Global Attractivity and Semiconjugacy

H. SEDAGHAT
Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA

PODE 2012
Richmond, Virginia
This talk is based on the paper Global attractivity in a class of non-autonomous, nonlinear higher order difference equations, to appear in the Journal of Difference Equations and Applications.

Part I
 Global Attractivity:
 A General Result

1 Basic concepts at a glance

Let \mathbb{X} be a (real or complex) Banach space and consider the difference equation

$$
\begin{equation*}
x_{n+1}=f_{n}\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

with a prescribed sequence of functions $f_{n}: D \rightarrow \mathbb{X}$ where $D \subset \mathbb{X}^{k+1}$.

- This equation represents the most general difference equation of order $k+1$ that is of recursive type - i.e., each state x_{n+1} is explicitly and uniquely determined by the preceding $k+1$ states $x_{n}, x_{n-1}, \ldots, x_{n-k}$.
- If the functions $f_{n}=f$ are all equal then we obtain the autonomous difference equation

$$
x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)
$$

- For each n, the vector function $F_{n}: D \rightarrow \mathbb{X}^{k+1}$ that is defined as

$$
F_{n}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{k}\right)=\left(f_{n}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{k}\right), \xi_{0}, \xi_{1}, \ldots, \xi_{k-1}\right)
$$

represents an unfolding of f_{n} to a mapping of \mathbb{X}^{k+1}. The sequence $\left\{F_{n}\right\}$ for all $n \geq 0$ may be said to unfold the difference equation (1).

- Due to the recursive nature of (1), from a set of $k+1$ initial values

$$
x_{0}, x_{-1}, \ldots, x_{-k} \in \mathbb{X} \text { such that }\left(x_{0}, x_{-1}, \ldots, x_{-k}\right) \in D
$$

a unique sequence $\left\{x_{n}\right\}$ of points in \mathbb{X} is generated upon iteration: $n=0,1,2, \ldots$

$$
\begin{aligned}
& x_{1}=f_{0}\left(x_{0}, x_{-1}, \ldots, x_{-k}\right), \quad n=0, \\
& x_{2}=f_{1}\left(x_{1}, x_{0}, \ldots, x_{-k+1}\right), \quad n=1, \\
& x_{3}=f_{2}\left(x_{2}, x_{1}, \ldots, x_{-k+2}\right), \quad n=2,
\end{aligned}
$$

A corresponding sequence of points $\left\{X_{n}\right\}=\left\{\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)\right\}$ is obtained in \mathbb{X}^{k+1}

$$
X_{n+1}=F_{n}\left(X_{n}\right)=\left(F_{n} \circ F_{n-1} \circ \cdots \circ F_{0}\right)\left(X_{0}\right)
$$

- In the autonomous case, $F_{n}=F$ for all n so

$$
X_{n+1}=F^{n}\left(X_{0}\right) .
$$

- If $X_{0} \in D$ and $\left\{X_{n}\right\}$ stays in D for all $n \geq 1$ then $\left\{X_{n}\right\}$ is an orbit of the unfolding of (1). The sequence of points $\left\{x_{n}\right\}$ is then a solution of (1).
- If $F_{n}(D) \subset D$ for every n then D is an invariant set of (1). In this case, the existence of a solution for (1) is guaranteed starting from any initial point in D. This is always true if $D=\mathbb{X}^{k+1}$.

Theorem 1 Let \mathbb{X} be a Banach space and assume that for some real $\alpha \in$ $(0,1)$ the functions f_{n} satisfy the norm inequality

$$
\begin{equation*}
\left\|f_{n}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{k}\right)\right\| \leq \alpha \max \left\{\left\|\xi_{0}\right\|, \ldots,\left\|\xi_{k}\right\|\right\} \tag{2}
\end{equation*}
$$

for every n and all $\left(\xi_{0}, \ldots, \xi_{k}\right) \in \mathbb{X}^{k+1}$. Then every solution $\left\{x_{n}\right\}$ of (1) with given initial values $x_{0}, x_{-1}, \ldots, x_{-k} \in \mathbb{X}$ satisfies

$$
\left\|x_{n}\right\| \leq \alpha^{n /(k+1)} \max \left\{\left\|x_{0}\right\|,\left\|x_{-1}\right\|, \ldots,\left\|x_{-k}\right\|\right\}
$$

That is, the origin is globally exponentially stable.
Proof. Let $\mu=\max \left\{\left\|x_{0}\right\|,\left\|x_{-1}\right\|, \ldots,\left\|x_{-k}\right\|\right\}$.
If $\left\{x_{n}\right\}$ is the solution of (1) with the given initial values then we first claim that $\left\|x_{n}\right\| \leq \alpha \mu$ for all $n \geq 1$.

By (2)

$$
\left\|x_{1}\right\|=\left\|f_{0}\left(x_{0}, x_{-1}, \ldots, x_{-k}\right)\right\| \leq \alpha \max \left\{\left\|x_{0}\right\|,\left\|x_{-1}\right\|, \ldots,\left\|x_{-k}\right\|\right\}=\alpha \mu
$$

and if for any $j \geq 1$ it is true that $\left\|x_{n}\right\| \leq \alpha \mu$ for $n=1,2, \ldots, j$ then

$$
\begin{aligned}
\left\|x_{j+1}\right\| & =\left\|f_{j}\left(x_{j}, x_{j-1}, \ldots, x_{j-k}\right)\right\| \leq \alpha \max \left\{\left\|x_{j}\right\|,\left\|x_{j-1}\right\|, \ldots,\left\|x_{j-k}\right\|\right\} \\
& \leq \alpha \max \{\mu, \alpha \mu\}=\alpha \mu .
\end{aligned}
$$

Therefore, our claim is true by induction.
In particular, since $0<\alpha<1$ we have shown that $\left\|x_{n}\right\| \leq \alpha^{n /(k+1)} \mu$ for $n=1,2, \ldots, k+1$. Now suppose that $\left\|x_{n}\right\| \leq \alpha^{n /(k+1)} \mu$ is true for $n \leq m$ where $m \geq k+1$. Then

$$
\begin{aligned}
\left\|x_{m+1}\right\| & =\left\|f_{m}\left(x_{m}, x_{m-1}, \ldots, x_{m-k}\right)\right\| \leq \alpha \max \left\{\left\|x_{m}\right\|,\left\|x_{m-1}\right\|, \ldots,\left\|x_{m-k}\right\|\right\} \\
& \leq \alpha \mu \max \left\{\alpha^{m /(k+1)}, \alpha^{(m-1) /(k+1)}, \ldots, \alpha^{(m-k) /(k+1)}\right\} \\
& =\alpha^{(m+1) /(k+1)} \mu
\end{aligned}
$$

and the proof is complete by induction.

History/background of last theorem...

Part II
 Semiconjugate Factorization on Banach Algebras

2 Banach algebras at a glance

A Banach algebra with an identity 1 is a Banach space together with a multiplication operation $x y$ that is associative, distributes over addition and satisfies

$$
\begin{equation*}
\|x y\| \leq\|x\|\|y\|, \quad\|1\|=1 \tag{3}
\end{equation*}
$$

The multiplication by scalars (real or complex numbers) that is inherited from the vector space structure of \mathbb{X} is made consistent with the main multiplication by assuming that the following equalities hold for all scalars α :

$$
\alpha(x y)=(\alpha x) y=x(\alpha y)
$$

- Elements of type $\alpha 1$ where α is a scalar are the constants in \mathbb{X}.
- The set $\mathbb{R}(\mathbb{C})$ is a real (complex) commutative Banach algebra with identity over itself with respect to the ordinary addition and multiplication of complex numbers and the absolute value as norm.
- The set $C[0,1]$ of all continuous real-valued functions on the interval $[0,1]$ forms a commutative real Banach algebra relative to the sup (or $\max)$ norm. The identity element is the constant function $x(r)=1$ for all $r \in[0,1]$. The other constants in $C[0,1]$ are just the constant functions on $[0,1]$.
- An element $x \in \mathbb{X}$ is invertible, or a unit, if there is $x^{-1} \in \mathbb{X}$ (the inverse of x) such that $x^{-1} x=1$. The collection of all invertible elements of \mathbb{X} forms a group \mathcal{G} (the group of units) that contains all nonzero constants. It can be shown that \mathcal{G} is open relative to the metric topology of \mathbb{X}.
- Since the zero element is not invertible, $\mathcal{G} \neq \mathbb{X}$. If \mathbb{X} is either \mathbb{R} or \mathbb{C} then $\mathcal{G}=\mathbb{X} \backslash\{0\}$. In the algebra $C[0,1]$ units are functions that do not assume the (scalar) value 0 .

3 The difference equation of interest

Consider the difference equation

$$
\begin{equation*}
x_{n+1}=\sum_{i=0}^{k} a_{i} x_{n-i}+g_{n}\left(\sum_{i=0}^{k} b_{i} x_{n-i}\right) \tag{4}
\end{equation*}
$$

- For each n, the function $g_{n}: \mathbb{X} \rightarrow \mathbb{X}$ is defined on a real or complex Banach algebra \mathbb{X} with identity.
- The parameters a_{i}, b_{i} are constants in \mathbb{X} such that

$$
a_{k} \neq 0 \text { or } b_{k} \neq 0
$$

Several special cases of (4) in $\mathbb{X}=\mathbb{R}$ have been studied in the literature - for example:

- For the second-order case $(k=1)$

$$
\begin{equation*}
x_{n+1}=c x_{n}+g\left(x_{n}-x_{n-1}\right) \tag{5}
\end{equation*}
$$

- Sedaghat (2003 and earlier): Economic models of the business cycle
- C.M. Kent and H. Sedaghat (2004): boundedness and global asymptotic stability of (5)
- S. Li and W. Zhang (2008): bifurcations of solutions of (5), including the Neimark-Sacker bifurcation (discrete analog of Hopf)
- El-Morshedy (2011): improves some results of Kent and Sedaghat and gives necessary and sufficient conditions for the occurrence of oscillations
- The global attractivity and stability of equilibrium for the following delay version of (5) is studied by B. Dai and N. Zhang (2005)

$$
x_{n+1}=c x_{n}+g\left(x_{n}-x_{n-k}\right)
$$

- For the following generalization of (5)

$$
\begin{equation*}
x_{n+1}=a x_{n}+b x_{n-1}+g_{n}\left(x_{n}-c x_{n-1}\right) \tag{6}
\end{equation*}
$$

- Sedaghat (2009): sufficient conditions for the occurrence of periodic solutions, limit cycles and chaotic behavior in (6) are obtained using reduction of order and semiconjugate factorization
- Dehghan, Kent, Mazrooei, Ortiz, Sedaghat (2008): sufficient conditions for occurrence of limit cycles and chaos in certain rational difference equations of the following type

$$
x_{n+1}=\frac{a x_{n}^{2}+b x_{n-1}^{2}+c x_{n} x_{n-1}+d x_{n}+e x_{n-1}+f}{\alpha x_{n}+\beta x_{n-1}+\gamma}
$$

that are special cases of (6)

- Hamaya (2007): obtains sufficient conditions for the global attractivity of the origin for the following equation

$$
x_{n+1}=\alpha x_{n}+a \tanh \left(x_{n}-\sum_{i=1}^{k} b_{i} x_{n-i}\right)
$$

with $0 \leq \alpha<1, a>0$ and $b_{i} \geq 0$.

A direct application of Theorem 1 to Equation (4) gives the following result.

Corollary 2 Let $g_{n}: \mathbb{X} \rightarrow \mathbb{X}$ be a sequence of functions on a real or complex Banach algebra \mathbb{X} with identity. Assume that there is a real number $\sigma>0$ such that

$$
\begin{equation*}
\left\|g_{n}(\xi)\right\| \leq \sigma\|\xi\|, \quad \xi \in \mathbb{X} \tag{7}
\end{equation*}
$$

for all n and further, for coefficients a_{i}, b_{i} (real or complex) we assume that the inequality

$$
\begin{equation*}
\sum_{i=0}^{k}\left(\left\|a_{i}\right\|+\sigma\left\|b_{i}\right\|\right)<1 \tag{8}
\end{equation*}
$$

holds. Then every solution $\left\{x_{n}\right\}$ of Equation (4)

$$
x_{n+1}=\sum_{i=0}^{k} a_{i} x_{n-i}+g_{n}\left(\sum_{i=0}^{k} b_{i} x_{n-i}\right)
$$

with initial values $x_{0}, x_{-1}, \ldots, x_{-k} \in \mathbb{X}$ satisfies

$$
\left\|x_{n}\right\| \leq \alpha^{n /(k+1)} \max \left\{\left\|x_{0}\right\|,\left\|x_{-1}\right\|, \ldots,\left\|x_{-k}\right\|\right\}, \quad \alpha=\sum_{i=0}^{k}\left(\left\|a_{i}\right\|+\sigma\left\|b_{i}\right\|\right)
$$

Proof. If $\left(\xi_{0}, \xi_{1}, \ldots, \xi_{k}\right) \in \mathbb{X}^{k+1}$ then by the triangle inequality, (3) and

$$
\begin{align*}
\left\|\sum_{i=0}^{k} a_{i} \xi_{i}+g_{n}\left(\sum_{i=0}^{k} b_{i} \xi_{i}\right)\right\| & \leq \sum_{i=0}^{k}\left(\left\|a_{i}\right\|+\sigma\left\|b_{i}\right\|\right)\left\|\xi_{i}\right\| \tag{7}\\
& \leq\left[\sum_{i=0}^{k}\left(\left\|a_{i}\right\|+\sigma\left\|b_{i}\right\|\right)\right] \max \left\{\left\|\xi_{0}\right\|, \ldots,\left\|\xi_{k}\right\|\right\}
\end{align*}
$$

Therefore, given (8), by Theorem 1 the origin is globally asymptotically stable.

4 Semiconjugate factorization

In previous studies of special cases of Equation (4):

$$
x_{n+1}=\sum_{i=0}^{k} a_{i} x_{n-i}+g_{n}\left(\sum_{i=0}^{k} b_{i} x_{n-i}\right)
$$

it is often the case that the restriction

$$
\sum_{i=0}^{k}\left(\left\|a_{i}\right\|+\sigma\left\|b_{i}\right\|\right)<1
$$

on coefficients can be relaxed.
General sufficient conditions for improving the ranges of parameters a_{i}, b_{i} can be obtained through an indirect application of Theorem 1.

- We first split the above difference equation into two equations of lower orders;
- One equation will be similar to the above but with order reduced by 1 ; Theorem 1 is then applied to this lower order equation.
- The second equation will be linear non-homogeneous of order 1 and its solution is easy to analyze.
- The system of two equations will be triangular since the first equation is independent of the second.
- The triangular system constitutes a semiconjugate factorization of Equation (4) above.

The next result sets things up by supplying the crucial semiconjugate factorization:

Lemma 3 Let $g_{n}: \mathbb{X} \rightarrow \mathbb{X}$ be a sequence of functions on an algebra \mathbb{X} with identity (not necessarily normed) over a field \mathcal{F}. If for $a_{i}, b_{i} \in \mathbb{X}$ the polynomials

$$
P(\xi)=\xi^{k+1}-\sum_{i=0}^{k} a_{i} \xi^{k-i}, \quad Q(\xi)=\sum_{i=0}^{k} b_{i} \xi^{k-i}
$$

have a common root $\rho \in \mathcal{G}$, the group of units of \mathbb{X}, then each solution $\left\{x_{n}\right\}$ of (4) in \mathbb{X} satisfies

$$
\begin{equation*}
x_{n+1}=\rho x_{n}+t_{n+1} \tag{9}
\end{equation*}
$$

where the sequence $\left\{t_{n}\right\}$ is the unique solution of the equation:

$$
\begin{equation*}
t_{n+1}=-\sum_{i=0}^{k-1} p_{i} t_{n-i}+g_{n}\left(\sum_{i=0}^{k-1} q_{i} t_{n-i}\right) \tag{10}
\end{equation*}
$$

in \mathbb{X} with initial values $t_{-i}=x_{-i}-\rho x_{-i-1} \in \mathbb{X}$ for $i=0,1, \ldots, k-1$ and coefficients

$$
p_{i}=\rho^{i+1}-a_{0} \rho^{i}-\cdots-a_{i} \quad \text { and } \quad q_{i}=b_{0} \rho^{i}+b_{1} \rho^{i-1}+\cdots+b_{i}
$$

in \mathbb{X}. Conversely, if $\left\{t_{n}\right\}$ is a solution of (10) with initial values $t_{-i} \in \mathbb{X}$ then the sequence $\left\{x_{n}\right\}$ that it generates in \mathbb{X} via (9) is a solution of (4).

The pair of equations (9) and (10) that are equivalent to (4) represents a semiconjugate factorization of (4) relative to the linear form symmetry.

Part III
 Global Attractivity plus Semiconjugate Factorization

5 Global attractivity revisited

Theorem 4 Let $g_{n}: \mathbb{X} \rightarrow \mathbb{X}$ be a sequence of functions that satisfy (7): $\left\|g_{n}(\xi)\right\| \leq \sigma\|\xi\|$, for each n. Then every solution $\left\{x_{n}\right\}$ of (4):

$$
x_{n+1}=\sum_{i=0}^{k} a_{i} x_{n-i}+g_{n}\left(\sum_{i=0}^{k} b_{i} x_{n-i}\right)
$$

converges to zero if either (a) or (b) below is true:
(a) Inequality (8) holds:

$$
\sum_{i=0}^{k}\left(\left\|a_{i}\right\|+\sigma\left\|b_{i}\right\|\right)<1
$$

(b) The polynomials P, Q in Lemma 3 have a common root $\rho \in \mathcal{G}$ such that $\|\rho\|<1$ and

$$
\begin{equation*}
\sum_{i=0}^{k-1}\left(\left\|p_{i}\right\|+\sigma\left\|q_{i}\right\|\right)<1 \tag{11}
\end{equation*}
$$

with the coefficients p_{i}, q_{i}

$$
p_{i}=\rho^{i+1}-a_{0} \rho^{i}-\cdots-a_{i} \quad \text { and } \quad q_{i}=b_{0} \rho^{i}+b_{1} \rho^{i-1}+\cdots+b_{i}
$$

in the factor equation (10), $i=0,1, \ldots, k-1$.

Proof. (a) Corollary 2.
(b) Observe that the solution of Equation (9) $x_{n+1}=\rho x_{n}+t_{n+1}$ in terms of t_{n} is given by

$$
\begin{equation*}
x_{n}=\rho^{n} x_{0}+\sum_{j=1}^{n} \rho^{n-j} t_{j} \tag{12}
\end{equation*}
$$

Now let Equation (10) which has order one less than (4) be as in Lemma 3. Then, given $\left\|g_{n}(\xi)\right\| \leq \sigma\|\xi\|$, apply Corollary 2 to the lower order equation (10) to conclude that

$$
\left\|t_{n}\right\| \leq \alpha^{n /(k+1)} \mu
$$

where $\mu=\max \left\{\left\|t_{0}\right\|,\left\|t_{-1}\right\|, \ldots,\left\|t_{-k+1}\right\|\right\}$ with $t_{-i}=x_{-i}-\rho x_{-i-1}$ for $i=$ $0,1, \ldots, k-1$ and

$$
\alpha=\sum_{i=0}^{k-1}\left(\left\|p_{i}\right\|+\sigma\left\|q_{i}\right\|\right)
$$

Since in $\mathbb{X},\left\|\rho^{j}\right\| \leq\|\rho\|^{j}$ for each j, taking norms in (12) yields

$$
\begin{equation*}
\left\|x_{n}\right\| \leq\|\rho\|^{n}\left\|x_{0}\right\|+\sum_{j=1}^{n}\|\rho\|^{n-j}\left\|t_{j}\right\| \leq\|\rho\|^{n}\left\|x_{0}\right\|+\mu\|\rho\|^{n} \sum_{j=0}^{n-1}\left(\frac{\alpha^{1 /(k+1)}}{\|\rho\|}\right)^{j} \tag{13}
\end{equation*}
$$

If $\alpha^{1 /(k+1)} \neq\|\rho\|$ then

$$
\begin{aligned}
\left\|x_{n}\right\| & \leq\|\rho\|^{n}\left\|x_{0}\right\|+\mu \alpha^{1 /(k+1)}\|\rho\|^{n-1} \frac{\left[\alpha^{1 /(k+1)} /\|\rho\|\right]^{n}-1}{\left[\alpha^{1 /(k+1)} /\|\rho\|\right]-1} \\
& =\|\rho\|^{n}\left\|x_{0}\right\|+\mu \alpha^{1 /(k+1)} \frac{\alpha^{n /(k+1)}-\|\rho\|^{n}}{\alpha^{1 /(k+1)}-\|\rho\|}
\end{aligned}
$$

Since $\alpha,\|\rho\|<1$ it follows that $\left\{x_{n}\right\}$ converges to zero. If $\alpha^{1 /(k+1)}=\|\rho\|$ then (13) reduces to

$$
\left\|x_{n}\right\| \leq\|\rho\|^{n}\left\|x_{0}\right\|+\mu\|\rho\|^{n} n
$$

and by L'Hospital's rule $\left\{x_{n}\right\}$ again converges to zero.

Corollary 5 Let g_{n} be functions on \mathbb{X} satisfying (7) for all $n \geq 0$. Every solution of the difference equation

$$
\begin{align*}
x_{n+1} & =a x_{n}+g_{n}\left(b_{0} x_{n}+b_{1} x_{n-1}+\cdots+b_{k} x_{n-k}\right), \tag{14}\\
a & \in \mathcal{G}, b_{i} \in \mathbb{X}, \quad b_{k} \neq 0
\end{align*}
$$

converges to zero if $\|a\|<1$ and the following conditions hold:

$$
\begin{array}{r}
b_{0} a^{k}+b_{1} a^{k-1}+b_{2} a^{k-2}+\cdots+b_{k}=0, \\
\sum_{i=0}^{k-1}\left\|b_{0} a^{i}+b_{1} a^{i-1}+\cdots+b_{i}\right\|<\frac{1}{\sigma} . \tag{16}
\end{array}
$$

Proof. For equation (14) the polynomials P, Q are

$$
P(\xi)=\xi^{k+1}-a \xi^{k}, \quad Q(\xi)=b_{0} \xi^{k}+b_{1} \xi^{k-1}+\cdots+b_{k} .
$$

Thus $\rho=a$ is their common root in \mathcal{G} if (15) holds. The numbers p_{i}, q_{i} that define the factor equation (10) in this case are

$$
p_{i}=\rho^{i+1}-a \rho^{i}=0, \quad q_{i}=b_{0} a^{i}+b_{1} a^{i-1}+\cdots+b_{i}
$$

Thus, if $\|a\|<1$ then by Theorem 4 every solution of (14) converges to zero.

The parameter range determined by the inequality $\sum_{i=0}^{k-1}\left(\left\|p_{i}\right\|+\sigma\left\|q_{i}\right\|\right)<$ 1 is generally distinct from that given by $\sum_{i=0}^{k}\left(\left\|a_{i}\right\|+\sigma| | b_{i} \|\right)<1$.

Example 1. To illustrate the difference between the two inequalities above, consider the following equation on the set of real numbers:

$$
\begin{equation*}
x_{n+1}=a x_{n}+\alpha_{n} \tanh \left(x_{n}-b x_{n-k}\right) \tag{17}
\end{equation*}
$$

Suppose that the sequence $\left\{\alpha_{n}\right\}$ of real numbers is bounded by $\sigma>0$ and it is otherwise arbitrary. Then

$$
\left|\alpha_{n} \tanh t\right|=\left|\alpha_{n}\right||\tanh t| \leq\left|\alpha_{n}\right||t| \leq \sigma|t|
$$

for all n. If $0<|a|<1$ and $b=a^{k}$ then by Corollary 5 every solution of (17) converges to zero if

$$
\begin{equation*}
\frac{1}{\sigma}>\sum_{i=0}^{k-1}|a|^{i}=\frac{1-|a|^{k}}{1-|a|} \Leftrightarrow \sigma<\frac{1-|a|}{1-|a|^{k}} \tag{18}
\end{equation*}
$$

On the other hand, by Corollary 2 the origin is globally attracting for (17) with $b=a^{k}$ if

$$
|a|+\sigma\left(1+|a|^{k}\right)<1 \Rightarrow \sigma<\frac{1-|a|}{1+|a|^{k}}
$$

which is clearly more limited than (18).

Corollary 6 Let g_{n} be functions on \mathbb{X} satisfying (7) for all $n \geq 0$. For the difference equation

$$
\begin{align*}
x_{n+1} & =a_{0} x_{n}+a_{1} x_{n-1}+\cdots+a_{k} x_{n-k}+g_{n}\left(x_{n}-b x_{n-1}\right), \tag{19}\\
a_{i} & \in \mathbb{X}, b \in \mathcal{G}, \quad a_{k} \neq 0
\end{align*}
$$

assume that $\|b\|<1$ and the following conditions hold:

$$
\begin{gather*}
a_{0} b^{k}+a_{1} b^{k-1}+\cdots+a_{k}=b^{k+1}, \tag{20}\\
\sum_{i=0}^{k-1}\left\|b^{i+1}-a_{0} b^{i}-\cdots-a_{i}\right\|<1-\sigma . \tag{21}
\end{gather*}
$$

Then every solution of (19) converges to zero.
Proof. The polynomials P, Q in this case are

$$
P(\xi)=\xi^{k+1}-a_{0} \xi^{k}-\cdots-a_{k}, \quad Q(\xi)=\xi^{k}-b \xi^{k-1} .
$$

Clearly, $Q(b)=0$ and if Equality (20) holds then $P(b)=0$ too, so Theorem 4 applies. We calculate the coefficients of the factor equation (10) as $q_{0}=1, q_{i}=0$ if $i \neq 0$ and

$$
p_{i}=b^{i+1}-a_{0} b^{i}-\cdots-a_{i} .
$$

Now, inequality (11) yields (21) via a straightforward calculation:

$$
\begin{aligned}
1 & >\sum_{i=0}^{k-1}\left\|b^{i+1}-a_{0} b^{i}-\cdots-a_{i}\right\|+\sigma \\
& =\sum_{i=0}^{k-1}\left\|b^{i+1}-a_{0} b^{i}-\cdots-a_{i}\right\|+\sigma
\end{aligned}
$$

Thus, if $\|b\|<1$ then by Theorem 4 every solution of (19) converges to zero.

Example 2. As an application of the preceding corollary, consider the case $k=1$, i.e., the second-order equation

$$
\begin{equation*}
x_{n+1}=a_{0} x_{n}+a_{1} x_{n-1}+g_{n}\left(x_{n}-b x_{n-1}\right) \tag{22}
\end{equation*}
$$

which is essentially Equation (6) on a Banach algebra \mathbb{X}. By Corollary 6, every solution of (22) converges to zero if the functions g_{n} satisfy (7) and

$$
\begin{equation*}
b \in \mathcal{G}, \quad\|b\|<1, \quad a_{0} b+a_{1}=b^{2}, \quad\left\|a_{0}-b\right\|+\sigma<1 . \tag{23}
\end{equation*}
$$

On the other hand, according to Corollary 2, every solution of (22) converges to zero if the functions g_{n} satisfy (7) and

$$
\begin{equation*}
\left\|a_{0}\right\|+\left\|a_{1}\right\|+\sigma(1+\|b\|)<1 \tag{24}
\end{equation*}
$$

Parameter values that do not satisfy (24) may satisfy (23). For comparison, if $a_{1}=b^{2}-a_{0} b$ then (24) may be solved for σ to obtain

$$
\sigma<\frac{1-\left\|a_{0}\right\|-\|b\|\left\|a_{0}-b\right\|}{1+\|b\|}
$$

This is a stronger constraint on σ than $\sigma<1-\left\|a_{0}-b\right\|$ from (23), especially if b is not near 0 .

Example 3. Consider the following difference equation on the real Ba nach algebra $C[0,1]$:

$$
\begin{equation*}
x_{n+1}=\frac{\alpha r}{r+1} x_{n}+\frac{\beta(\beta-\alpha r)}{(r+1)^{2}} x_{n-1}+\int_{0}^{r} \phi_{n}\left(x_{n}-\frac{\beta}{r+1} x_{n-1}\right) d r \tag{25}
\end{equation*}
$$

where the functions $\phi_{n}: \mathbb{R} \rightarrow \mathbb{R}$ are integrable and for each n they satisfy the absolute value inequality

$$
\left|\phi_{n}(r)\right| \leq \sigma|r|, \quad r \in \mathbb{R}
$$

for some $\sigma>0$. Assume that the following inequalities hold

$$
0<\beta<1, \quad 3 \beta \leq \alpha<2+\beta, \quad \sigma<\frac{2+\beta-\alpha}{2}
$$

and define the coefficient functions

$$
a_{0}(r)=\frac{\alpha r}{r+1}, \quad a_{1}(r)=\frac{\beta(\beta-\alpha r)}{(r+1)^{2}}, \quad b(r)=\frac{\beta}{r+1} .
$$

Then clearly $b \in \mathcal{G}$ and

$$
b^{2}(r)-a_{0}(r) b(r)=\frac{\beta(\beta-\alpha r)}{(r+1)^{2}}=a_{1}(r)
$$

Further, the following are true about the norms:

$$
\left\|a_{0}\right\|=\sup _{0 \leq r \leq 1} \frac{\alpha r}{r+1}=\frac{\alpha}{2}, \quad\|b\|=\sup _{0 \leq r \leq 1} \frac{\beta}{r+1}=\beta<1
$$

and

$$
\left\|a_{0}-b\right\|=\sup _{0 \leq r \leq 1}\left|\frac{\alpha r-\beta}{r+1}\right|=\max \left\{\frac{\alpha-\beta}{2}, \beta\right\}=\frac{\alpha-\beta}{2}<1-\sigma .
$$

All the required conditions are met. Next, since the functions or operators $g_{n}: C[0,1] \rightarrow C[0,1]$ in (22) are defined as

$$
g_{n}(x)(r)=\int_{0}^{r}\left(\phi_{n} \circ x\right)(r) d r
$$

for $r \in[0,1]$ and all n, their norms satisfy

$$
\left\|g_{n}(x)\right\| \leq \sup _{0 \leq r \leq 1} \int_{0}^{r}\left|\phi_{n}(x(r))\right| d r \leq \sup _{0 \leq r \leq 1} \int_{0}^{r} \sigma|x(r)| d r \leq\|x\| \sigma \sup _{0 \leq r \leq 1} r=\sigma\|x\| .
$$

Therefore, by Corollary 6 for every pair of initial functions $x_{0}(r), x_{-1}(r) \in$ $C[0,1]$ the sequence of functions $x_{n}=x_{n}(r)$ that satisfy (25) in $C[0,1]$ converges uniformly to the zero function.

It is worth observing that $a_{0} \notin \mathcal{G}$ and $\left\|a_{0}\right\| \geq 1$ if $\alpha \geq 2$, in which Corollary 2 does not apply.

- The preceding corollaries and Theorem 4 are broad applications of the reduction of order method to very general equations that improve the range of parameters compared to Lemma 2.
- They show that different patterns of delays may be translated into algebraic problems about the polynomials P and Q and their root structures.
- In special cases a more efficient application of Lemma 3 may yields a greater amount of information about the behavior of solutions than Theorem 4.

The next result represents a deeper use of order reduction in that sense.

Theorem 7 In Equation (22) assume that $b \in \mathcal{G}$ with $|b|<1$ and $a_{0}, a_{1} \in \mathbb{X}$ such that $a_{0} b+a_{1}=b^{2}$. If x_{0}, x_{-1} are given initial values for (22) for which the solution of the first order equation

$$
\begin{equation*}
t_{n+1}=\left(a_{0}-b\right) t_{n}+g_{n}\left(t_{n}\right) \tag{26}
\end{equation*}
$$

converges to zero with the initial value $t_{0}=x_{0}-b x_{-1}$ then the corresponding solution of (22) converges to zero. In particular, if the origin is a global attractor of the solutions of the first order Equation (26) then it is also a global attractor of the solutions of (22).

Proof. In this case $Q(\xi)=\xi-b$ so there is only one root b. Now Lemma 3 gives Equation (26) if $P(b)=0$, i.e., if $a_{0} b+a_{1}=b^{2}$. Finally, we complete the proof by arguing similarly to the proof of Theorem 4(b), using (12).

Example 4. Consider the following autonomous equation on the real numbers

$$
\begin{equation*}
x_{n+1}=a x_{n}+b(b-a) x_{n-1}+\sigma \tanh \left(x_{n}-b x_{n-1}\right) \tag{27}
\end{equation*}
$$

where $\sigma>0,0<b<1$ and $a<b$. Equation (26) in this case is

$$
\begin{equation*}
t_{n+1}=h\left(t_{n}\right), \quad h(\xi)=(a-b) \xi+\sigma \tanh \xi \tag{28}
\end{equation*}
$$

- The function h has a fixed point at the origin since $h(0)=0$.
- The origin is the unique fixed point of h if $|h(\xi)|<|\xi|$ for $\xi \neq 0$.
- Since h is an odd function, it is enough to consider $\xi>0$. In this case, $h(\xi)<\xi$ if and only if $\sigma \tanh \xi<(1-a+b) \xi$. Since $\tanh \xi<\xi$ for $\xi>0$ we may conclude that

$$
\begin{equation*}
\sigma<1-a+b \tag{29}
\end{equation*}
$$

- Given that $a<b$, it is possible to choose $1 \leq \sigma<1-a+b$ and extend the range of σ beyond what is possible with previous corollaries which require that $\sigma<1$. In particular, the function $\sigma \tanh \xi$ is not a contraction near the origin in this discussion.

Routine analysis of the properties of $h(\xi)=(a-b) \xi+\sigma \tanh \xi$ leads to the following bifurcation scenario:

1. Suppose that $b-1 \leq a<b<1$ and (29) holds, i.e., $\sigma<1-a+b$. Then $b-a \leq 1$ and all solutions of $t_{n+1}=h\left(t_{n}\right)$, hence, also all solutions of the second order equation (27) converge to zero.
2. Now fix b, σ and reduce the value of a so that $a<b-1<0$. Then the function $h \circ h$ crosses the diagonal at two points $\tau>0$ and $-\tau$ and a 2-cycle $\{-\tau, \tau\}$ emerges for $t_{n+1}=h\left(t_{n}\right)$. Note that (29) still holds when a is further reduced, but the origin is no longer globally attracting.
3. The cycle $\{-\tau, \tau\}$ itself is repelling and generates a repelling 2 -cycle for (27). The emergence of this cycle implies that $\left\{t_{n}\right\}$ is unbounded if $\left|t_{0}\right|>\tau$ and it converges to 0 if $\left|t_{0}\right|<\tau$. Therefore, the corresponding solution $\left\{x_{n}\right\}$ of (27) also converges to 0 if

$$
\left|x_{0}-b x_{-1}\right|=\left|t_{0}\right|<\tau ;
$$

i.e., if the initial point $\left(x_{-1}, x_{0}\right)$ is between the two parallel lines $y=$ $b \xi+\tau$ and $y=b \xi-\tau$ in the (ξ, y) plane.
4. Suppose that a continues to decrease. Then the value of τ also decreases and reaches zero when

$$
a=b-\sigma-1
$$

i.e., when the slope of h at the origin is -1 . Now, the cycle $\{-\tau, \tau\}$ collapses into the origin and turns it into a repelling fixed point. In this case, all nonzero solutions of (28) and (27) are unbounded.

References

[1] L. Berezansky, E. Braverman, and E. Liz, Sufficient conditions for the global exponential stability of nonautonomous higher order difference equations, J. Difference Eq. Appl. 11 (2005), pp.785-798.
[2] C.W. Clark, A delayed recruitment model of population dynamics with an application to baleen whale populations, J. Math. Biol. 3 (1976), pp.381-391.
[3] M. Dehghan, C.M. Kent, R. Mazrooei-Sebdani, N. Ortiz and H. Sedaghat, Dynamics of rational difference equations containing quadratic terms, J. Difference Eq. Appl. 14 (2008), pp.191-208.
[4] H.A. El-Morshedy, On the global attractivity and oscillations in a class of second-order difference equations from macroeconomics, J. Difference Eq. Appl. 17 (2011), pp.1643-1650.
[5] M.E. Fisher and B.S. Goh, Stability results for delayed recruitment in population dynamics, J. Math. Biol. 19 (1984), pp. 147-156.
[6] I. Győri, G. Ladas and P.N. Vlahos, Global attractivity in a delayed difference equation, Nonlinear Analy. TMA, 17 (1991), pp.473-479.
[7] Y. Hamaya, On the asymptotic behavior of solutions of neuronic difference equations, Proc. Int'l. Conf. Difference Eq., Special Func. Appl., World Scientific, Singapore, 2007, pp.258-265.
[8] J.R. Hicks, A Contribution to the Theory of the Trade Cycle, 2nd ed., Clarendon Press, Oxford, 1965.
[9] G. Karakostas, C.G. Philos and Y.G. Sficas, The dynamics of some discrete population models, Nonlinear Anal., 17 (1991), pp.1069-1084.
[10] C.M. Kent and H. Sedaghat, Global stability and boundedness in $x_{n+1}=$ $c x_{n}+f\left(x_{n}-x_{n-1}\right)$, J. Difference Eq. Appl. 10 (2004), pp.1215-1227.
[11] V. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
[12] E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, New York, 1978.
[13] S. Li and W. Zhang, Bifurcations in a second-order difference equation from macroeconomics, J. Difference Eq. Appl. 14 (2008), pp.91-104.
[14] E. Liz, Stability of non-autonomous difference equations: simple ideas leading to useful results, J. Difference Eq. Appl. 17 (2011), pp.221-234.
[15] R. Memarbashi, Sufficient conditions for the exponential stability of nonautonomous difference equations, Appl. Math. Lett. 21 (2008), pp.232-235.
[16] R. Memarbashi, On the stability of non-autonomous difference equations, J. Difference Eq. Appl. 14 (2008), pp.301-307.
[17] T. Puu, Nonlinear Economic Dynamics, 3rd. ed., Springer, New York, 1993.
[18] P.A. Samuelson, Interaction between the multiplier analysis and the principle of acceleration, Rev. Econ. Stat. 21 (1939), pp.75-78.
[19] H. Sedaghat, A class of nonlinear second-order difference equations from macroeconomics, Nonlinear Analy. TMA, 29 (1997), pp.593-603.
[20] H. Sedaghat, Geometric stability conditions for higher order difference equations, J. Math. Anal. Appl. 224 (1998), pp.255-272.
[21] H. Sedaghat, Nonlinear Difference Equations: Theory with Applications to Social Science Models, Kluwer Academic, Dordrecht, 2003.
[22] H. Sedaghat, Global stability of equilibrium in a nonlinear second-order difference equation, Int'l. J. Pure Appl. Math. 8 (2003), pp.209-223.
[23] H. Sedaghat, On the Equation $x_{n+1}=c x_{n}+f\left(x_{n}-x_{n-1}\right)$, Fields Inst. Comm., 42 (2004), pp.323-326.
[24] H. Sedaghat, Periodic and chaotic behavior in a class of second order difference equations, Adv. Stud. Pure Math., 53 (2009), pp.311-318.
[25] H. Sedaghat, Semiconjugate factorization and reduction of order in difference equations, arXiv:0907.3951v1, 2009
[26] H. Sedaghat, Form Symmetries and Reduction of Order in Difference Equations, Chapman \& Hall/CRC Press, Boca Raton, 2011.
[27] A. Wilansky, Functional Analysis, Blaisdell, New York, 1964.
[28] H. Xiao and X-S. Yang, Existence and stability of equilibrium points in higher order discrete time systems, Far East J. Dyn. Sys. 5 (2003), pp.141-147.

