Solving Linear Difference Equations in Rings Using Reduction of Order

H. SEDAGHAT
Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA

AMS Special Session on Difference Equations and Applications
JMM 2013 - San Diego

Consider the linear (nonhomogeneous) difference equation

$$
x_{n+1}=a_{0, n} x_{n}+a_{1, n} x_{n-1}+\cdots+a_{k, n} x_{n-k}+b_{n}
$$

where $\left\{b_{n}\right\}$ and the (variable) coefficients $\left\{a_{j, n}\right\}$ are given sequences in a nontrivial ring R for $j=0,1, \ldots, k$.

- The multiplicative subgroup G of R, i.e., the "unit group" is nonempty if R has an identity 1 ; e.g., if R is the ring of all $m \times m$ matrices of real numbers then G consists of all matrices in R that have nonzero determinants. If R is the ring $C(S)$ of all real-valued, continuous functions on a nonempty set S then G consists of all functions f that are either always positive or always negative.
- If R is a field then G consists of all nonzero elements of R-familiar examples: the real numbers \mathbb{R}, the finite field \mathbb{Z}_{p} of integers modulo a prime p.
- Every element of G is a "unit" and each sequence in G is "unitary".
- The "characteristic equation" of (the homogeneous part of) the linear equation

$$
\begin{equation*}
x_{n+1}=a_{0, n} x_{n}+a_{1, n} x_{n-1}+\cdots+a_{k, n} x_{n-k}+b_{n} \tag{1}
\end{equation*}
$$

is the (nonlinear) equation

$$
\begin{equation*}
r_{n+1} r_{n} \ldots r_{n-k+1}-a_{0, n}\left(r_{n} r_{n-1} \ldots r_{n-k+1}\right)-a_{1, n}\left(r_{n-1} \ldots r_{n-k+1}\right)-\cdots-a_{k-1, n} r_{n-k+1}-a_{k, n}=0 \tag{2}
\end{equation*}
$$

- If coefficients $a_{j, n}=a_{j}$ are constants and $b_{n}=0$ i.e., the linear equation is autonomous:

$$
\begin{equation*}
x_{n+1}=a_{0} x_{n}+a_{1} x_{n-1}+\cdots+a_{k} x_{n-k} \tag{3}
\end{equation*}
$$

then a fixed point of its characteristic equation

$$
r_{n+1} r_{n} \ldots r_{n-k+1}-a_{0}\left(r_{n} r_{n-1} \ldots r_{n-k+1}\right)-a_{1}\left(r_{n-1} \ldots r_{n-k+1}\right)-\cdots-a_{k-1} r_{n-k+1}-a_{k}=0
$$

is a root of the polynomial

$$
r^{k+1}-a_{0} r^{k}-a_{1} r^{k-1}-\cdots a_{k} .
$$

This is the familiar "characteristic polynomial" of (3) and so its roots are the "eigenvalues" of the (autonomous) linear difference equation.

- More generally, an "eigensequence" of (1) is any sequence that satisfies the characteristic equation (2).
- A "unitary eigensequence" is any solution of (2) that is contained in the unit group G.

Theorem 1 If the linear difference equation

$$
\begin{equation*}
x_{n+1}=a_{0, n} x_{n}+\cdots+a_{k, n} x_{n-k}+b_{n} \tag{4}
\end{equation*}
$$

has a unitary eigensequence $\left\{s_{n}\right\}$ in a ring R with identity then the linear difference equation is equivalent to the following system of lower order linear difference equations

$$
\begin{align*}
t_{n+1} & =a_{0, n}^{\prime} t_{n}+a_{1, n}^{\prime} t_{n-1}+\cdots+a_{k-1, n}^{\prime} t_{n-k+1}+b_{n} \tag{5}\\
x_{n+1} & =s_{n+1} x_{n}+t_{n+1} \tag{6}
\end{align*}
$$

where for $m=0, \ldots, k-1, t_{m+1}=x_{m+1}-s_{m+1} x_{m}$ and

$$
a_{m, n}^{\prime}=-\sum_{i=m+1}^{k} a_{i, n}\left(\prod_{j=m+1}^{i} s_{n-j+1}\right)^{-1} .
$$

- The system of difference equations (5) and (6) is a "semiconjugate factorization" or "sc-factorization" of the linear difference equation (4). This is a semi-coupled "triangular system" since the first equation is independent of the second.
- Equation (5), namely, the "factor equation" of (4) has order k which is one lower than the order of (4).
- Equation (6) of order 1 is the "cofactor equation".
- If the factor equation (5) has a unitary eigensequence in R then it has a sc-factorization into a triangular system with a factor of order $k-1$ and a cofactor of order 1 . In this way the above theorem can be applied repeatedly as long as their factors have unitary eigensequences in R.

Unitary eigensequences can be obtained from "unitary solutions" of the homogeneous part

$$
\begin{equation*}
x_{n+1}=a_{0, n} x_{n}+\cdots+a_{k, n} x_{n-k} \tag{7}
\end{equation*}
$$

i.e., a solution that is contained in the unit group G.

Theorem 2 Let R be a ring with identity. A (unitary) sequence $\left\{r_{n}\right\}$ in R is an eigensequence of (7) if and only if $r_{n}=u_{n} u_{n-1}^{-1}$ where $\left\{u_{n}\right\}$ is a unitary solution of (7).

An example: With initial values $x_{0}=1$ and $x_{1}=1$ the "Fibonacci recurrence"

$$
\begin{equation*}
x_{n+1}=x_{n}+x_{n-1} \tag{8}
\end{equation*}
$$

has a familiar solution in the ring \mathbb{Z} of integers, namely the "Fibonacci sequence" $\left\{F_{n}\right\}: 1,1,2,3,5,8, \ldots$

The sequence $\left\{F_{n}\right\}$ is not unitary in \mathbb{Z} whose unit group is $\{-1,1\}$. But $\left\{F_{n}\right\}$ is a unitary solution of (8) in the field \mathbb{Q} of rational numbers since $F_{n} \neq 0$

The sequence $F_{n+1} F_{n}^{-1}=F_{n+1} / F_{n}$ is an eigensequence of (8) in \mathbb{Q} because it satisfies the characteristic equation

$$
r_{n+1} r_{n}-r_{n}-1=0
$$

Indeed,

$$
\frac{F_{n+2}}{F_{n+1}} \frac{F_{n+1}}{F_{n}}-\frac{F_{n+1}}{F_{n}}-1=\frac{F_{n+1}+F_{n}}{F_{n}}-\frac{F_{n+1}}{F_{n}}-1=0 .
$$

The above eigensequence yields the following sc-factorization of (8) in \mathbb{Q}

$$
\begin{aligned}
& t_{n+1}=-\frac{F_{n}}{F_{n+1}} t_{n}, \quad t_{1}=x_{1}-\frac{F_{n+1}}{F_{n}} x_{0} \\
& x_{n+1}=\frac{F_{n+2}}{F_{n+1}} x_{n}+t_{n+1} .
\end{aligned}
$$

To minimize notational clutter, in the rest of this talk we focus on the second-order homogeneous linear equation

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\beta_{n} x_{n-1} \tag{9}
\end{equation*}
$$

where α_{n}, β_{n} are given sequences in a ring R.

- The characteristic equation of (9) is

$$
\begin{equation*}
r_{n+1} r_{n}-\alpha_{n} r_{n}-\beta_{n}=0 \tag{10}
\end{equation*}
$$

A solution $\left\{s_{n}\right\}$ of this equation in R is a unitary eigensequence if $s_{n} \in G$ for all n.

- If (10) has unitary solutions then they can be obtained by iterating the following recurrence starting with a unit $s_{1} \in G$

$$
\begin{equation*}
r_{n+1}=\alpha_{n}+\beta_{n} r_{n}^{-1} \tag{11}
\end{equation*}
$$

- As implied by the preceding theorem, this recurrence can be derived from a unitary solution $\left\{u_{n}\right\}$ of (9)

$$
\begin{aligned}
u_{n+1} & =\alpha_{n} u_{n}+\beta_{n} u_{n-1} \Rightarrow u_{n+1} u_{n}^{-1}=\alpha_{n}+\beta_{n} u_{n-1} u_{n}^{-1}=\alpha_{n}+\beta_{n}\left(u_{n} u_{n-1}^{-1}\right)^{-1} \\
s_{n} & =u_{n} u_{n-1}^{-1} \Rightarrow r_{n+1}=\alpha_{n}+\beta_{n} r_{n}^{-1}
\end{aligned}
$$

- The sc-factorization of (9) with a unitary eigensequence $\left\{s_{n}\right\}$ is

$$
\begin{aligned}
t_{n+1} & =-a_{0, n} t_{n}=-\beta_{n} s_{n}^{-1} t_{n}, \quad t_{1}=x_{1}-s_{1} x_{0} \\
x_{n+1} & =s_{n+1} x_{n}+t_{n+1}
\end{aligned}
$$

An example: For the difference equation

$$
\begin{equation*}
x_{n+1}=3(-1)^{n} x_{n}+2 x_{n-1} \tag{12}
\end{equation*}
$$

with coefficients in \mathbb{Z} the recurrence (11) is

$$
r_{n+1}=3(-1)^{n}+\frac{2}{r_{n}}
$$

With $s_{1}=1$ we calculate $s_{2}=-1, s_{3}=1, s_{4}=-1$, etc. This is an eigensequence $\left\{(-1)^{n+1}\right\}$ of period 2 which is unitary in \mathbb{Z}. A sc-factorization with integer coefficients is:

$$
\begin{aligned}
& t_{n+1}=-\frac{2}{(-1)^{n+1}} t_{n}=2(-1)^{n} t_{1}, \quad t_{1}=x_{1}-x_{0} \\
& x_{n+1}=(-1)^{n} x_{n}+t_{n+1} .
\end{aligned}
$$

Iteration of the factor equation gives

$$
t_{n}=(-1)^{n(n-1) / 2} 2^{n}\left(x_{1}-x_{0}\right)
$$

which yields the following formula for the solution for (12)

$$
x_{n}=(-1)^{n(n-1) / 2}\left[x_{0}+\left(2^{n}-1\right)\left(x_{1}-x_{0}\right)\right] .
$$

In particular, for initial values x_{0}, x_{1} such that $x_{0} \neq x_{1}$, the ratio $x_{n} / 2^{n}$ converges to the 4 -cycle $(-1)^{n(n-1) / 2}\left(x_{1}-x_{0}\right)$. If $x_{0}=x_{1}$ then the solution x_{n} itself is the 4 -cycle $(-1)^{n(n-1) / 2} x_{0}$.

The difference equation (12) $x_{n+1}=3(-1)^{n} x_{n}+2 x_{n-1}$ and its semiconjugate factorization are also valid in the finite rings \mathbb{Z}_{m} for $m \geq 4$. For instance, in \mathbb{Z}_{6}

$$
2^{n}= \begin{cases}2, & n \text { odd } \\ 4, & n \text { even }\end{cases}
$$

and using the above formula

$$
x_{n}=(-1)^{n(n-1) / 2}\left[x_{0}+\left(2^{n}-1\right)\left(x_{1}-x_{0}\right)\right]
$$

we obtain periodic solutions (typically of period 4) from the above formulas. In \mathbb{Z}_{7} the distinct powers of 2 are

$$
2^{n}=\left\{\begin{array}{ll}
2, & n=3 j+1 \\
4, & n=3 j+2 \\
1, & n=3 j+3
\end{array}, \quad j=0,1,2, \ldots\right.
$$

which give solutions of a different period (12 if $x_{0} \neq x_{1}$) using the same formulas.

Let $R=\mathbb{R}$ the field of real numbers. A "Poincaré difference equation" (of order 2) is a difference equation

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\beta_{n} x_{n-1} \tag{13}
\end{equation*}
$$

in which $\alpha_{n} \rightarrow \alpha$ and $\beta_{n} \rightarrow \beta$ as $n \rightarrow \infty$ where α, β are real numbers. The autonomous difference equation

$$
\begin{equation*}
y_{n+1}=\alpha y_{n}+\beta y_{n-1} \tag{14}
\end{equation*}
$$

is the "limiting equation" of the Poincaré equation.

- The classical theorem of Poincaré and Perron can be stated succinctly in terms of eigensequences as follows:
"Each eigenvalue of (14) is a limit of a unitary eigensequence of (13)."
- Not every unitary eigensequence of (13) may converge to an eigenvalue, or to any other number. For instance, the autonomous difference equation

$$
x_{n+1}=2 x_{n}-4 x_{n-1}
$$

is a Poincaré equation and its own limiting equation with characteristic polynomial $r^{2}-2 r+4$ whose roots $1 \pm i \sqrt{3}$ are complex. It also has an eigensequence $\{1,-2,4,1,-2,4, \ldots\}$ of period 3 which is unitary in \mathbb{R}.

An example: Consider the following Poincaré equation in the field \mathbb{R} of real numbers

$$
\begin{equation*}
x_{n+1}=\frac{1}{n} x_{n}+x_{n-1} \tag{15}
\end{equation*}
$$

The limiting autonomous equation for this is $y_{n+1}=y_{n-1}$ whose eigenvalues are ± 1, i.e., the roots of $r^{2}-1=0$. The characteristic equation of (15) is

$$
\begin{equation*}
r_{n+1}=\frac{1}{n}+\frac{1}{r_{n}} . \tag{16}
\end{equation*}
$$

It is readily verified by induction that the solution of (16) with $s_{1}=1$ may be expressed as

$$
s_{2 n-1}=1, \quad s_{2 n}=\frac{2 n}{2 n-1} .
$$

Thus $\lim _{n \rightarrow \infty} s_{n}=1$, as expected. The eigensequence $\left\{s_{n}\right\}$ also yields a sc-factorization of (15)

$$
\begin{aligned}
& t_{n+1}=-\frac{1}{s_{n}} t_{n}, \quad t_{1}=x_{1}-x_{0} \\
& x_{n+1}=s_{n+1} x_{n}+t_{n+1}
\end{aligned}
$$

that can be used to obtain a formula for the general solution of (15). The factor equation can be written as

$$
t_{2 n}=-t_{2 n-1}, \quad t_{2 n+1}=-\frac{2 n-1}{2 n} t_{2 n}
$$

which yields by straightforward iteration

$$
t_{2 n+1}=\frac{(2 n)!}{4^{n}(n!)^{2}}, \quad t_{2 n+2}=-t_{2 n+1}
$$

Finally, using the cofactor equation $x_{n+1}=r_{n+1} x_{n}+t_{n+1}$ a formula for the solution of (15) may be obtained.

Regarding rings of real valued functions under pointwise addition and multiplication of functions we have the following corollary.

Corollary 3 Let $R(S)$ be a ring of real-valued functions on a nonempty set S. Assume that $a_{j, n}(s) \geq 0$ for all $s \in S, j=0,1, \ldots, k$ and all n. If

$$
\begin{equation*}
\sum_{j=0}^{k} a_{j, n}(s)>0 \tag{17}
\end{equation*}
$$

for all $s \in S$ and all n then the linear difference equation

$$
\begin{equation*}
x_{n+1}=a_{0, n} x_{n}+a_{1, n} x_{n-1}+\cdots+a_{k, n} x_{n-k} \tag{18}
\end{equation*}
$$

has positive (hence, unitary) solutions and a sc-factorization in $R(S)$.
Proof. Let $a_{j, n}(s) \geq 0$ for all $s \in S$ and all n. Choose constant initial values $u_{j}=1$ for $j=0,1, \ldots, k$ in (18). By (17), $u_{k+1}(s)=\sum_{j=0}^{k} a_{j, n}(s)>0$ for all $s \in S$. Thus $u_{k+1}(s)$ is a unit in $R(S)$ and

$$
u_{k+2}(s)=\sum_{j=0}^{k} a_{j, k+1}(s) u_{k+1-j}(s)=a_{0, k+1}(s) u_{k+1}(s)+\sum_{j=1}^{k} a_{j, k+1}(s)
$$

for all $s \in S$. If $\sum_{j=1}^{k} a_{j, k+1}(s)=0$ for some s then by (17) $a_{0, k+1}(s) \neq 0$. It follows that u_{k+2} is also positive on S, hence a unit in $R(S)$. Proceeding in this fashion, it follows that $u_{n}(s)>0$ for all $s \in S$ and all n. Thus $\left\{u_{n}(s)\right\}$ is a unitary solution of (18). Hence, the ratios sequence $\left\{u_{n}(s) / u_{n-1}(s)\right\}$ is a unitary eigensequence in $R(S)$ and this yields a sc-factorization for (18).

As an example, consider the second order, linear difference equation

$$
\begin{equation*}
x_{n+1}(s)=\frac{2 n}{s} x_{n}(s)+x_{n-1}(s), \quad s \in(0, \infty) \tag{19}
\end{equation*}
$$

This is the recurrence relation for the "modified Bessel functions $K_{n}(s)$ of the second kind", so-called because they are solutions of the second-order linear differential equation known as Bessel' s modified differential equation. In fact, the sequence of functions $\left\{K_{n}(s)\right\}$ is a particular solution of (19) from specified initial values $K_{0}(s), K_{1}(s)$. According to the preceding Corollary a unitary solution $\left\{u_{n}(s)\right\}$ of (19) is generated by any pair of positive functions; e.g., $u_{0}(s)=u_{1}(s)=1$. The first few terms are

$$
u_{2}(s)=\frac{2}{s}+1, u_{3}(s)=\frac{8}{s^{2}}+\frac{4}{s}+1, u_{4}(s)=\frac{48}{s^{3}}+\frac{24}{s^{2}}+\frac{2}{s}+1
$$

Now the ratios $u_{n}(s) / u_{n-1}(s)$ define an eigensequence for (19) and yield the sc-factorization

$$
t_{n+1}(s)=-\frac{u_{n-1}(s)}{u_{n}(s)} t_{n}(s) \quad x_{n+1}(s)=\frac{u_{n+1}(s)}{u_{n}(s)} x_{n}(s)+t_{n+1}(s)
$$

with $t_{1}(s)=x_{1}(s)-\left[u_{1}(s) / u_{0}(s)\right] x_{0}(s)=x_{1}(s)-x_{0}(s)$. Iteration of the factor equation yields $t_{n}(s)=(-1)^{n-1} t_{1}(s) / u_{n-1}(s)$. If we insert this into the cofactor then summation yields a formula for the general solution of (19) in terms of the unitary solution $\left\{u_{n}(s)\right\}$ as follows:

$$
\begin{aligned}
x_{n}(s) & =u_{n}(s) x_{1}(s)+\sum_{i=2}^{n-1} \frac{u_{n}(s)}{u_{i}(s)} t_{i}(s) \\
& =u_{n}(s)\left[x_{0}(s)+t_{1}(s) \sum_{i=1}^{n-1} \frac{(-1)^{i-1}}{u_{i}(s) u_{i-1}(s)}\right] .
\end{aligned}
$$

Different values of positive functions $u_{0}(s), u_{1}(s)$ yield different formulas but of course, the same quantity $x_{n}(s)$.

