Folding Planar Systems into Second-Order Difference Equations

H. SEDAGHAT
Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA

AMS Sectional Meeting
Baltimore, Maryland
March 2014

Systems of two Difference Equations

- Consider a recursive planar system

$$
\left\{\begin{array}{l}
x_{n+1}=f\left(n, x_{n}, y_{n}\right) \tag{1}\\
y_{n+1}=g\left(n, x_{n}, y_{n}\right)
\end{array} \quad n=0,1,2, \ldots\right.
$$

where $f, g: \mathbb{N} \times D \rightarrow S$ are given functions, \mathbb{N} is the set of non-negative integers, S a nonempty set and $D \subset S \times S$.

- An initial point $\left(x_{0}, y_{0}\right) \in D$ generates a (forward) orbit or solution $\left\{\left(x_{n}, y_{n}\right)\right\}$ of (1) in the state-space $S \times S$ through the iteration of the function $\left(n, x_{n}, y_{n}\right) \rightarrow\left(f\left(n, x_{n}, y_{n}\right), g\left(n, x_{n}, y_{n}\right)\right): \mathbb{N} \times D \rightarrow S \times S$ for as long as the points $\left(x_{n}, y_{n}\right)$ remain in D.
- If (1) is autonomous, i.e., the functions f, g do not depend on the index n then $\left(x_{n}, y_{n}\right)=F^{n}\left(x_{0}, y_{0}\right)$ for every n where F^{n} denotes the composition of the map $F(u, v)=(f(u, v), g(u, v))$ of $S \times S$ with itself n times.

Second-Order Difference Equations

- A second-order, scalar difference equation in S is defined as

$$
\begin{equation*}
s_{n+2}=\phi\left(n, s_{n}, s_{n+1}\right), \quad n=0,1,2, \ldots \tag{2}
\end{equation*}
$$

where $\phi: \mathbb{N} \times D^{\prime} \rightarrow S$ is a given function and $D^{\prime} \subset S \times S$. A pair of initial values $s_{0}, s_{1} \in S$ generates a (forward) solution $\left\{s_{n}\right\}$ of (2) in S if $\left(s_{0}, s_{1}\right) \in D^{\prime}$.

- As in the case of systems, if $\phi(n, u, v)=\phi(u, v)$ is independent of n then (2) is autonomous.

Unfolding Second-order Equations

- A second-order equation may be "unfolded" to a system in a standard way; e.g.,

$$
\left\{\begin{array}{l}
s_{n+1}=t_{n} \tag{3}\\
t_{n+1}=\phi\left(n, s_{n}, t_{n}\right)
\end{array}\right.
$$

- In the system (3) the temporal delay in the second-order equation is converted to an additional variable in the state space. All solutions of the second-order equation are reproduced from the solutions of (3) in the form $\left(s_{n}, s_{n+1}\right)=\left(s_{n}, t_{n}\right)$ so in this sense, higher order equations may be considered to be special types of systems.

Semi-inversion

Definition 1 Let S, T be nonempty sets and consider a function $f: T \times D \rightarrow$ S where $D \subset S \times S$. Then f is semi-invertible if there are sets $M \subset D$, $M^{\prime} \subset S \times S$ and a function $h: T \times M^{\prime} \rightarrow S$ such that

$$
\begin{equation*}
w=f(t, u, v) \Rightarrow v=h(t, u, w) \quad \text { for all } t \in T,(u, v) \in M \text { and }(u, w) \in M^{\prime} \tag{4}
\end{equation*}
$$

The function h may be called a semi-inversion of f. If f is independent of t then t is dropped from the above notation.

Semi-inversion refers more accurately to the solvability of the equation $w-f(t, u, v)=0$ for v. This recalls the implicit function theorem a general version of which that is based on the contraction principle holds in Banach spaces.

Separability

Definition 2 Let $(G, *)$ be a nontrivial group, T a nonempty set and let $f: T \times G \times G \rightarrow G$. If there are functions $f_{1}, f_{2}: T \times G \rightarrow G$ such that

$$
f(t, u, v)=f_{1}(t, u) * f_{2}(t, v)
$$

for all $u, v \in G$ and every $t \in T$ then we say that f is separable on G and write $f=f_{1} * f_{2}$ for short.

Every affine function $f(n, u, v)=a_{n} u+b_{n} v+c_{n}$ with a_{n}, b_{n}, c_{n} in a ring R with identity is separable on the additive group $(R,+)$ for all $n \geq 1$ with $T=\mathbb{N}$ and say, $f_{1}(n, v)=a_{n} u+c_{n}$ and $f_{2}(n, v)=b_{n} v$.

Separability and Semi-inversion

Proposition 3 Let $(G, *)$ be a nontrivial group and $f=f_{1} * f_{2}$ be separable. If $f_{2}(t, \cdot)$ is a bijection for each t then f is semi-invertible on $G \times G$ with a semi-inversion uniquely defined by $h(t, u, w)=f_{2}^{-1}\left(t,\left[f_{1}(t, u)\right]^{-1} * w\right)$.

- Consider $f(n, u, v)=a_{n} u+b_{n} v+c_{n}$. If b_{n} is a unit in R for all n then $f_{2}(n, v)=b_{n} v$ is a bijection and f is semi-invertible on R with $h(n, u, w)=b_{n}^{-1}\left(w-a_{n} u-c_{n}\right)$.
- If a_{n} and b_{n} are not units for infinitely many n then f is separable but not semi-invertible for either u or v.
- $f(u, v)=a+u v$ is not separable on a field F if $a \neq 0$ but it is semiinvertible with $h(u, w)=u^{-1}(w-a)$ where $u \neq 0$.

Reduction to A Scalar Equation

Suppose that $\left\{\left(x_{n}, y_{n}\right)\right\}$ is a solution of the original system and assume that one of the component functions, say, f is semi-invertible. Then there is a function h such that

$$
\begin{equation*}
x_{n+1}=f\left(n, x_{n}, y_{n}\right) \Rightarrow y_{n}=h\left(n, x_{n}, x_{n+1}\right) \tag{5}
\end{equation*}
$$

Therefore,
$x_{n+2}=f\left(n+1, x_{n+1}, y_{n+1}\right)=f\left(n+1, x_{n+1}, g\left(n, x_{n}, y_{n}\right)\right)=f\left(n+1, x_{n+1}, g\left(n, x_{n}, h\left(n, x_{n}, x_{n+1}\right)\right)\right)$
For each $n \geq 0$, define the function

$$
\phi(n, u, w)=f(n+1, w, g(n, u, h(n, u, w)))
$$

If $\left\{s_{n}\right\}$ is the solution of $s_{n+2}=\phi\left(n, s_{n}, s_{n+1}\right)$ with initial values $s_{0}=x_{0}$ and $s_{1}=x_{1}=f\left(0, x_{0}, y_{0}\right)$ then
$s_{2}=f\left(1, s_{1}, g\left(0, s_{0}, h\left(0, s_{0}, s_{1}\right)\right)\right)=f\left(1, x_{1}, g\left(0, x_{0}, h\left(0, x_{0}, x_{1}\right)\right)\right)=f\left(1, x_{1}, g\left(0, x_{0}, y_{0}\right)\right)=x_{2}$
By induction, $s_{n}=x_{n}$ and by (5) $h\left(n, s_{n}, s_{n+1}\right)=h\left(n, x_{n}, x_{n+1}\right)=y_{n}$. It follows that

$$
\left(x_{n}, y_{n}\right)=\left(s_{n}, h\left(n, s_{n}, s_{n+1}\right)\right)
$$

i.e., the solution $\left\{\left(x_{n}, y_{n}\right)\right\}$ of the original system can be obtained from a solution $\left\{s_{n}\right\}$ of the second order equation.

Folding

Definition 4 The equations

$$
\begin{aligned}
s_{n+2} & =\phi\left(n, s_{n}, s_{n+1}\right), \quad s_{0}=x_{0}, \quad s_{1}=f\left(0, x_{0}, y_{0}\right) \\
x_{n} & =s_{n} \quad y_{n}=h\left(n, s_{n}, s_{n+1}\right)
\end{aligned}
$$

constitute a folding of the system (1).

Note that the equation for y_{n} is passive in the sense that it simply evaluates a given function and no dynamics or iterations are involved.

Semi-separable Systems

If one of the component functions in the system is separable then we call the system semi-separable.

Corollary 5 Let $(G, *)$ be a nontrivial group and $f=f_{1} * f_{2}$ be separable on $G \times G$. If $f_{2}(n, \cdot)$ is a bijection for every n then every solution $\left\{\left(x_{n}, y_{n}\right)\right\}$ of (1) in G is derived from a solution $\left\{s_{n}\right\}$ of

$$
\begin{equation*}
s_{n+2}=f_{1}\left(n+1, s_{n+1}, g\left(n, s_{n}, f_{2}^{-1}\left(n,\left[f_{1}\left(n, s_{n}\right)\right]^{-1} * s_{n+1}\right)\right)\right. \tag{6}
\end{equation*}
$$

that yields the x-component x_{n} with the initial values $s_{0}=x_{0}, s_{1}=f_{1}\left(0, x_{0}\right) *$ $f_{2}\left(0, y_{0}\right)$. Further, the solution $\left\{s_{n}\right\}$ of (6) yields the y-component

$$
\begin{equation*}
y_{n}=f_{2}^{-1}\left(n,\left[f_{1}\left(n, s_{n}\right)\right]^{-1} * s_{n+1}\right) . \tag{7}
\end{equation*}
$$

A Semi-separable System

The autonomous system

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n} y_{n} \\
y_{n+1}=\left(a+b x_{n}\right) / y_{n}
\end{array}\right.
$$

is semi-separable on the group G of nonzero real numbers. The above Corollary yields the folding

$$
\begin{aligned}
s_{n+2} & =s_{n+1} \frac{a+b s_{n}}{\left(1 / s_{n}\right) s_{n+1}}=s_{n}\left(a+b s_{n}\right) \\
x_{n} & =s_{n} \quad y_{n}=s_{n+1} / s_{n}
\end{aligned}
$$

Note that the even and odd terms $s_{2 k}$ and $s_{2 k-1}$ of each solution of the second-order equation above satisfy a conjugate of the logistic equation $r_{n+1}=c r_{n}\left(1-r_{n}\right)$ if $a, b \neq 0$.

Semilinear Systems

The next result is a special case of preceding Corollary.
Corollary 6 Let a_{n}, b_{n}, c_{n} be sequences in a ring R with identity and let $g: \mathbb{N} \times R \times R \rightarrow R$. If b_{n} is a unit for all n then the semilinear system

$$
\left\{\begin{array}{l}
x_{n+1}=a_{n} x_{n}+b_{n} y_{n}+c_{n} \tag{8}\\
y_{n+1}=g\left(n, x_{n}, y_{n}\right)
\end{array}\right.
$$

folds into the second-order difference equation

$$
\begin{align*}
s_{n+2} & =\phi\left(n, s_{n}, s_{n+1}\right), \quad \text { where: } s_{0}=x_{0}, s_{1}=a_{0} x_{0}+b_{0} y_{0}+c_{0}, \tag{9}\\
\phi(n, u, w) & =c_{n+1}+a_{n+1} w+b_{n+1} g\left(n, u, b_{n}^{-1}\left(w-a_{n} u-c_{n}\right)\right)
\end{align*}
$$

For each solution $\left\{s_{n}\right\}$ of (9) the y-components of orbits of (8) are given by the passive equation

$$
y_{n}=b_{n}^{-1}\left(s_{n+1}-a_{n} s_{n}-c_{n}\right) .
$$

A Semilinear System

Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be an arbitrary function and consider the semilinear system

$$
\left\{\begin{array}{l}
x_{n+1}=(-1)^{n} x_{n}+y_{n} \\
y_{n+1}=\psi\left(x_{n}\right)+(-1)^{n} y_{n}
\end{array}\right.
$$

on a ring R with identity. This system folds via the above Corollary as follows

$$
\begin{aligned}
s_{n+2} & =\psi\left(s_{n}\right)-s_{n}, \quad s_{0}=x_{0}, \quad s_{1}=x_{0}+y_{0} \\
x_{n} & =s_{n} \quad y_{n}=s_{n+1}-(-1)^{n} s_{n}
\end{aligned}
$$

Note that the second-order equation above is autonomous.

