn−1 = xn = 0 then the general
solution of (25) is given in explicit form as

xn = x0

n∏

k=1

[(
x0

x−1
− β

1 − α

)
αk +

β

1 − α

]
, α 6= 1 (26a)

xn = x0

n∏

k=1

(
x0

x−1
+ βk

)
, α = 1. (26b)

(b) If |α| < 1 and |β| < 1 − α then every solutions of (25) converges to
zero.

(c) If |α| > 1 or |β| > 1 − α then almost all solutions of (25) are
unbounded.

(d) If |α| = 1 then certain solutions of (25) are periodic with period 2,
hence bounded and not converging to zero. There are also both unbounded
solutions and solutions converging to zero in this case.

Proof. (a) Since the function on the right hand side of (25) is homogeneous
of degree 1 in xn and xn−1, we may divide by xn and use the rn notation to
obtain

rn+1 = αrn + β. (27)



The solution of this linear first order equation is easily obtained and then
transformed into the appropriate form in (26) using (24) to complete the
proof.

(b) If |α| < 1 then every solution of (27) converges to the unique fixed
point β/(1− α). This point has absolute value less than unity if |β| < 1 −α
so by Theorem 4(a) every solution of (25) converges to zero.

(c) If |α| > 1 then almost every solution of (27) is unbounded exponen-
tially, where as if |α| < 1 but |β| > 1−α then every solution of (27) converges
to the fixed point β/(1 − α) with magnitude greater than unity. In either
case, the conclusion follows upon an application of Theorem 4(b).

(d) In this case it is more efficient to use Eq.(26). If α = 1 and β 6= 0
then using (26b) it is clear that every solution of (25) is unbounded whereas
if β = 0 then solutions with initial values satisfying |x0| ≤ |x−1| are bounded
(periodic if x0 = −x−1 6= 0).

If α = −1 then consider solutions with initial values satisfying x0/x−1 =
1 + β/2. For these solutions (26a) reduces to

xn = x0

n∏

k=1

[
(−1)k +

β

2

]
= Kn

(
β2

4
− 1

)[n/2]

where [n/2] is the greatest integer less than or equal to n/2 and Kn = x0 if
n is even and Kn = x0(β/2− 1) if n is odd. It follows that if |β| ≤ 2

√
2 then

{xn} is bounded whereas if β > 2
√

2 then {xn} is unbounded. In particular,
if β = 0,±2

√
2 then {xn} is periodic with period 2.

To give further applications of ratios, the next two results are quoted
from the literature ([9], [10], [18]) concerning the following equation

xn+1 = |αxn − βxn−1| (28)

which is a special case of Eq.(4) where a = b = 0 and f(v, u−cv) = α|u−cv|
if we define c = β/α. In this case, Eq.(18a) takes the form

rn+1 =

∣∣∣∣α − β

rn

∣∣∣∣ (29)

Theorem 5. [18] Let α = β = 1 in (28) and let Q+ denote the set of all
non-negative rational numbers.



(a) If x0/x−1 ∈ Q+ or x−1 = 0 then the corresponding solution {xn} of
(28) has period 3 eventually and for all large n its cycles are {0, α, α} where
α > 0.

(b) If x0/x−1 /∈ Q+ then the corresponding solution {xn} of (28) con-
verges to zero.

(c) Equation (29) has a period-p solution or a p-cycle {ρ1, . . . , ρp} for
every p 6= 3. These p-cycles are given as

ρ1 =
1 +

√
5

2
, ρ2 =

√
5 − 1√
5 + 1

(p = 2)

ρ1 =
1

2

[
yp−4 +

√
y2

p−4 + 4yp−4yp−1

]
, ρk =

yk−4ρ1 − yk−2

yk−3 − yk−5ρ1

, 2 ≤ k ≤ p, (p ≥ 4)

where yn is the n-th Fibonacci number; i.e., yn+1 = yn + yn−1 for n ≥ −2
where we define

y−3 = −1, y−2 = 1.

(d) If {ρ1, . . . , ρp} is a periodic solution of (29) then for the corresponding
solution {xn} of (28) it is true that

xn = x0ρ
n/p, if n/p is an integer

xn ≤ x0αρn/p, otherwise

where

ρ =

p∏

i=1

ρi < 1, α = max{r1, . . . , rp}ρ−(1−1/p) > 1.

Theorem 6. [9] (a) Eq.(28) has a positive period-2 solution if and only if

β2 − α2 = 1, α > 0.

Further, these period-2 solutions are confined to the pair of lines y = r1x
and y = r2x in phase space, where the slopes r1, r2 are given by

r1 =
β − 1

α
, r2 =

β + 1

α
.

On the other hand, the only period-2 solutions of (28) that pass through
the origin occur at α = 0 where β = 1.



(b) Eq.(28) has a positive period-3 solution if and only if

α3 + αβ − β3 = 1, α > 1. (30)

Further, these period-3 solutions are confined to the three lines y = rix
in phase space where for i = 1, 2, 3, the slopes ri are given by

r1 =
αβ + 1

α2 + β
, r2 =

β2 − α

αβ + 1
, r3 =

β + α2

β2 − α
. (31)

On the other hand, the only period-3 solutions of (28) that pass through
the origin occur at α = 1 where β = 1 also (see Theorem... above).

(c) Let β = 1. Then there is a strictly increasing sequence of parameter
values {αp}, p ≥ 3, such that

α3 = 1 and lim
p→∞

αp = 2

and for each p = 3, 4, 5, . . . the particular solution {xn} of (28) with initial
values x−1 = 1, x0 = αp is periodic with period p.

It is a curious fact that the behaviors of solutions of (25) are considerably
simpler than those of (28). This is not easy to understand through a direct
comparison of the two second order difference equations which seem to have
little in common except that they are both 2-parameter difference equations.
However, the essential difference becomes apparent when we contrast the
relatively simple dynamics of the linear mapping (27) with the much more
complex dynamics of the first order mapping (29).
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