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Consider the linear (nonhomogeneous) difference equation
Tnt+1 = Ao,nTn + a1,nTn—1 + -+ A nTn—k + bn

where {b,} and the (variable) coefficients {a;,} are given sequences in a
nontrivial ring R for j =0,1,... k.

e The multiplicative subgroup G of R, i.e., the “unit group” is nonempty
if R has an identity 1; e.g., if R is the ring of all m x m matrices of real
numbers then G consists of all matrices in R that have nonzero deter-
minants. If R is the ring C(S) of all real-valued, continuous functions
on a nonempty set S then G consists of all functions f that are either
always positive or always negative.

o If R is a field then G consists of all nonzero elements of R —familiar
examples: the real numbers R, the finite field Z, of integers modulo a
prime p.

e Every element of GG is a “unit” and each sequence in G is “unitary”.
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e The “characteristic equation” of (the homogeneous part of) the linear
equation

Tn+1 = Ao,nTn + a1,nTn—1 + -+ A nTn—k + bn (1)

is the (nonlinear) equation

TniTn - - Tn—k—i—l_aO,n(ann—l cee Tn—k—i—l)_al,n(rn—l cee Tn—k—l—l)_' Ak —1nTn—k+1—Qkn = 0

(2)

o If coefficients a;,, = a; are constants and b, = 0 i.e., the linear equation
is autonomous:

Tntl = ATy + A1 Tp—1 + - + QpTp_k (3)

then a fized point of its characteristic equation

Tnt1Tn - Tkl —@0(TnTn—1 - - - Tn—41) =1 (Tn—1 - . . Tpjp1) —* - *—Qh—1Tn—kt1—ax = 0

is a root of the polynomial

phtt aork —artt =

This is the familiar “characteristic polynomial” of (3) and so its roots
are the “eigenvalues” of the (autonomous) linear difference equation.

e More generally, an “eigensequence” of (1) is any sequence that satisfies
the characteristic equation (2).

e A “unitary eigensequence” is any solution of (2) that is contained in
the unit group G.
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Theorem 1 If the linear difference equation
Tnt+1 = Aondn + -+ Ak nTn—k + bn (4)

has a unitary eigensequence {s,} in a ring R with identity then the linear
difference equation is equivalent to the following system of lower order linear
difference equations

/ / /

tn—l—l = a07ntn + almtn—l +---+ ak_lmtn—k—l—l + bn (5)
Tn4+1l = Sn+1Tn + tn—l—l (6)

where form =0,....k—1, t;ui1 = Tie1 — Sma1Tm and

k i -1

/
Ay = — E : Qin H Sn—j+1 :
i=m+1 Jj=m+1

e The system of difference equations (5) and (6) is a “semiconjugate
factorization” or “sc-factorization” of the linear difference equation (4).
This is a semi-coupled “triangular system” since the first equation is
independent of the second.

e Equation (5), namely, the “factor equation” of (4) has order k£ which is
one lower than the order of (4).

e Equation (6) of order 1 is the “cofactor equation”.

e If the factor equation (5) has a unitary eigensequence in R then it has
a sc-factorization into a triangular system with a factor of order £ — 1
and a cofactor of order 1. In this way the above theorem can be applied
repeatedly as long as their factors have unitary eigensequences in R.
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Unitary eigensequences can be obtained from “unitary solutions” of the
homogeneous part
Tn+1 = Aondn + -+ A nTn—k (7)

i.e., a solution that is contained in the unit group G.

Theorem 2 Let R be a ring with identity. A (unitary) sequence {r,} in R
is an eigensequence of (7) if and only if r, = upu,t, where {u,} is a unitary
solution of (7).

An example: With initial values zop = 1 and z; = 1 the “Fibonacci
recurrence”
Tptl = Tp + Tp—1 (8)

has a familiar solution in the ring Z of integers, namely the “Fibonacci se-
quence” {F,}: 1,1,2,3,5,8,. ..

The sequence {F},} is not unitary in Z whose unit group is {—1,1}. But
{F,} is a unitary solution of (8) in the field Q of rational numbers since
F,#0

The sequence Fy, 1 F' = F,,1/F, is an eigensequence of (8) in Q because
it satisfies the characteristic equation

Tpa1Tn —Th — 1 =0
Indeed,

Fn+2Fn+1 _Fn—l—l _1:Fn+1+Fn_Fn+1

Foi F, F, F, F,

—-1=0.

The above eigensequence yields the following sc-factorization of (8) in Q

n Fn—l—l
thi1 = _F—tn> hh =x1 — 7 Lo
n+1 n
Fn+2
Tpi1 = 55— Tn + tn—l—l-
Fn—l—l
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To minimize notational clutter, in the rest of this talk we focus on the
second-order homogeneous linear equation
Tpt1 = QpTy + ﬁnfn—l (9)

where «,,, (3, are given sequences in a ring R.

The characteristic equation of (9) is
Tni1Tn — QnTn — Bp =0 (10)

A solution {s,} of this equation in R is a unitary eigensequence if
s, € G for all n.

e If (10) has unitary solutions then they can be obtained by iterating the
following recurrence starting with a unit s; € GG

Tn41 = Qp + ﬁnry_Ll (11)

e As implied by the preceding theorem, this recurrence can be derived
from a unitary solution {u,} of (9)

Up+1 = CplUnp + ﬁnun—l = un—i—lu;l = o, + ﬁnun—luy_Ll =y + ﬁn(unu;il)_l

-1 -1
UplUy, 1 = T4l = Qp + ﬁnrn

Sn

e The sc-factorization of (9) with a unitary eigensequence {s,} is

1
tnt1 = —Qontn = —Bns, tn, t1 =21 — 8170

T+l = Sn+1dn + tn—i—l-
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An example: For the difference equation
Tpr1 = 3(—=1)"zp + 22,4 (12)

with coefficients in Z the recurrence (11) is

2
Tnt1 = 3(_1)n + 7’_

With s; = 1 we calculate s, = —1, s3 = 1, s, = —1, etc. This is an
eigensequence {(—1)""'} of period 2 which is unitary in Z. A sc-factorization
with integer coefficients is:

2 n
tny1 = —th =2(=1)"t1, ti=z1— 20
Tpr1 = (=1)"zp + thi1.
Iteration of the factor equation gives
tn = (_1)n(n—1)/22n($1 — 1’0)
which yields the following formula for the solution for (12)
Tp = (=12 [0 4 (27 — 1) () — x0)].

In particular, for initial values z¢, 1 such that xy # x;, the ratio z, /2"
converges to the 4-cycle (—1)"™1/2(z; — x4). If 29 = 2; then the solution
,, itself is the 4-cycle (—1)"("=1/2g,.
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The difference equation (12) z,11 = 3(—1)"x, + 2x,_; and its semiconju-
gate factorization are also valid in the finite rings Z,, for m > 4. For instance,

in ZG
on _ { i, n odd

,  meven

and using the above formula
Tp = (=12 [0 4 (2" — 1)(21 — m0)]

we obtain periodic solutions (typically of period 4) from the above formulas.
In Z; the distinct powers of 2 are

2, n=3j+1
={ 4, n=3j+2 ., j=012...
1, n=3j+3

which give solutions of a different period (12 if zy # 1) using the same
formulas.
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Let R = R the field of real numbers. A “Poincaré difference equation”
(of order 2) is a difference equation

T+l = QpTn + ﬁnfn—l (13)

in which «,, — « and (3, — [ as n — oo where «, § are real numbers. The
autonomous difference equation

Ynt1 = QYn + BYn—1 (14)

is the “limiting equation” of the Poincaré equation.

e The classical theorem of Poincaré and Perron can be stated succinctly
in terms of eigensequences as follows:

“Fach eigenvalue of (14) is a limit of a unitary eigensequence of (13).”

e Not every unitary eigensequence of (13) may converge to an eigenvalue,
or to any other number. For instance, the autonomous difference equa-
tion

Tpt+1 = QI’n — 41’n_1

is a Poincaré equation and its own limiting equation with characteristic
polynomial 7% — 2r + 4 whose roots 1+1i+v/3 are complex. It also has an
eigensequence {1,—2,4,1,—2 4, ...} of period 3 which is unitary in R.
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An example: Consider the following Poincaré equation in the field R of
real numbers

Tyl = —Xp + Tp_1 (15)
n

The limiting autonomous equation for this is 4,11 = y,_1 whose eigenval-
ues are +1, i.e., the roots of 72 — 1 = 0. The characteristic equation of (15)

1S 1 1
Pap1 = — 4+ —. (16)
no T,

It is readily verified by induction that the solution of (16) with s; = 1
may be expressed as

B 2n
o =1

Son—1 = 1, Son

Thus lim, . s, = 1, as expected. The eigensequence {s,} also yields a
sc-factorization of (15)

thy1 = ——tn, 1 =21 — 29
Sn

Tn+l = Sn+1dn + tn—l—l

that can be used to obtain a formula for the general solution of (15). The
factor equation can be written as

2n—1

lon = —lon—1, tlony1 = — lon
2n
which yields by straightforward iteration
PSR L)

Finally, using the cofactor equation z, 1 = r, 12, + t,e1 a formula for
the solution of (15) may be obtained.

10
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Regarding rings of real valued functions under pointwise addition and
multiplication of functions we have the following corollary.

Corollary 3 Let R(S) be a ring of real-valued functions on a nonempty set
S. Assume that a;j,(s) >0 foralls € S, 7=0,1,...,k and all n. If

Z ajn(s) >0 (17)

for all s € S and all n then the linear difference equation
Tnt+1 = Ao,nTn + a1,nTn—1 + -+ A nTn—k (18)
has positive (hence, unitary) solutions and a sc-factorization in R(S).

Proof. Let a;,(s) > 0 for all s € S and all n. Choose constant initial
values u; =1 for j =0,1,...,k in (18). By (17), ug41(s) = Z?:o ajn(s) >0
for all s € S. Thus ugs1(s) is a unit in R(S) and

k k
Uka(s) = > ajuia(s)upii—j(s) = aorsr()ura(s) + Y ajria(s)
j=0 J=1

for all s € S. If Zle ajr41(s) = 0 for some s then by (17) agr+1(s) # 0. It
follows that ugio is also positive on S, hence a unit in R(S). Proceeding in
this fashion, it follows that u,(s) > 0 for all s € S and all n. Thus {u,(s)} is
a unitary solution of (18). Hence, the ratios sequence {u,(s)/un—1(s)} is a
unitary eigensequence in R(S) and this yields a sc-factorization for (18). m

11



A

As an example, consider the second order, linear difference equation

Tnt1(s) = 2?nzvn(s) + x,-1(s), s€(0,00). (19)

This is the recurrence relation for the “modified Bessel functions K, (s)
of the second kind”, so-called because they are solutions of the second-order
linear differential equation known as Bessel’ s modified differential equation.
In fact, the sequence of functions { K, (s)} is a particular solution of (19) from
specified initial values Ky(s), Ki1(s). According to the preceding Corollary a
unitary solution {u,(s)} of (19) is generated by any pair of positive functions;
e.g., up(s) = uy(s) = 1. The first few terms are

2 8§ 4 48 24 2
u2(3):;+1> U3($)=—+ + 1, u4(s) = +—+ +1

Now the ratios u,(s)/u,—1(s) define an eigensequence for (19) and yield

the sc-factorization

Un—1(8)
Un(s)

Un+1 (S)
Un(s)

tnia(s) = — tn(s) Tni1(s) = Tn(8) + tnta(s)

with t1(s) = z1(s) — [u1(s)/uo(s)]zo(s) = z1(s) — zo(s). Iteration of the
factor equation yields t,(s) = (=1)""t1(s)/u,_1(s). If we insert this into

the cofactor then summation yields a formula for the general solution of (19)
in terms of the unitary solution {u,(s)} as follows:

= u,(s)z1(s $ n(s) (s
nls) = wn(s)n(5) + 3 2
= up(s) [xo(s) + t1(s N al ull

Different values of positive functions ug(s), u1(s) yield different formulas
but of course, the same quantity z,(s).
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