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Abstract. In this note we present two results about the equation in
the title. The first concerns oscillatory behavior and the non-existence
of period-2 solutions. The second gives a condition for the existence of
monotonic solutions.

In this paper, we consider the second order difference equation

xn+1 = cxn + f(xn − xn−1), c ∈ [0, 1) (0.1)

with real initial values x0, x−1. We assume that f is continuous on the real line.
Variants of this equation have appeared in macroeconomic models of the business
cycle for over half a century. One of the earliest cases was Samuelson’s linear
model in [4] in which the function f was linear-affine of type at + b. Nonlinear
models appeared subsequently when it was noticed that persistent oscillatory be-
havior (bounded, non-convergent) in linear models is not structurally stable. The
model by Hicks in [2] used a piecewise linear form for f that incorporated known
economic mechanisms. Goodwin proposed (in a continuous time model in [1]) that
the “investment function” f must be a non-decreasing sigmoid, similar to the in-
verse tangent. More recently, we have seen variations of this sigmoid in the work
of Puu [3]. For more details see [5], [6] and [8].

In the preceding models, conditions leading to persistent oscillatory behavior
were of particular interest, since data always indicated the existence of such a
behavior in the actual business cycle; see [5]- [8]. Stochastic terms could then
be added to a viable nonlinear equation for more realistic modeling. Strange and
unusual behavior, such as the existence of an unstable, yet globally attracting fixed
point is seen to occur for (0.1); see [6] and [8]. Further, in [8] Puu’s variation is
discussed in detail and it is shown how chaotic behavior may arise from a version
of (0.1) in the case where savings are fully consumed in each period. In this note
two additional new results about solutions of (0.1) are presented. The first is about
the oscillatory behavior of solutions and the second gives a condition that implies
the monotonicity of all solutions.
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1 The Main Results

In general, oscillatory solutions of (0.1) need not oscillate about the equilibrium.
For example, if

f(t) = min{1, |t|}, c = 0
then f(0) = 0 so that the origin is the unique fixed point or equilibrium of (0.1).
However, (0.1) has a period-3 solution {0, 1, 1} which is clearly non-negative and
oscillatory. The condition in the following lemma forces all oscillations to occur
about the origin.

Lemma 1.1. If tf(t) ≥ 0 for all t, then every eventually non-negative and
every eventually non-positive solution of (0.1) is eventually monotonic.

Proof Suppose that {xn} is a solution of (0.1) that is eventually non-negative,
i.e., there is k > 0 such that xn ≥ 0 for all n ≥ k. Either xn ≥ xn−1 for all n > k in
which case {xn} is eventually monotonic, or there is n > k such that xn ≤ xn−1.
In the latter case,

xn+1 = cxn + f(xn − xn−1) ≤ cxn ≤ xn

so that by induction, {xn} is eventually non-increasing, hence monotonic. The
argument for an eventually non-positive solution is similar and omitted.

Theorem 1.1. If tf(t) ≥ 0 for all t, then (0.1) has no solutions that are
eventually of period two.

Proof Let {xn} be a solution of (0.1). We claim that if c > 0, then for all
k ≥ 1

xk > 0 > xk+1 ⇒ xk+2 < 0 and xk < 0 < xk+1 ⇒ xk+2 > 0.

For suppose that xk > 0 > xk+1 for some k ≥ 1. Then

xk+2 = cxk+1 + f(xk+1 − xk) ≤ cxk+1 < 0.

The argument for the other case is similar and omitted. Now by Lemma 1, if
a solution {xn} eventually has period 2, then for all sufficiently large n, there is
xn > 0, xn+1 < 0 and xn+2 = xn > 0. If c > 0, then this contradicts the above
claim. If c = 0 then

0 < xn = xn+2 = f(xn+1 − xn) ≤ 0

which is again a contradiction. Hence, no solution of (0.1) can eventually have
period two.

Theorem 1.2. Assume that tf(t) ≥ 0 and there is a ∈ (0, 1) such that |f(t)| ≤
a|t| for all t. If

c ≥ 2
√

a − a (1.1)
then every solution of (0.1) is eventually monotonic and converges to zero.

Proof Inequality (1.1) is equivalent to (a + c)2 ≥ 4a so that

p =
a + c −

√
(a + c)2 − 4a

2
is a real number (the significance of p becomes clear below). First, assume that

0 ≤ px−1 ≤ x0 ≤ x−1 (1.2)
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and let {xn} be the solution generated by the initial values x−1, x0. Suppose that
there is an integer m ≥ 1 such that xm ≤ 0 but xm−1 > 0. Then x−1 ≥ x0 > · · · >
xm and

0 ≥ xm = cxm−1 + f(xm−1 − xm−2) ≥ cxm−1 + a(xm−1 − xm−2)

so that
xm−1 ≤ a

a + c
xm−2. (1.3)

Further,
a

a + c
xm−2 ≥ xm−1 = cxm−2 + f(xm−2 − xm−3) ≥ cxm−2 + a(xm−2 − xm−3)

which yields

xm−2 ≤ a

a + c − a/(a + c)
xm−3. (1.4)

The development of coefficients in inequalities (1.3) and (1.4) follows a pattern
that is described next. Define the mapping

φ(t) =
a

a + c − t
, 0 ≤ t < a + c.

In terms of φ, inequalities (1.3) and (1.4) may be written as

xm−1 ≤ φ(0)xm−2

and
xm−2 ≤ φ2(0)xm−3

respectively. This pattern continues inductively, since if for any n = 2, . . . , m we
have

xm−n+1 ≤ φn−1(0)xm−n

then

φn−1(0)xm−n ≥ cxm−n + f(xm−n − xm−n−1) ≥ cxm−n + a(xm−n − xm−n−1)

which yields

xm−n ≤ a

a + c − φn−1(0)
xm−n−1 = φn(0)xm−n−1.

In particular, for n = m, we obtain

x0 ≤ φm(0)x−1.

But, upon iterating the mapping φ above, it is easy to see that the real sequence
{φn(0)} is strictly increasing towards p, which is a fixed point of φ. Therefore,
φm(0) < p and we obtain

x0 ≤ φm(0)x−1 < px−1

which contradicts (1.2). It follows that xn > 0 for all n if (1.2) holds so by Lemma
1 {xn} is monotonic, and in fact, non-increasing. Since the origin is the only fixed
point of (0.1), it follows that {xn} converges to zero.

A similar argument shows that if x−1 ≤ x0 ≤ px−1 ≤ 0, then xn < 0 for all
n ≥ 1 and thus again the solution is non-decreasing and converges to zero.

In the general case, the solution starting from an arbitrary pair of initial values
x−1, x0 if not monotonic, will have a term xk which is either a positive maximum or a
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negative minimum, i.e., xk ≥ 0 and xk−1, xk+1 ≤ xk or xk ≤ 0 and xk−1,xk+1 ≥ xk .
Consider the positive maximum case. Then

xk ≥ xk+1 = cxk + f(xk − xk−1) ≥ cxk. (1.5)

Now, since

(c − a)2 = c2 − 2ac + a2 > c2 − 2a + a2 = (c + a)2 − 4a

it follows that

c − p =
c − a −

√
(a + c)2 − 4a

2
> 0.

From (1.5) it follows that xk ≥ xk+1 > pxk ≥ 0 at which point the argument for
case (1.2) holds and establishes that the solution {xn} is monotonically decreasing
for n > k. A similar argument for the negative minimum case completes the proof.

An interesting conjecture that might naturally follow Theorem 2 is that all so-
lutions of (0.1) converge to zero in Theorem 2 even if (1.1) does not hold. Condition
(1.1) may be re-written equivalently as

a ≤
(
1 −

√
1 − c

)2
= b. (1.6)

It may be conjectured that if b < a < 1 then all solutions converge to zero in
an oscillatory fashion. This claim is true for the linear version of (0.1) where
f(t) = at. In the linear case, the number b is the demarkation line where solutions
change from monotonic to oscillatory as a exceeds b. Indeed, if (1.6) holds, then
the linear version of (0.1) has two positive eigenvalues the smaller of which is the
number p in the proof of Theorem 2. If (1.6) does not hold, then there are two
complex eigenvalues whose common modulus is a.
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