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Abstract
For the rational difference equation

xn =
α +

∑m
i=1 aixn−i

β +
∑m

i=1 bixn−i
, n = 1 , 2 , . . .

we obtain sufficient conditions for the asymptotic stability of a unique
fixed point relative to an invariant interval. We focus on negative
values for the coefficients ai, a range that has not been considered
previously.
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1 Introduction.

Consider the higher order difference equation

xn = f(xn−1, . . . , xn−m), n = 1, 2, . . . (1)

where m is a non-negative integer and f : Rm → R is a given function. In the
literature on difference equations, problems involving the asymptotic stability
of fixed points of (1) in the case in which f is monotonic (non-increasing or
non-decreasing) in each of its arguments or coordinates arise frequently. In
particular, the general rational difference equation

xn =
α +

∑m
i=1 aixn−i

β +
∑m

i=1 bixn−i
, n = 1 , 2 , . . . (2)
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and various special cases of it have been studied extensively in the literature;
see, e.g., [3] and [6] for a discussion of (2) in its general form and [4] for a
discussion of the second order case. The bibliographies in these books contain
numerous references to additional results that discuss asymptotic stability for
various special cases.

In this paper we consider (2) in its general form above and give condi-
tions for the asymptotic stability of a fixed point relative to an invariant
interval that contains the fixed point. Our results concern a range of param-
eters, including negative coefficients, that extend those previously considered
elsewhere.

2 The Main Results.

We first quote a basic result from [1] as a lemma. This result concerns the
general equation (1) and was inpired by the study of pulse propagation in a
ring of excitable media in [8] which involved an equation of type (1).

Lemma 1. Let r0, s0 be extended real numbers where −∞ ≤ r0 < s0 ≤ ∞
and consider the following hypotheses:

(H1) f(u1, . . . , um) is non-increasing in each u1, . . . , um ∈ I0 where I0 =
(r0, s0] if s0 < ∞ and I0 = (r0,∞) otherwise;

(H2) g(u) = f(u, . . . , u) is continuous and decreasing for u ∈ I0;
(H3) There is r ∈ [r0, s0) such that r < g(r) ≤ s0. If r0 = −∞ or

limt→r+
0

g(t) = ∞ then we assume that r ∈ (r0, s0).

(H4) There is s ∈ [r, x∗) such that g2(s) ≥ s, where g2(s) = g(g(s)).
(H5) There is s ∈ [r, x∗) such that g2(u) > u for all u ∈ (s, x∗).
Then the following is true:
(a) If (H2) and (H3) hold then Equation (1) has a unique fixed point x∗

in the open interval (r, g(r)).
(b) Let I = [s, g(s)]. If (H1)-(H4) hold then I is an invariant interval

for (1) and x∗ ∈ I.
(c) If (H1)-(H3) and (H5) hold then x∗ is stable and attracts all solutions

of (1) with initial values in (s, g(s)).
(d) If (H1)-(H3) hold then x∗ is an asymptotically stable fixed point of

(1) if it is an asymptotically stable fixed point of the mapping g; e.g., if g is
continuously differentiable with g′(x∗) > −1.

2



Remarks. 1. If f is continuous on [s, g(s)]m, then the attractivity of x∗

in Lemma 1(c) also follows from the general Theorem 1.15 in [2]; see [1] for
additional comments in this regard.

2. Condition (H5) is equivalent to x∗ being an asymptotically stable fixed
point of the function g relative to the interval (s, g(s)); see Theorem 2.1.2 in
[6]. Hence Lemma 1(d) follows from Lemma 1(c).

Now we consider the rational difference equation (2) which we re-write
for notational convenience as follows:

xn =
α −

∑m
i=1 aixn−i

β +
∑m

i=1 bixn−i
(3)

where

α > 0 , ai, bi ≥ 0, i = 1 , 2 , . . . ,m, (4)

a =
m∑

i=1

ai > 0, b =
m∑

i=1

bi > 0, β > a.

We note that the special case where ai = 0 for all i is discussed in [1] and
[7] so we will not consider that case here. The functions f and g in Lemma
1 take the following forms for Eq.(3)

f(u1, . . . , um) =
α −

∑m
i=1 aiui

β +
∑m

i=1 biui

, g(u) =
α − au

β + bu
, u, ui ∈ R. (5)

Theorem 1. Assume that f, g are given by (5) and that conditions (4) hold.
If s = − α (β − a) /(a2 + αb) then:

(a) g(s) = α/a and s > −β/b;
(b) I = [s, g(s)] is an invariant interval for Eq.(3);
(c) Every solution of (3) with initial values in (s, g(s)) converges to the

fixed point

x∗ =
−(a + β) +

√
(a + β)2 + 4αb

2b
∈ (0, g(s)) ⊂ I.

Proof. (a) The first assertion is easily verified by substitution, and the
second follows from the observation that the value of s is an increasing func-
tion of a when β > a and the infimum of s is −β/b.
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(b) and (c) In Lemma 1, set r0 = −β/b and let s0 = α/a. For u ∈
(r0, s0] = I0, we have α − au ≥ 0 and β + bu > 0. Thus, g has a decreasing
numerator and an increasing denominator on I0, so g is decreasing on I0.
Similarly, if (u1, . . . , um) ∈ Im

0 then

α −
m∑

i=1

aiui≥ α − amax{u1, . . . , um} ≥ α − as0 = 0,

β +
m∑

i=1

biui≥ β + bmin{u1, . . . , um} > β + br0 = 0

so that f(u1, . . . , um) ≥ 0. Thus, for (u1, . . . , um) ∈ Im
0 , the numerator of f

is a decreasing function of uj and its denominator an increasing function of
uj for each j = 1, . . . ,m with ui fixed for i 6= j. Therefore, f is a decreasing
function on Im

0 in each of its coordinates. Therefore, Hypotheses (H1) and
(H2) are satisfied in Lemma 1, and (H3) also holds since for r = s ∈ (r0, 0)
it is true that

r = s < 0 <
α

a
= s0 = g(s) = g(r).

Further, the interval I is invariant because g is decreasing with g(g(s)) =
0 ∈ I so g(I) ⊂ I and Part (b) is established. To complete the proof of
Part (c), we now establish (H5). First, we may verify by a straightforward
calculation that x∗ is a solution of the equation g(u) = u so that x∗ is a fixed
point of (3). Also, under conditions (4) x∗ > 0 and x∗ < g(s) if and only if

−(a + β) +
√

(a + β)2 + 4αb

2b
<

α

a
iff

a
√

(a + β)2 + 4αb < 2αb + a(a + β) iff

a2(a + β)2 + 4a2αb < [2αb + a(a + β)]2, iff

0 < α2b2 + αβab

The last inequality is true under conditions (4), so it follows that x∗ ∈
(0, g(s)) ⊂ I. Since g is decreasing on I0 ⊃ I, we conclude that x∗ is the only
fixed point of g in I. Now the inequality g2(u) > u can be written as

α(β − a) + (αb + a2) u

(β2 + αb) + b (β − a)u
> u
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or equivalently, as

b(β − a)u2 + (β2 − a2)u + α(β − a) > 0.

If β > a then dividing by β − a gives

bu2 + (β + a)u− α < 0 . (6)

For this last inequality to hold, we need u ∈ (u− , u+)where u− and
u+ are the two roots of the equation

bu2 + (β + a)u − α = 0 .

But u+ = x∗ and

u− =
−(a + β)−

√
(a + β)2 + 4αb

2b
<

−(a + β)− (a + β)

2b
< −β

b
.

Therefore, (6) holds for u ∈ (−β/b, x∗) and in particular, for u ∈ (s, x∗).
Thus (H5) holds and by Lemma 1 x∗ is a stable attractor of all solutions in
(s, g(s)). This completes the proof.

Remarks. The function g above is in fact decreasing on (−β/b,∞) and
iterates of g starting from an initial value u0 ∈ (−β/b,∞) converge to x∗ if
β > a. This inequality assures that (−β/b,∞) is an invariant interval for g
in addition to (H5) holding on (−β/b, x∗) as shown in the proof of Theorem
1. However, the fixed point x∗ above will not in general attract solutions of
the higer order equation (3) that start from initial values outside the interval
I = [s, g(s)]. One reason for this is that (H1) does not hold if the numerator
of f can be negative, which is possible if some of the coordinates of the point
(u1, . . . , um) are large and positive.

For example, consider the following special case of Eq.(3):

xn =
1 − axn−2

1 + b1xn−1 + b2xn−2
(7)

where α = β = 1, b1, b2 > 0 and a1 = 0 so a = a2. The second order equation
(7) has a 2-cycle {p, q} if

p =
1 − ap

1 + b1q + b2p
and q =

1 − aq

1 + b1p + b2q
. (8)
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If, e.g.

b2 < b1 < 4b2
2 + b2 and a >

2b2√
b1 − b2

− 1

then the system of equations (8) has real solutions

p =
c ±

√
c2 − 4(b1 − b2)

2(b1 − b2)
, q = −p − 1 + a

b2
=

c ∓
√

c2 − 4(b1 − b2)

2(b1 − b2)
(9)

where c = (1 + a)(1 − b1/b2). In particular, if b2 = 1/4, b1 = 1 and a = 0.8,
then c = −5.4 and from (9) we obtain p ≈ −7.01 and q ≈ −0.19. Also, here
α/a = 1/0.8 = 1.25 and the invariant interval is I ≈ [−0.106, 1.25]. Choosing
at least one initial condition greater than 1.25, may cause a trajectory of (7)
to reach the 2-cycle {p, q}. With e.g. x0 = 0.4 and x−1 = 5 as initial values,
we obtain x1 ≈ −1.13 which is less than −β/b = −0.8, and after this the
solutions oscillate about the point of discontinuity −β/b.Of course, if both
initial conditions are in the interval of Theorem 1 then the corresponding
solution of (7) converges to the fixed point x∗ ≈ 0.45.
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