
Measuring the Speed and Altitude of an Aircraft Using Similar Triangles
Author(s): Hassan Sedaghat
Source: SIAM Review, Vol. 33, No. 4 (Dec., 1991), pp. 650-654
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2031019 .
Accessed: 29/04/2011 12:25

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=siam. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend
access to SIAM Review.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=siam
http://www.jstor.org/stable/2031019?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=siam


SIAM REVIEW 
Vol. 33, No. 4, pp. 650-654, December 1991 

? 1991 Society for Industrial and Applied Mathematics 
004 

MEASURING THE SPEED AND ALTITUDE OF AN AIRCRAFT 
USING SIMILAR TRIANGLES* 

HASSAN SEDAGHATt 

Abstract. In this note a simple and sometimes practical method is devised with which the 
average speed and the cruising altitude of an aircraft in flight can be computed from a window seat 
inside the aircraft. No knowledge of the mechanical structure of the vehicle is assumed. Rather, 
either two separate time measurements or a time and a length measurement are used allowing one 
to construct sets of similar triangles. These triangles can then be used to derive the formulas for 
speed and altitude. This method can also be used to determine the average speed of moving ground 
vehicles such as trains and buses. 

Key words. similar triangles, speed, altitude, time, length, measurements 

AMS(MOS) subject classification. 00A69 

1. Introduction. In his novel The Mysteriowu Island [3, p. 99], Jules Verne tells 
us how the engineer Cyrus Harding determined the height of a cliff using only a wooden 
stick and similar triangles. The mathematics involved in that method is elementary 
and accessible to high school students and college freshmen. In a similar, though 
somewhat more elaborate fashion this note presents a way of computing both the 
speed and the altitude of an aircraft by a passenger using only a watch and possibly a 
ruler. The key is to make two separate measurements: a time measurement, followed 
by either another time measurement or a length measurement. The accuracy of the 
results depends critically on the accuracy of the measurements, and we will consider 
ways of dealing with the problem of measurement-taking below. Although we will 
be using a bit more mathematics than Cyrus Harding did, this note is still quite 
accessible to students in mathematics and physics courses at late high school or early 
college levels, and may prove to be a source of lively class discussions. 

We point out for reference that the air-speed is usually measured with the aid of a 
pitot-static tube and the altitude with an altimeter [1, pp. 71, 102]. Both instruments 
operate by measuring the pressure on a volume of mercury and are not bound by 
our restrictions (throughout this note, it is assumed that the aircraft has attained 
a fixed "cruising" altitude and is flying at a constant velocity above and parallel to 
a sufficiently flat, visible ground surface). On the other hand, neither of the above 
instruments (particularly, the air-speed indicator) can be operated in isolation from 
the supporting mechanisms by an untrained passenger, and both instruments are 
sophisticated mechanical devices that are not normally available in the general market. 

2. The Time-Time method. We begin by describing the simpler of the two 
procedures mentioned in the Introduction. First, choose a convenient point on the 
ground for reference. Then position yourself so that your eye is at the point E1 a 
short distance behind the upper right-hand "corner" of the aircraft window (see Fig. 
1), and wait for the reference point to come into view at the edge of the glass (point A). 
When the point appears in the window (at the ground position P1) immediately begin 
measuring time. Suppose that the reference point takes t1 seconds to move across the 
window and disappear behind the other edge (point B) at the ground position P2. At 
that time, quickly move your eye parallel to the window to the position E2, directly 
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FIG. 1 

behind the upper left-hand corner of the window, while continuing to measure the 
elapsed time. When your eye reaches E2, you will find the reference point at ground 
position P3. The reference point disappears once again at B (ground position P4). 

Suppose that it takes t2 seconds after the first ti for the point to clear the window. 
Now measure the width a and the distance b from A (or B) to the top of the window 
using a small ruler. If the window does not have a definite width (e.g., if it is circular), 
then a could represent a suitable horizontal cross section. 

Having completed the required measurements, let us now derive the formulas for 
altitude and speed. From Fig. 1, using similar triangles, obtain the following equal 
ratios: 

P1P2 E1D E1P2 
AB E1C E1B 

and 

P2P4 P2B 
E1E2 E1B' 

Let v denote the (constant) velocity and h = CD the cruising altitude of the aircraft. 
Note that AB = E1E2 = a and 

E1P2 = E1B + P2B, P1P2 = vtl, P2P4 = vt2. 

Substituting these into the above ratios, we obtain 

vtl = vt2 + h + 
a a b 

These immediately yield 

a h bt2 
tl - t2' tl-t2 
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It is easy to see that the same method and formula can be used to determine the 
speed of a train or a bus that is moving with a constant velocity (h and b may be 
set equal to zero in this case, and the reference point may be any convenient distant 
point). Note that our approach here does not require any knowledge of the external 
specifications of the vehicle or of its internal mechanical structure. 

Remark. The velocity equation above implies that t1 - t2 is the time it takes 
the vehicle itself to travel the distance a. In the case of aircrafts (particularly jet 
aircrafts), tl - t2 may be about 0.001 second (due to high velocities [2]). This can be 
a problem, since conventional timepieces and chronometers available on the market 
are usually accurate to only 0.01 second. One way of remedying this situation is by 
enlarging a (and thus also the time scale). To do this, simply choose two windows 
sufficiently far apart and let A be a point on the left-hand side of the left window and 
B the corresponding point on the right-hand side of the right window. Then AB = qa 
for some rational number q, so that 

a qa 
v = = 

tl -t2 qti -qt2 

requires less accuracy in time measurements by a factor of q. In other words, if 
ordinarily (using one window) t1 and t2 have to be measured with an accuracy of 
0.001 second, then with, say, q = 20, we need to measure t1 and t2 with an accuracy 
of only 20(0.001) = 0.02 second. In an aircraft with a = 1 ft. and consecutive windows 
1 ft. apart, q = 20 translates into 20 ft., or about 11 windows (of course, only the 
first and the last window are used in our measurements). Since in this case it may 
be hard to see clearly through the farthest window and mark the appearance of the 
reference point, it may be helpful to use a small mirror fastened to a seat adjacent to 
that window. 

In ? 3 below, we develop an alternative form of the Time-Time method in which 
we need to measure a length accurately. A discussion of measurement errors follows 
after that. 

3. The Time-Length method. Through a refinement of the Time-Time meth- 
od, we arrive at the Time-Length method. As its name indicates, this method requires 
both a time and a length measurement. For this reason, this method may seem inferior 
to the Time-Time method. However, the Time-Length method removes the require- 
ment for accuracy in time measurements by requiring accurate length measurements 
instead, and is, therefore, a somewhat different approach. We will elaborate on this 
aspect after describing the measurement procedures. 

After measuring t1 as described in ? 2, let t seconds elapse (for example, t could 
be the time that it takes you to move your eye from E1 to E2). Make sure that t is 
small enough so that you can still see the image of the reference point in the window 
from E2. Mark the spot A' on the window where your line of sight from E2 to P3 

intersects the window, and let x = AA'. By symmetry and similarity we have 

P'P3 PlE2 P2E1 vtl 
AA' E2A E1B a 

Since P'P3 = P'P2 + P2P3 = a + vt, we obtain 

a+vt vtl h 
- b+1 

x a b 
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so that 

a2 (a-x)bt? + abt 
xt, - at' xt1-at 

It may be worth noting here that for x = a (and hence, t = t2) these formulas yield 
the speed and altitude formulas of ? 2 (the Time-Time formulas). Only note that 
here x is measured while t is fixed (known). Also observe that a comparison of the 
Time-Time formula and the above formula for v reveals that 

a2/x (a/x)a 
t- (a/x)t (a/x)(ti-t2Y 

If x is chosen small relative to a, then the coefficient a/x can boost the value of the time 
difference tl- t2 significantly. Hence the measurement of t1 in this (Time-Length) 
case is not required to be as accurate as the Time-Time case. Indeed, with a = 
1 ft., if we take t = 1 second and b = 1 ft., then for a typical Boeing 747 "Jumbo Jet" 
cruising at v = 900 ft per second (approximately, 600 miles per hour) and h = 45000 
ft. [2, p. 378], we obtain x = 0.24 in. and a/x = 49.95 (x can be determined from 
the Time-Length formulas for v and h above after eliminating tl). This is equivalent 
to a q value of almost 50 (a 25-window enlargement) in the above remark. Similarly, 
for the smaller and slower Beechcraft 1900C "turboprop," v = 450 ft. per second and 
h = 16000 ft. [2, p. 358], we arrive at x = 0.34 in. and a/x = 35.45. Naturally, we can 
still apply the method of enlargements in ? 2 to enlarge a by a factor of q according 
to 

a2 (qa)2 
xtl - at qx(qtl) - qa(qt) 

to magnify the measurement scale for both x and ti. 

4. A note on errors. From a practical point of view, the accuracy of results in 
both the Time-Time and the Time-Length method is limited by the sensitivity of the 
corresponding formulas to measurement errors. Thus without some additional effort 
(such as an adequate enlargement of a as mentioned in ?? 2 and 3 above) or without 
precise measuring instruments and methods with which to measure t1 and t2 (or x), 
only poor results can be expected. 

However, in the presence of partial information (i.e., if one of the two values v or 
h is known) it is possible to reduce the influence of measurement errors considerably 
by using formulas that make use of this partial information. For typical commercial 
aircrafts (v values of a few hundred feet per second and h values of several thousand 
feet) x is approximately equal to bvt/h. From this, we obtain 

v x 

h bt 
so that 

v/h btv - lx 
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Hence the relative error in v/h is equal to the relative measurement error in x. From 
this we can conclude that if the value of h is given (or measured exactly), then the 
relative error in the calculated value of v is approximately equal to the relative error 
in the measured value of x. Conversely, if v is known or measured exactly, then 

(h ) (h' h) 

where h denotes the exact value and h' the computed value. Thus 

Ax _ h-_h' Ah h Ah 
x h h'h ) h' h' h) 

Therefore, 

Ah h_ A h A 

h h (x ) (h )(x) 

Solving for Ah/h and taking absolute values, we obtain the following estimate for the 
relative error in h in terms of the relative error in x: 

smhl 

r 1 

AL;xI 

h 11 + Axlg z 

Hence, if v is known, the relative error in the value of h is also approximately the 
same as the relative measurement error for x. A similar analysis involving t1 or t2 
instead of x reveals essentially the same error behavior in the Time-Time case. 
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