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Consider the linear (nonhomogeneous) difference equation

xn+1 = a0,nxn + a1,nxn−1 + · · · + ak,nxn−k + bn

where {bn} and the (variable) coefficients {aj,n} are given sequences in a
nontrivial ring R for j = 0, 1, . . . , k.

• The multiplicative subgroup G of R, i.e., the “unit group” is nonempty
if R has an identity 1; e.g., if R is the ring of all m×m matrices of real
numbers then G consists of all matrices in R that have nonzero deter-
minants. If R is the ring C(S) of all real-valued, continuous functions
on a nonempty set S then G consists of all functions f that are either
always positive or always negative.

• If R is a field then G consists of all nonzero elements of R –familiar
examples: the real numbers R, the finite field Zp of integers modulo a
prime p.

• Every element of G is a “unit” and each sequence in G is “unitary”.
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• The “characteristic equation” of (the homogeneous part of) the linear
equation

xn+1 = a0,nxn + a1,nxn−1 + · · · + ak,nxn−k + bn (1)

is the (nonlinear) equation

rn+1rn . . . rn−k+1−a0,n(rnrn−1 . . . rn−k+1)−a1,n(rn−1 . . . rn−k+1)−· · ·−ak−1,nrn−k+1−ak,n = 0
(2)

• If coefficients aj,n = aj are constants and bn = 0 i.e., the linear equation
is autonomous:

xn+1 = a0xn + a1xn−1 + · · · + akxn−k (3)

then a fixed point of its characteristic equation

rn+1rn . . . rn−k+1−a0(rnrn−1 . . . rn−k+1)−a1(rn−1 . . . rn−k+1)−· · ·−ak−1rn−k+1−ak = 0

is a root of the polynomial

rk+1 − a0r
k − a1r

k−1 − · · · ak.

This is the familiar “characteristic polynomial” of (3) and so its roots
are the “eigenvalues” of the (autonomous) linear difference equation.

• More generally, an “eigensequence” of (1) is any sequence that satisfies
the characteristic equation (2).

• A “unitary eigensequence” is any solution of (2) that is contained in
the unit group G.
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Theorem 1 If the linear difference equation

xn+1 = a0,nxn + · · · + ak,nxn−k + bn (4)

has a unitary eigensequence {sn} in a ring R with identity then the linear
difference equation is equivalent to the following system of lower order linear
difference equations

tn+1 = a′

0,ntn + a′

1,ntn−1 + · · · + a′

k−1,ntn−k+1 + bn (5)

xn+1 = sn+1xn + tn+1 (6)

where for m = 0, . . . , k − 1, tm+1 = xm+1 − sm+1xm and

a′

m,n = −
k
∑

i=m+1

ai,n

(

i
∏

j=m+1

sn−j+1

)−1

.

• The system of difference equations (5) and (6) is a “semiconjugate
factorization” or “sc-factorization” of the linear difference equation (4).
This is a semi-coupled “triangular system” since the first equation is
independent of the second.

• Equation (5), namely, the “factor equation” of (4) has order k which is
one lower than the order of (4).

• Equation (6) of order 1 is the “cofactor equation”.

• If the factor equation (5) has a unitary eigensequence in R then it has
a sc-factorization into a triangular system with a factor of order k − 1
and a cofactor of order 1. In this way the above theorem can be applied
repeatedly as long as their factors have unitary eigensequences in R.

4



4

Unitary eigensequences can be obtained from “unitary solutions” of the
homogeneous part

xn+1 = a0,nxn + · · · + ak,nxn−k (7)

i.e., a solution that is contained in the unit group G.

Theorem 2 Let R be a ring with identity. A (unitary) sequence {rn} in R
is an eigensequence of (7) if and only if rn = unu

−1
n−1 where {un} is a unitary

solution of (7).

An example: With initial values x0 = 1 and x1 = 1 the “Fibonacci
recurrence”

xn+1 = xn + xn−1 (8)

has a familiar solution in the ring Z of integers, namely the “Fibonacci se-
quence” {Fn}: 1,1,2,3,5,8,. . .

The sequence {Fn} is not unitary in Z whose unit group is {−1, 1}. But
{Fn} is a unitary solution of (8) in the field Q of rational numbers since
Fn 6= 0

The sequence Fn+1F
−1
n = Fn+1/Fn is an eigensequence of (8) in Q because

it satisfies the characteristic equation

rn+1rn − rn − 1 = 0

Indeed,

Fn+2

Fn+1

Fn+1

Fn
− Fn+1

Fn
− 1 =

Fn+1 + Fn

Fn
− Fn+1

Fn
− 1 = 0.

The above eigensequence yields the following sc-factorization of (8) in Q

tn+1 = − Fn

Fn+1
tn, t1 = x1 −

Fn+1

Fn
x0

xn+1 =
Fn+2

Fn+1
xn + tn+1.
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To minimize notational clutter, in the rest of this talk we focus on the
second-order homogeneous linear equation

xn+1 = αnxn + βnxn−1 (9)

where αn, βn are given sequences in a ring R.

• The characteristic equation of (9) is

rn+1rn − αnrn − βn = 0 (10)

A solution {sn} of this equation in R is a unitary eigensequence if
sn ∈ G for all n.

• If (10) has unitary solutions then they can be obtained by iterating the
following recurrence starting with a unit s1 ∈ G

rn+1 = αn + βnr
−1
n (11)

• As implied by the preceding theorem, this recurrence can be derived
from a unitary solution {un} of (9)

un+1 = αnun + βnun−1 ⇒ un+1u
−1
n = αn + βnun−1u

−1
n = αn + βn(unu−1

n−1)
−1

sn = unu
−1
n−1 ⇒ rn+1 = αn + βnr

−1
n

• The sc-factorization of (9) with a unitary eigensequence {sn} is

tn+1 = −a0,ntn = −βns
−1
n tn, t1 = x1 − s1x0

xn+1 = sn+1xn + tn+1.
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An example: For the difference equation

xn+1 = 3(−1)nxn + 2xn−1 (12)

with coefficients in Z the recurrence (11) is

rn+1 = 3(−1)n +
2

rn

With s1 = 1 we calculate s2 = −1, s3 = 1, s4 = −1, etc. This is an
eigensequence {(−1)n+1} of period 2 which is unitary in Z. A sc-factorization
with integer coefficients is:

tn+1 = − 2

(−1)n+1
tn = 2(−1)nt1, t1 = x1 − x0

xn+1 = (−1)nxn + tn+1.

Iteration of the factor equation gives

tn = (−1)n(n−1)/22n(x1 − x0)

which yields the following formula for the solution for (12)

xn = (−1)n(n−1)/2[x0 + (2n − 1)(x1 − x0)].

In particular, for initial values x0, x1 such that x0 6= x1, the ratio xn/2n

converges to the 4-cycle (−1)n(n−1)/2(x1 − x0). If x0 = x1 then the solution
xn itself is the 4-cycle (−1)n(n−1)/2x0.
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The difference equation (12) xn+1 = 3(−1)nxn +2xn−1 and its semiconju-
gate factorization are also valid in the finite rings Zm for m ≥ 4. For instance,
in Z6

2n =

{

2, n odd
4, n even

and using the above formula

xn = (−1)n(n−1)/2[x0 + (2n − 1)(x1 − x0)]

we obtain periodic solutions (typically of period 4) from the above formulas.
In Z7 the distinct powers of 2 are

2n =







2, n = 3j + 1
4, n = 3j + 2
1, n = 3j + 3

, j = 0, 1, 2, . . .

which give solutions of a different period (12 if x0 6= x1) using the same
formulas.
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Let R = R the field of real numbers. A “Poincaré difference equation”
(of order 2) is a difference equation

xn+1 = αnxn + βnxn−1 (13)

in which αn → α and βn → β as n → ∞ where α, β are real numbers. The
autonomous difference equation

yn+1 = αyn + βyn−1 (14)

is the “limiting equation” of the Poincaré equation.

• The classical theorem of Poincaré and Perron can be stated succinctly
in terms of eigensequences as follows:

“Each eigenvalue of (14) is a limit of a unitary eigensequence of (13).”

• Not every unitary eigensequence of (13) may converge to an eigenvalue,
or to any other number. For instance, the autonomous difference equa-
tion

xn+1 = 2xn − 4xn−1

is a Poincaré equation and its own limiting equation with characteristic
polynomial r2 −2r +4 whose roots 1± i

√
3 are complex. It also has an

eigensequence {1,−2, 4, 1,−2, 4, . . .} of period 3 which is unitary in R.
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An example: Consider the following Poincaré equation in the field R of
real numbers

xn+1 =
1

n
xn + xn−1 (15)

The limiting autonomous equation for this is yn+1 = yn−1 whose eigenval-
ues are ±1, i.e., the roots of r2 − 1 = 0. The characteristic equation of (15)
is

rn+1 =
1

n
+

1

rn
. (16)

It is readily verified by induction that the solution of (16) with s1 = 1
may be expressed as

s2n−1 = 1, s2n =
2n

2n − 1
.

Thus limn→∞ sn = 1, as expected. The eigensequence {sn} also yields a
sc-factorization of (15)

tn+1 = − 1

sn
tn, t1 = x1 − x0

xn+1 = sn+1xn + tn+1

that can be used to obtain a formula for the general solution of (15). The
factor equation can be written as

t2n = −t2n−1, t2n+1 = −2n − 1

2n
t2n

which yields by straightforward iteration

t2n+1 =
(2n)!

4n(n!)2
, t2n+2 = −t2n+1.

Finally, using the cofactor equation xn+1 = rn+1xn + tn+1 a formula for
the solution of (15) may be obtained.
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Regarding rings of real valued functions under pointwise addition and
multiplication of functions we have the following corollary.

Corollary 3 Let R(S) be a ring of real-valued functions on a nonempty set
S. Assume that aj,n(s) ≥ 0 for all s ∈ S, j = 0, 1, . . . , k and all n. If

k
∑

j=0

aj,n(s) > 0 (17)

for all s ∈ S and all n then the linear difference equation

xn+1 = a0,nxn + a1,nxn−1 + · · · + ak,nxn−k (18)

has positive (hence, unitary) solutions and a sc-factorization in R(S).

Proof. Let aj,n(s) ≥ 0 for all s ∈ S and all n. Choose constant initial

values uj = 1 for j = 0, 1, . . . , k in (18). By (17), uk+1(s) =
∑k

j=0 aj,n(s) > 0

for all s ∈ S. Thus uk+1(s) is a unit in R(S) and

uk+2(s) =
k
∑

j=0

aj,k+1(s)uk+1−j(s) = a0,k+1(s)uk+1(s) +
k
∑

j=1

aj,k+1(s)

for all s ∈ S. If
∑k

j=1 aj,k+1(s) = 0 for some s then by (17) a0,k+1(s) 6= 0. It
follows that uk+2 is also positive on S, hence a unit in R(S). Proceeding in
this fashion, it follows that un(s) > 0 for all s ∈ S and all n. Thus {un(s)} is
a unitary solution of (18). Hence, the ratios sequence {un(s)/un−1(s)} is a
unitary eigensequence in R(S) and this yields a sc-factorization for (18).
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As an example, consider the second order, linear difference equation

xn+1(s) =
2n

s
xn(s) + xn−1(s), s ∈ (0,∞). (19)

This is the recurrence relation for the “modified Bessel functions Kn(s)
of the second kind”, so-called because they are solutions of the second-order
linear differential equation known as Bessel’ s modified differential equation.
In fact, the sequence of functions {Kn(s)} is a particular solution of (19) from
specified initial values K0(s), K1(s). According to the preceding Corollary a
unitary solution {un(s)} of (19) is generated by any pair of positive functions;
e.g., u0(s) = u1(s) = 1. The first few terms are

u2(s) =
2

s
+ 1, u3(s) =

8

s2
+

4

s
+ 1, u4(s) =

48

s3
+

24

s2
+

2

s
+ 1

Now the ratios un(s)/un−1(s) define an eigensequence for (19) and yield
the sc-factorization

tn+1(s) = −un−1(s)

un(s)
tn(s) xn+1(s) =

un+1(s)

un(s)
xn(s) + tn+1(s)

with t1(s) = x1(s) − [u1(s)/u0(s)]x0(s) = x1(s) − x0(s). Iteration of the
factor equation yields tn(s) = (−1)n−1t1(s)/un−1(s). If we insert this into
the cofactor then summation yields a formula for the general solution of (19)
in terms of the unitary solution {un(s)} as follows:

xn(s) = un(s)x1(s) +

n−1
∑

i=2

un(s)

ui(s)
ti(s)

= un(s)

[

x0(s) + t1(s)
n−1
∑

i=1

(−1)i−1

ui(s)ui−1(s)

]

.

Different values of positive functions u0(s), u1(s) yield different formulas
but of course, the same quantity xn(s).
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