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Part I
Global Attractivity:
A General Result
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1 Basic concepts at a glance

Let X be a (real or complex) Banach space and consider the difference equa-
tion

xn+1 = fn(xn, xn−1, . . . , xn−k), n = 0, 1, 2, . . . (1)

with a prescribed sequence of functions fn : D → X where D ⊂ Xk+1.

• This equation represents the most general difference equation of order
k + 1 that is of recursive type – i.e., each state xn+1 is explicitly and
uniquely determined by the preceding k + 1 states xn, xn−1, . . . , xn−k.

• If the functions fn = f are all equal then we obtain the autonomous
difference equation

xn+1 = f(xn, xn−1, . . . , xn−k).

• For each n, the vector function Fn : D → Xk+1 that is defined as

Fn(ξ0, ξ1, . . . , ξk) = (fn(ξ0, ξ1, . . . , ξk), ξ0, ξ1, . . . , ξk−1)

represents an unfolding of fn to a mapping of Xk+1. The sequence {Fn}
for all n ≥ 0 may be said to unfold the difference equation (1).
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• Due to the recursive nature of (1), from a set of k + 1 initial values

x0, x−1, . . . , x−k ∈ X such that (x0, x−1, . . . , x−k) ∈ D

a unique sequence {xn} of points in X is generated upon iteration:
n = 0, 1, 2, . . .

x1 = f0(x0, x−1, . . . , x−k), n = 0,

x2 = f1(x1, x0, . . . , x−k+1), n = 1,

x3 = f2(x2, x1, . . . , x−k+2), n = 2,

...

A corresponding sequence of points {Xn} = {(xn, xn−1, . . . , xn−k)} is
obtained in Xk+1

Xn+1 = Fn(Xn) = (Fn ◦ Fn−1 ◦ · · · ◦ F0)(X0)

• In the autonomous case, Fn = F for all n so

Xn+1 = F n(X0).

• If X0 ∈ D and {Xn} stays in D for all n ≥ 1 then {Xn} is an orbit of
the unfolding of (1). The sequence of points {xn} is then a solution of
(1).

• If Fn(D) ⊂ D for every n then D is an invariant set of (1). In this
case, the existence of a solution for (1) is guaranteed starting from any
initial point in D. This is always true if D = Xk+1.
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Theorem 1 Let X be a Banach space and assume that for some real α ∈
(0, 1) the functions fn satisfy the norm inequality

‖fn(ξ0, ξ1, . . . , ξk)‖ ≤ αmax{‖ξ0‖ , . . . , ‖ξk‖} (2)

for every n and all (ξ0, . . . , ξk) ∈ Xk+1. Then every solution {xn} of (1) with
given initial values x0, x−1, . . . , x−k ∈ X satisfies

‖xn‖ ≤ αn/(k+1) max{‖x0‖ , ‖x−1‖ , . . . , ‖x−k‖}.

That is, the origin is globally exponentially stable.

Proof. Let µ = max{‖x0‖ , ‖x−1‖ , . . . , ‖x−k‖}.
If {xn} is the solution of (1) with the given initial values then we first

claim that ‖xn‖ ≤ αµ for all n ≥ 1.
By (2)

‖x1‖ = ‖f0(x0, x−1, . . . , x−k)‖ ≤ α max{‖x0‖ , ‖x−1‖ , . . . , ‖x−k‖} = αµ

and if for any j ≥ 1 it is true that ‖xn‖ ≤ αµ for n = 1, 2, . . . , j then

‖xj+1‖ = ‖fj(xj, xj−1, . . . , xj−k)‖ ≤ αmax{‖xj‖ , ‖xj−1‖ , . . . , ‖xj−k‖}

≤ α max{µ, αµ} = αµ.

Therefore, our claim is true by induction.
In particular, since 0 < α < 1 we have shown that ‖xn‖ ≤ αn/(k+1)µ for

n = 1, 2, . . . , k + 1. Now suppose that ‖xn‖ ≤ αn/(k+1)µ is true for n ≤ m
where m ≥ k + 1. Then

‖xm+1‖ = ‖fm(xm, xm−1, . . . , xm−k)‖ ≤ αmax{‖xm‖ , ‖xm−1‖ , . . . , ‖xm−k‖}

≤ αµmax{αm/(k+1), α(m−1)/(k+1), . . . , α(m−k)/(k+1)}

= α(m+1)/(k+1)µ

and the proof is complete by induction.
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History/background of last theorem...
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Part II
Semiconjugate Factorization

on Banach Algebras
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2 Banach algebras at a glance

A Banach algebra with an identity 1 is a Banach space together with a
multiplication operation xy that is associative, distributes over addition and
satisfies

||xy|| ≤ ||x|| ||y||, ||1|| = 1 (3)

The multiplication by scalars (real or complex numbers) that is inher-
ited from the vector space structure of X is made consistent with the main
multiplication by assuming that the following equalities hold for all scalars
α:

α(xy) = (αx)y = x(αy).

• Elements of type α1 where α is a scalar are the constants in X.

• The set R (C) is a real (complex) commutative Banach algebra with
identity over itself with respect to the ordinary addition and multipli-
cation of complex numbers and the absolute value as norm.

• The set C [0, 1] of all continuous real-valued functions on the interval
[0,1] forms a commutative real Banach algebra relative to the sup (or
max) norm. The identity element is the constant function x(r) = 1
for all r ∈ [0, 1]. The other constants in C [0, 1] are just the constant
functions on [0,1].

• An element x ∈ X is invertible, or a unit, if there is x−1 ∈ X (the inverse
of x) such that x−1x = 1. The collection of all invertible elements of X

forms a group G (the group of units) that contains all nonzero constants.
It can be shown that G is open relative to the metric topology of X.

• Since the zero element is not invertible, G 6= X. If X is either R or C

then G = X\{0}. In the algebra C [0, 1] units are functions that do not
assume the (scalar) value 0.
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3 The difference equation of interest

Consider the difference equation

xn+1 =
k
∑

i=0

aixn−i + gn

(

k
∑

i=0

bixn−i

)

(4)

• For each n, the function gn : X → X is defined on a real or complex
Banach algebra X with identity.

• The parameters ai, bi are constants in X such that

ak 6= 0 or bk 6= 0.

Several special cases of (4) in X = R have been studied in the literature
– for example:

• For the second-order case (k = 1)

xn+1 = cxn + g(xn − xn−1) (5)

– Sedaghat (2003 and earlier): Economic models of the business
cycle

– C.M. Kent and H. Sedaghat (2004): boundedness and global asymp-
totic stability of (5)

– S. Li and W. Zhang (2008): bifurcations of solutions of (5), in-
cluding the Neimark-Sacker bifurcation (discrete analog of Hopf)

– El-Morshedy (2011): improves some results of Kent and Sedaghat
and gives necessary and sufficient conditions for the occurrence of
oscillations
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• The global attractivity and stability of equilibrium for the following
delay version of (5) is studied by B. Dai and N. Zhang (2005)

xn+1 = cxn + g(xn − xn−k)

• For the following generalization of (5)

xn+1 = axn + bxn−1 + gn(xn − cxn−1) (6)

– Sedaghat (2009): sufficient conditions for the occurrence of peri-
odic solutions, limit cycles and chaotic behavior in (6) are obtained
using reduction of order and semiconjugate factorization

– Dehghan, Kent, Mazrooei, Ortiz, Sedaghat (2008): sufficient con-
ditions for occurrence of limit cycles and chaos in certain rational
difference equations of the following type

xn+1 =
ax2

n + bx2
n−1 + cxnxn−1 + dxn + exn−1 + f

αxn + βxn−1 + γ

that are special cases of (6)

• Hamaya (2007): obtains sufficient conditions for the global attractivity
of the origin for the following equation

xn+1 = αxn + a tanh

(

xn −
k
∑

i=1

bixn−i

)

with 0 ≤ α < 1, a > 0 and bi ≥ 0.
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A direct application of Theorem 1 to Equation (4) gives the following
result.

Corollary 2 Let gn : X → X be a sequence of functions on a real or complex
Banach algebra X with identity. Assume that there is a real number σ > 0
such that

‖gn(ξ)‖ ≤ σ||ξ||, ξ ∈ X (7)

for all n and further, for coefficients ai, bi (real or complex) we assume that
the inequality

k
∑

i=0

(||ai|| + σ||bi||) < 1 (8)

holds. Then every solution {xn} of Equation (4)

xn+1 =
k
∑

i=0

aixn−i + gn

(

k
∑

i=0

bixn−i

)

with initial values x0, x−1, . . . , x−k ∈ X satisfies

||xn|| ≤ αn/(k+1) max{||x0||, ||x−1||, . . . , ||x−k||}, α =

k
∑

i=0

(||ai|| + σ||bi||).

Proof. If (ξ0, ξ1, . . . , ξk) ∈ Xk+1 then by the triangle inequality, (3) and
(7)

∥

∥

∥

∥

∥

k
∑

i=0

aiξi + gn

(

k
∑

i=0

biξi

)
∥

∥

∥

∥

∥

≤
k
∑

i=0

(||ai|| + σ||bi||)||ξi||

≤

[

k
∑

i=0

(||ai|| + σ||bi||)

]

max{||ξ0||, . . . , ||ξk||}

Therefore, given (8), by Theorem 1 the origin is globally asymptotically
stable.
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4 Semiconjugate factorization

In previous studies of special cases of Equation (4):

xn+1 =
k
∑

i=0

aixn−i + gn

(

k
∑

i=0

bixn−i

)

it is often the case that the restriction

k
∑

i=0

(||ai|| + σ||bi||) < 1

on coefficients can be relaxed.
General sufficient conditions for improving the ranges of parameters ai, bi

can be obtained through an indirect application of Theorem 1.

• We first split the above difference equation into two equations of lower
orders;

• One equation will be similar to the above but with order reduced by 1;
Theorem 1 is then applied to this lower order equation.

• The second equation will be linear non-homogeneous of order 1 and its
solution is easy to analyze.

• The system of two equations will be triangular since the first equation
is independent of the second.

• The triangular system constitutes a semiconjugate factorization of Equa-
tion (4) above.
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The next result sets things up by supplying the crucial semiconjugate
factorization:

Lemma 3 Let gn : X → X be a sequence of functions on an algebra X

with identity (not necessarily normed) over a field F . If for ai, bi ∈ X the
polynomials

P (ξ) = ξk+1 −

k
∑

i=0

aiξ
k−i, Q(ξ) =

k
∑

i=0

biξ
k−i

have a common root ρ ∈ G, the group of units of X, then each solution {xn}
of (4) in X satisfies

xn+1 = ρxn + tn+1 (9)

where the sequence {tn} is the unique solution of the equation:

tn+1 = −
k−1
∑

i=0

pitn−i + gn

(

k−1
∑

i=0

qitn−i

)

(10)

in X with initial values t−i = x−i − ρx−i−1 ∈ X for i = 0, 1, . . . , k − 1 and
coefficients

pi = ρi+1 − a0ρ
i − · · · − ai and qi = b0ρ

i + b1ρ
i−1 + · · · + bi

in X. Conversely, if {tn} is a solution of (10) with initial values t−i ∈ X then
the sequence {xn} that it generates in X via (9) is a solution of (4).

The pair of equations (9) and (10) that are equivalent to (4) represents a
semiconjugate factorization of (4) relative to the linear form symmetry.
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Part III
Global Attractivity plus

Semiconjugate Factorization
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5 Global attractivity revisited

Theorem 4 Let gn : X → X be a sequence of functions that satisfy (7):
||gn(ξ)|| ≤ σ||ξ||, for each n. Then every solution {xn} of (4):

xn+1 =
k
∑

i=0

aixn−i + gn

(

k
∑

i=0

bixn−i

)

converges to zero if either (a) or (b) below is true:
(a) Inequality (8) holds:

k
∑

i=0

(||ai||+ σ||bi||) < 1.

(b) The polynomials P, Q in Lemma 3 have a common root ρ ∈ G such
that ||ρ|| < 1 and

k−1
∑

i=0

(||pi|| + σ||qi||) < 1 (11)

with the coefficients pi, qi

pi = ρi+1 − a0ρ
i − · · · − ai and qi = b0ρ

i + b1ρ
i−1 + · · · + bi

in the factor equation (10), i = 0, 1, . . . , k − 1.
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Proof. (a) Corollary 2.
(b) Observe that the solution of Equation (9) xn+1 = ρxn + tn+1 in terms

of tn is given by

xn = ρnx0 +

n
∑

j=1

ρn−jtj (12)

Now let Equation (10) which has order one less than (4) be as in Lemma 3.
Then, given ||gn(ξ)|| ≤ σ||ξ||, apply Corollary 2 to the lower order equation
(10) to conclude that

||tn|| ≤ αn/(k+1)µ

where µ = max{||t0||, ||t−1||, . . . , ||t−k+1||} with t−i = x−i − ρx−i−1 for i =
0, 1, . . . , k − 1 and

α =
k−1
∑

i=0

(||pi||+ σ||qi||).

Since in X, ||ρj|| ≤ ||ρ||j for each j, taking norms in (12) yields

||xn|| ≤ ‖ρ‖n ||x0||+
n
∑

j=1

‖ρ‖n−j ||tj|| ≤ ‖ρ‖n ||x0||+ µ ‖ρ‖n
n−1
∑

j=0

(

α1/(k+1)

‖ρ‖

)j

.

(13)
If α1/(k+1) 6= ‖ρ‖ then

||xn|| ≤ ‖ρ‖n ||x0|| + µα1/(k+1) ‖ρ‖n−1 [α1/(k+1)/ ‖ρ‖]n − 1

[α1/(k+1)/ ‖ρ‖] − 1

= ‖ρ‖n ||x0|| + µα1/(k+1) α
n/(k+1) − ‖ρ‖n

α1/(k+1) − ‖ρ‖

Since α, ‖ρ‖ < 1 it follows that {xn} converges to zero. If α1/(k+1) = ‖ρ‖
then (13) reduces to

||xn|| ≤ ‖ρ‖n ||x0|| + µ ‖ρ‖n n

and by L’Hospital’s rule {xn} again converges to zero.
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Corollary 5 Let gn be functions on X satisfying (7) for all n ≥ 0. Every
solution of the difference equation

xn+1 = axn + gn (b0xn + b1xn−1 + · · · + bkxn−k) , (14)

a ∈ G, bi ∈ X, bk 6= 0

converges to zero if ||a|| < 1 and the following conditions hold:

b0a
k + b1a

k−1 + b2a
k−2 + · · · + bk = 0, (15)

k−1
∑

i=0

||b0a
i + b1a

i−1 + · · · + bi|| <
1

σ
. (16)

Proof. For equation (14) the polynomials P, Q are

P (ξ) = ξk+1 − aξk, Q(ξ) = b0ξ
k + b1ξ

k−1 + · · · + bk.

Thus ρ = a is their common root in G if (15) holds. The numbers pi, qi

that define the factor equation (10) in this case are

pi = ρi+1 − aρi = 0, qi = b0a
i + b1a

i−1 + · · · + bi

Thus, if ||a|| < 1 then by Theorem 4 every solution of (14) converges to zero.
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The parameter range determined by the inequality
∑k−1

i=0 (||pi||+σ||qi||) <

1 is generally distinct from that given by
∑k

i=0(||ai|| + σ||bi||) < 1.

Example 1. To illustrate the difference between the two inequalities
above, consider the following equation on the set of real numbers:

xn+1 = axn + αn tanh (xn − bxn−k) (17)

Suppose that the sequence {αn} of real numbers is bounded by σ > 0
and it is otherwise arbitrary. Then

|αn tanh t| = |αn|| tanh t| ≤ |αn||t| ≤ σ|t|

for all n. If 0 < |a| < 1 and b = ak then by Corollary 5 every solution of (17)
converges to zero if

1

σ
>

k−1
∑

i=0

|a|i =
1 − |a|k

1 − |a|
⇔ σ <

1 − |a|

1 − |a|k
. (18)

On the other hand, by Corollary 2 the origin is globally attracting for
(17) with b = ak if

|a|+ σ(1 + |a|k) < 1 ⇒ σ <
1 − |a|

1 + |a|k

which is clearly more limited than (18).
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Corollary 6 Let gn be functions on X satisfying (7) for all n ≥ 0. For the
difference equation

xn+1 = a0xn + a1xn−1 + · · · + akxn−k + gn (xn − bxn−1) , (19)

ai ∈ X, b ∈ G, ak 6= 0

assume that ||b|| < 1 and the following conditions hold:

a0b
k + a1b

k−1 + · · · + ak = bk+1, (20)

k−1
∑

i=0

||bi+1 − a0b
i − · · · − ai|| < 1 − σ. (21)

Then every solution of (19) converges to zero.

Proof. The polynomials P, Q in this case are

P (ξ) = ξk+1 − a0ξ
k − · · · − ak, Q(ξ) = ξk − bξk−1.

Clearly, Q(b) = 0 and if Equality (20) holds then P (b) = 0 too, so
Theorem 4 applies. We calculate the coefficients of the factor equation (10)
as q0 = 1, qi = 0 if i 6= 0 and

pi = bi+1 − a0b
i − · · · − ai.

Now, inequality (11) yields (21) via a straightforward calculation:

1 >
k−1
∑

i=0

||bi+1 − a0b
i − · · · − ai|| + σ

=

k−1
∑

i=0

||bi+1 − a0b
i − · · · − ai|| + σ

Thus, if ||b|| < 1 then by Theorem 4 every solution of (19) converges to
zero.
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Example 2. As an application of the preceding corollary, consider the
case k = 1, i.e., the second-order equation

xn+1 = a0xn + a1xn−1 + gn(xn − bxn−1) (22)

which is essentially Equation (6) on a Banach algebra X. By Corollary 6,
every solution of (22) converges to zero if the functions gn satisfy (7) and

b ∈ G, ||b|| < 1, a0b + a1 = b2, ||a0 − b|| + σ < 1. (23)

On the other hand, according to Corollary 2, every solution of (22) con-
verges to zero if the functions gn satisfy (7) and

||a0|| + ||a1||+ σ(1 + ||b||) < 1. (24)

Parameter values that do not satisfy (24) may satisfy (23). For compari-
son, if a1 = b2 − a0b then (24) may be solved for σ to obtain

σ <
1 − ||a0|| − ||b|| ||a0 − b||

1 + ||b||
.

This is a stronger constraint on σ than σ < 1 − ||a0 − b|| from (23),
especially if b is not near 0.
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Example 3. Consider the following difference equation on the real Ba-
nach algebra C [0, 1]:

xn+1 =
αr

r + 1
xn +

β(β − αr)

(r + 1)2
xn−1 +

∫ r

0

φn

(

xn −
β

r + 1
xn−1

)

dr (25)

where the functions φn : R → R are integrable and for each n they satisfy
the absolute value inequality

|φn(r)| ≤ σ|r|, r ∈ R

for some σ > 0. Assume that the following inequalities hold

0 < β < 1, 3β ≤ α < 2 + β, σ <
2 + β − α

2

and define the coefficient functions

a0(r) =
αr

r + 1
, a1(r) =

β(β − αr)

(r + 1)2
, b(r) =

β

r + 1
.

Then clearly b ∈ G and

b2(r) − a0(r)b(r) =
β(β − αr)

(r + 1)2
= a1(r)

Further, the following are true about the norms:

||a0|| = sup
0≤r≤1

αr

r + 1
=

α

2
, ||b|| = sup

0≤r≤1

β

r + 1
= β < 1

and

||a0 − b|| = sup
0≤r≤1

∣

∣

∣

∣

αr − β

r + 1

∣

∣

∣

∣

= max

{

α − β

2
, β

}

=
α − β

2
< 1 − σ.
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All the required conditions are met. Next, since the functions or operators
gn : C [0, 1] → C [0, 1] in (22) are defined as

gn(x)(r) =

∫ r

0

(φn ◦ x)(r)dr

for r ∈ [0, 1] and all n, their norms satisfy

||gn(x)|| ≤ sup
0≤r≤1

∫ r

0

|φn(x(r))|dr ≤ sup
0≤r≤1

∫ r

0

σ|x(r)|dr ≤ ||x||σ sup
0≤r≤1

r = σ||x||.

Therefore, by Corollary 6 for every pair of initial functions x0(r), x−1(r) ∈
C [0, 1] the sequence of functions xn = xn(r) that satisfy (25) in C [0, 1] con-
verges uniformly to the zero function.

It is worth observing that a0 6∈ G and ||a0|| ≥ 1 if α ≥ 2, in which
Corollary 2 does not apply.
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• The preceding corollaries and Theorem 4 are broad applications of the
reduction of order method to very general equations that improve the
range of parameters compared to Lemma 2.

• They show that different patterns of delays may be translated into al-
gebraic problems about the polynomials P and Q and their root struc-
tures.

• In special cases a more efficient application of Lemma 3 may yields
a greater amount of information about the behavior of solutions than
Theorem 4.

The next result represents a deeper use of order reduction in that sense.

Theorem 7 In Equation (22) assume that b ∈ G with |b| < 1 and a0, a1 ∈ X

such that a0b + a1 = b2. If x0, x−1 are given initial values for (22) for which
the solution of the first order equation

tn+1 = (a0 − b)tn + gn(tn) (26)

converges to zero with the initial value t0 = x0 − bx−1 then the corresponding
solution of (22) converges to zero. In particular, if the origin is a global
attractor of the solutions of the first order Equation (26) then it is also a
global attractor of the solutions of (22).

Proof. In this case Q(ξ) = ξ− b so there is only one root b. Now Lemma
3 gives Equation (26) if P (b) = 0, i.e., if a0b + a1 = b2. Finally, we complete
the proof by arguing similarly to the proof of Theorem 4(b), using (12).
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Example 4. Consider the following autonomous equation on the real
numbers

xn+1 = axn + b(b − a)xn−1 + σ tanh (xn − bxn−1) (27)

where σ > 0, 0 < b < 1 and a < b. Equation (26) in this case is

tn+1 = h(tn), h(ξ) = (a − b)ξ + σ tanh ξ. (28)

• The function h has a fixed point at the origin since h(0) = 0.

• The origin is the unique fixed point of h if |h(ξ)| < |ξ| for ξ 6= 0.

• Since h is an odd function, it is enough to consider ξ > 0. In this case,
h(ξ) < ξ if and only if σ tanh ξ < (1 − a + b)ξ. Since tanh ξ < ξ for
ξ > 0 we may conclude that

σ < 1 − a + b. (29)

• Given that a < b, it is possible to choose 1 ≤ σ < 1 − a + b and
extend the range of σ beyond what is possible with previous corollaries
which require that σ < 1. In particular, the function σ tanh ξ is not a
contraction near the origin in this discussion.
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Routine analysis of the properties of h(ξ) = (a − b)ξ + σ tanh ξ leads to
the following bifurcation scenario:

1. Suppose that b−1 ≤ a < b < 1 and (29) holds, i.e., σ < 1−a+b. Then
b − a ≤ 1 and all solutions of tn+1 = h(tn), hence, also all solutions of
the second order equation (27) converge to zero.

2. Now fix b, σ and reduce the value of a so that a < b − 1 < 0. Then
the function h ◦ h crosses the diagonal at two points τ > 0 and −τ
and a 2-cycle {−τ, τ} emerges for tn+1 = h(tn). Note that (29) still
holds when a is further reduced, but the origin is no longer globally
attracting.

3. The cycle {−τ, τ} itself is repelling and generates a repelling 2-cycle
for (27). The emergence of this cycle implies that {tn} is unbounded if
|t0| > τ and it converges to 0 if |t0| < τ. Therefore, the corresponding
solution {xn} of (27) also converges to 0 if

|x0 − bx−1| = |t0| < τ ;

i.e., if the initial point (x−1, x0) is between the two parallel lines y =
bξ + τ and y = bξ − τ in the (ξ, y) plane.

4. Suppose that a continues to decrease. Then the value of τ also decreases
and reaches zero when

a = b − σ − 1

i.e., when the slope of h at the origin is −1. Now, the cycle {−τ, τ}
collapses into the origin and turns it into a repelling fixed point. In
this case, all nonzero solutions of (28) and (27) are unbounded.
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