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a b s t r a c t

Non-autonomous, higher order difference equations of type

xn+1 =

k
i=0

aixn−i + gn


k

i=0

bixn−i


with real variables and parameters have appeared frequently in the literature. We extend
some recent results on semiconjugate factorization and reduction of order to cases where
characteristic polynomials of the linear expressions

k
i=0 aiui and

k
i=0 biui have complex

roots. This extension yields new results on boundedness and existence of periodic solutions
for equations of order 3 or greater.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Special cases of the following type of higher order difference equation have frequently appeared in the literature:

xn+1 =

k
i=0

aixn−i + gn


k

i=0

bixn−i


, n = 0, 1, 2, . . . . (1)

We assume here that k is a fixed positive integer and for each n, the function gn : R → R is defined on the real line. The
parameters ai, bi are fixed real numbers such that ak ≠ 0 or bk ≠ 0. Upon iteration, Eq. (1) generates a unique sequence of
points {xn} in R (its solution) from any given set of k + 1 initial values x0, x−1, . . . , x−k ∈ R. The number k + 1 is the order
of (1).

Special cases of Eq. (1) appeared in the classical economic models of the business cycle in the twentieth century in the
works of Hicks [1], Puu [2], Samuelson [3] and others; see [4, Section 5.1] for some background and references. Other special
cases of (1) occurred later in mathematical studies of biological models ranging from whale populations to neuron activity;
see, e.g., Clark [5], Fisher and Goh [6], Hamaya [7] and Section 2.5 in Kocic and Ladas [8].

The dynamics of special cases of (1) have been investigated by several authors. Hamaya uses Lyapunov and semicycle
methods in [7] to obtain sufficient conditions for the global attractivity of the origin for the following special case of (1)

xn+1 = αxn + a tanh


xn −

k
i=1

bixn−i


with 0 ≤ α < 1, a > 0 and bi ≥ 0. These results can also be obtained using only the contraction method in [9,10]; also
see [11] for a discussion of alternative methods. The results in [10] are used in [4, Section 4.3D], to prove the global asymp-
totic stability of the origin for an autonomous special case of (1) with ai, bi ≥ 0 for all i and gn = g for all n, where g is a
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continuous, non-negative function. The study of global attractivity and stability of fixed points for other special cases of (1)
appears in [12,13]; also see Section 6.9 in [8].

The second-order case (k = 1) has been studied in greater depth. Kent and Sedaghat obtain sufficient conditions in [14]
for the boundedness and global asymptotic stability of

xn+1 = cxn + g(xn − xn−1). (2)

In [15], El-Morshedy improves the convergence results of [14] for (2) and also gives necessary and sufficient conditions
for the occurrence of oscillations. The boundedness of solutions of (2) is studied in [16] and periodic and monotone
solutions of (2) are discussed in [17]. Li and Zhang study the bifurcations of solutions of (2) in [18]; their results include
the Neimark–Sacker bifurcation (discrete analog of Hopf).

A more general form of (2), i.e., the following equation

xn+1 = axn + bxn−1 + gn(xn − cxn−1) (3)

is studied in [19] where sufficient conditions for the occurrence of periodic solutions, limit cycles and chaotic behavior are
obtained using reduction of order and factorization of the above difference equation into a pair of equations of lower order.
These methods are used in [20] to determine sufficient conditions on parameters for occurrence of limit cycles and chaos in
those rational difference equations of the following type

xn+1 =
ax2n + bx2n−1 + cxnxn−1 + dxn + exn−1 + f

αxn + βxn−1 + γ
(4)

that can be reduced to special cases of (3).
In this paper, we consider the possible occurrence of complex roots for the characteristic polynomials associated with

the linear expressions
k

i=0 aiui and
k

i=0 biui in (1). Complex, non-real roots that are common to both polynomials may
occur when (1) has order 3 or greater (k ≥ 2), a situation that cannot occur in the second-order equations of [20] or [19].
The results obtained here extend certain results in [19] to equations of order 3 and greater for the first time.

2. Reduction of order

The following result is proved as Theorem 5.6 in [21]. Its generalization to algebras over fields is proved in essentially the
same way; see [22].

Lemma 1. Let gn : F → F be a sequence of functions on a field F . If for ai, bi ∈ F the polynomials

P(u) = uk+1
−

k
i=0

aiuk−i, Q (u) =

k
i=0

biuk−i

have a common, nonzero root ρ ∈ F then each solution {xn} of (1) in F satisfies

xn+1 = ρxn + tn+1 (5)

where the sequence {tn} is the unique solution of the equation:

tn+1 = −

k−1
i=0

pitn−i + gn


k−1
i=0

qitn−i


(6)

in F with initial values t−i = x−i − ρx−i−1 for i = 0, 1, . . . , k − 1 and coefficients

pi = ρ i+1
− a0ρ i

− · · · − ai and qi = b0ρ i
+ b1ρ i−1

+ · · · + bi

in F . Conversely, if {tn} is a solution of (6) with initial values t−i ∈ F then the sequence {xn} that it generates in F via (5) is a
solution of (1).

This result shows that Eq. (1) splits into the equivalent pair of Eqs. (5) and (6) provided that the polynomials P and Q
have a common nonzero root ρ. We call the pair of Eqs. (5) and (6) a semiconjugate factorization of (1). Eq. (6), whose order
is one less than the order of (1) is the factor equation and Eq. (5) which bridges the order (or dimension) gap between (1)
and (6) is the cofactor equation. Since Eq. (6) is of the same type as (1) applying Lemma 1 to (6) yields a further reduction of
order.

Lemma 2. Let k ≥ 2 and assume that the coefficients of (1) are complex, i.e., ai, bi ∈ C. Let F = C in Lemma 1 and suppose
that gn : C → C are complex functions for all n. If the polynomials P,Q in Lemma 1 have two common, nonzero roots ρ, γ ∈ C
then (6) has a factor equation

rn+1 = −

k−2
j=0

p′

jrn−j + gn


k−2
j=0

q′

jrn−j


(7)
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with coefficients

p′

j = γ j+1
+ p0γ j

+ · · · + pj and q′

j = q0γ j
+ q1γ j−1

+ · · · + qj

where the numbers pj, qj are as defined in Lemma 1 in terms of the root ρ . There are two cofactor equations

tn+1 = γ tn + rn+1 (8)
xn+1 = ρxn + tn+1 (9)

the second of which is just (5) from Lemma 1. The triangular system of three equations (7)–(9) is equivalent to (1) in the sense
of Lemma 1; i.e., they generate the same set of solutions.

Proof. Consider the polynomials associated with the factor equation (6), i.e.,

P1(u) = uk
+

k−1
j=0

pjuk−j−1, Q1(u) =

k−1
j=0

qjuk−j−1.

Let ρ be a root of P . We claim that (u − ρ)P1(u) = P(u). This is established by a straightforward calculation:

(u − ρ)P1(u) = (u − ρ)


uk

+

k−1
j=0

pjuk−j−1



= uk+1
− ρpk−1 +

k−1
j=0

(pj − ρpj−1)uk−j

where we define p−1 = 1 to simplify the notation. Using the definition of the numbers pi in Lemma 1 we obtain

pj − ρpj−1 = −aj

and further, since P(ρ) = 0 we obtain

ρpk−1 = ρ(ρk
− a0ρk−1

− · · · − ak−1)

= P(ρ) + ak
= ak

which completes the proof of the claim. A similar argument shows that if ρ is a root of Q then

(u − ρ)Q1(u) = Q (u).

Now, suppose that γ is also a common root of P and Q . If γ ≠ ρ then clearly P1(γ ) = Q1(γ ) = 0 so γ is a common root
of P1 and Q1. Otherwise, γ = ρ and ρ is a double root, hence a zero of the derivatives P ′ and Q ′, i.e.,

P ′(ρ) = Q ′(ρ) = 0.

In addition, we find that

P1(ρ) = ρk
+

k−1
j=0

(ρ j+1
− a0ρ j

− · · · − aj−1ρ − aj)ρk−j−1

= (k + 1)ρk
−

k−1
j=0

(k − j)ajρk−j−1

= P ′(ρ)

so that ρ = γ is a root of P1. Similarly, ρ = γ is also seen to be a root of Q1. Now applying Lemma 1 to (6) yields a factor
equation (7) and a cofactor (8).

Finally, the last assertion follows from Theorem 3.1 in [21]. �

The next result on factorization of polynomials is also needed.

Lemma 3. Suppose that γ , ρ ∈ C are roots of the polynomial c0um
+ c1um−1

+ · · · + cm−1u + cm of degree m ≥ 2 with
coefficients cj ∈ R. Then

m
j=0

cjum−j
= (u2

− (γ + ρ)u + γ ρ)

m−2
j=0

αjum−j−2 (10)
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where α0 = c0,

αj = cj + (γ + ρ)αj−1 − γ ραj−2, j = 1, 2, . . . ,m − 2, α−1
.
= 0, (11)

and the following equalities hold:

cm−1 + (γ + ρ)αm−2 − γ ραm−3 = 0, (12)
cm − γ ραm−2 = 0. (13)

Further, if γ and ρ are either both real or they are complex conjugates then the numbers αj, j = 1, 2, . . . ,m − 2 that satisfy the
recursions (11) are real and found to be:

αj =

j
i=0

γ i+1
− ρ i+1

γ − ρ
cj−i, if γ ≠ ρ (14)

αj =

j
i=0

(i + 1)ρ icj−i, if γ = ρ. (15)

Conversely, let
m

j=0 cju
m−j be a polynomial with real coefficients cj. If γ , ρ ∈ C and there are real numbers αj satisfying (11)–

(13) then (10) holds and γ , ρ are roots of
m

j=0 cju
m−j.

Proof. Assume that γ , ρ ∈ C are roots of
m

j=0 cju
m−j. Then this polynomial is evenly divided by the quadratic polynomial

(u − γ )(u − ρ) = u2
− (γ + ρ)u + γ ρ (16)

with a resulting quotient polynomial
m−2

j=0 αjum−j−2
; i.e., (10) holds. To determine the coefficients αj of the quotient,

multiply the polynomials on the right hand side of (10) and rearrange terms to obtain the identity

m
j=0

cjum−j
= α0um

+ (α1 − (γ + ρ)α0)um−1
+ (α2 − (γ + ρ)α1 + γ ρα0)um−2

+ · · · + (αm−2 − (γ + ρ)αm−3 + γ ραm−4)u2
+ (−(γ + ρ)αm−2 + γ ραm−3)u + γ ραm−2.

Now, matching coefficients on the two sides yields (11)–(13).
Next, if γ and ρ are either both real or they are complex conjugates then (γ + ρ) and γ ρ are both real. In this case, the

numbers αj defined by the recursions (11) are also real. Finally, (14) and (15) may be proved by induction. First, suppose
that γ ≠ ρ. For j = 1 we have

c1 +
γ 2

− ρ2

γ − ρ
c0 = c1 + (γ + ρ)α0 = α1

so (14) is true if j = 1. Suppose next that for 1 ≤ j ≤ m − 3, (14) is true for 1, 2, . . . , j. Then for j + 1

αj+1 = cj+1 + (γ + ρ)αj − γ ραj−1

= cj+1 + (γ + ρ)

j
i=0

γ i+1
− ρ i+1

γ − ρ
cj−i − γ ρ

j
i=1

γ i
− ρ i

γ − ρ
cj−i

= cj+1 + (γ + ρ)cj +
j

i=1


(γ + ρ)

γ i+1
− ρ i+1

γ − ρ
− γ ρ

γ i
− ρ i

γ − ρ


cj−i.

Since for each i = 1, . . . , j

(γ + ρ)(γ i+1
− ρ i+1) − γ ρ(γ i

− ρ i) = γ i+2
− ρ i+2

we obtain

αj+1 = cj+1 +
γ 2

− ρ2

γ − ρ
cj +

j
i=1

γ i+2
− ρ i+2

γ − ρ
cj−i

which verifies the induction step. If γ = ρ then for j = 1

c1 + 2ρc0 = c1 + 2ρα0 = α1
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so (15) is true if j = 1. Suppose next that for 1 ≤ j ≤ m − 3, (15) is true for 1, 2, . . . , j. Then for j + 1

αj+1 = cj+1 + 2ραj − ρ2αj−1

= cj+1 + 2ρ
j

i=0

(i + 1)ρ icj−i − ρ2
j

i=1

iρ i−1cj−i

= cj+1 + 2ρcj +
j

i=1

[2(i + 1)ρ i+1
− iρ i+1

]cj−i

= cj+1 + 2ρcj +
j

i=1

(i + 2)ρ i+1cj−i

which verifies the induction step.
Conversely, if γ , ρ ∈ C and αj ∈ R satisfy (11)–(13) then by the definition of αj the quadratic polynomial (16) dividesm
j=0 cju

m−j evenly. Therefore, γ , ρ are roots of
m

j=0 cju
m−j. �

If the coefficients ai, bi in (1) are real and a common root ρ of P and Q is complex then these polynomials also share
another complex root, namely, the conjugate ρ̄; thus, Lemma 2 is applicable. However, if the functions gn : R → R are real
functions then a direct application of Lemma 2 is problematic since the coefficients pi, qi of the factor equation (6) are
complex. The next result shows that this difficulty does not actually arise since the coefficients p′

i, q
′

i of the secondary factor
equation (7) are in fact, real and furthermore, the two complex cofactor equations in Lemma 2 were combined into a single
second-order cofactor equation in R.

Theorem 4. Let k ≥ 2 in (1) and assume that the coefficients ai, bi are all real and gn : R → R for n ≥ 0. If the polynomials
P,Q in Lemma 1 have a common complex root ρ = µeiθ ∉ R then the following statements are true.

(a) The coefficients p′

j, q
′

j of the factor equation (7) in Lemma 2 are real numbers that may be written in terms of the original
coefficients ai, bi of (1) as

p′

j = µj+1 sin(j + 2)θ
sin θ

−
1

sin θ

j
m=0

am µj−m sin(j − m + 1)θ, (17)

q′

j =
1

sin θ

j
m=0

bm µj−m sin(j − m + 1)θ (18)

for j = 0, 1, . . . , k − 2.
(b) The pair of first-order cofactor equations in Lemma 2with complex coefficients ρ and γ = ρ̄ combine into one equivalent,

second-order, non-homogeneous linear equation with real coefficients

xn+1 − 2µ cos θ xn + µ2xn−1 = rn+1 (19)

where the sequence {rn} is a solution of the factor equation (7) in R.
(c) The system of Eqs. (7) and (19) is equivalent to (1); i.e., the set of solutions of (19) with {rn} satisfying (7) is identical with

the set of solutions of (1).

Proof. (a) Let ρ = µeiθ = µ cos θ + iµ sin θ and γ = ρ̄ be complex conjugate roots of both P and Q with sin θ ≠ 0 since
ρ ∉ R. Recall from the proof of Lemma 2 that

P(u) = (u − ρ)P1(u), Q (u) = (u − ρ)Q1(u).

Applying the same argument to the polynomials P1 and Q1 using their common root ρ̄ yields

P(u) = (u − ρ)(u − ρ̄)P2(u) = (u2
− (ρ + ρ̄)u + ρρ̄)P2(u),

Q (u) = (u − ρ)(u − ρ̄)Q2(u) = (u2
− (ρ + ρ̄)u + ρρ̄)Q2(u)

where

P2(u) = uk−1
−

k−2
j=0

p′

ju
k−j−2, Q2(u) =

k−2
j=0

q′

ju
k−j−2.

Applying Lemma 3 to each of P and Q we obtain (17) and (18) from (14) since for every positive integerm,

γ m
− ρm

γ − ρ
=

−µm(eiθm − e−iθm)

−µ(eiθ − e−iθ )
= µm−1 sinmθ

sin θ
.
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(b) Eliminate tn+1 and tn from (8) using (9) to obtain

xn+1 − ρxn = γ (xn − ρxn−1) + rn+1, or:
xn+1 − (ρ + γ )xn + ργ xn−1 = rn+1

which is the same as (19). Now if {xn} is a solution of (19) with a given sequence {rn} then by the preceding argument, the
sequence {xn − ρxn−1} satisfies (8). Further, with tn = xn − ρxn−1 it is clear that {xn} satisfies (9) so that the sequence of
pairs {(tn, xn)} is a solution of the system of Eqs. (8) and (9). Conversely, if {(tn, xn)} is a solution of the system then the above
construction shows that {xn} satisfies (19). Therefore, the same set of solutions {xn} is obtained; i.e., the system is equivalent
to the second-order equation.

(c) The equivalence of the system of Eqs. (7) and (19) to (1) is a consequence of Theorem 3.1 in [21]. �

Remarks. 1. Theorem 4 shows that the existence of a common complex (non-real) root ρ for the polynomials P,Q leads to
a reduction of order for (1) over the real numbers. Since the coefficients are real, the complex root requires the cofactor
equation to have order two; i.e., the order reduction is type-(k − 1, 2) in the language of [21]. By contrast, over the
field of complex numbers C (thinking of the real coefficients as special complex numbers) this reduction is equivalent to
repeated type-(k, 1) reductions as outlined in Lemmas 1 and 2.

2. The parameters aj, bj, j = k − 1, k which affect ρ but do not appear in (17) and (18) are not free. They satisfy (12) and
(13) in Lemma 3 and for the complex conjugate pair of roots in Theorem 4 they take the forms

ak = p′

k−2µ
2, ak−1 = p′

k−3µ
2
− 2p′

k−2µ cos θ; (20)

bk = q′

k−2µ
2, bk−1 = q′

k−3µ
2
− 2q′

k−2µ cos θ. (21)

Here we assume that p′

−1 = 1 and q′

−1 = 0 when k = 2.

3. Boundedness and periodicity

In this section we use reduction of order and factorization methods of the preceding section to prove the existence
of oscillations in the real solutions of certain difference equations of type (1). Convergence and global attractivity issues
regarding this equation are discussed in [22] in at a much more general level.

We quote the next result from the literature as a lemma; see [19] or Section 5.5 in [21]. This result pertains to Eq. (9)
whose solution may be written in the following way:

xn = ρnx0 +

n
j=1

ρn−jtj. (22)

Lemma 5 (Periodicity, Limit Cycles, Boundedness). Let p be a positive integer and let ρ ∈ C with ρ ≠ 0.
(a) If for a given sequence {tn} of complex numbers Eq. (22) has a solution {xn} of period p then {tn} is periodic with period p.
(b) Let {tn} be a periodic sequence of complex numbers with prime (or minimal) period p and assume that ρ is not a p-th root

of unity; i.e., ρp
≠ 1. If {τ0, . . . , τp−1} is one cycle of {tn} and

ξi =
1

1 − ρ

p−1
j=0

ρp−j−1τ(i+j)mod p i = 0, 1, . . . , p − 1 (23)

then the solution {xn} of Eq. (22) with x0 = ξ0 and t1 = τ0 has prime period p and {ξ0, . . . , ξp−1} is a cycle of {xn}.
(c) If |ρ| < 1 and {tn} is a sequence that converges to a p-cycle then the sequence {xn} that is generated by (22) converges to

a p-cycle. If {τ0, . . . , τp−1} is one cycle of the limit of {tn} then {ξ0, . . . , ξp−1} is a cycle of the limit of {xn} where ξi is defined
by (23).

(d) If |ρ| < 1 and {tn} is a bounded sequence with |tn| ≤ M for all n then the sequence {xn} that is generated by (22) is also
bounded and there is a positive integer N such that

|xn| ≤ |ρ| +
M

1 − |ρ|
for all n ≥ N.

Lemma 5 and Theorem 4 imply the following result.

Corollary 6. Let k ≥ 2 in (1) and assume that the coefficients ai, bi are real and gn : R → R for n ≥ 0. If the polynomials P,Q
in Lemma 1 have a common complex root ρ = µeiθ ∉ R then the following statements are true.

(a) If ρ is not a p-th root of unity then for every periodic solution of (7) of prime period p (1) has a periodic solution of prime
period p that is given by (23).

(b) If modulus |ρ| < 1 then for every limit cycle (attracting a periodic solution) of (7) of period p (1) has a limit cycle of
period p.

(c) If modulus |ρ| < 1 then for every bounded solution of (7) the corresponding solution of (1) is bounded.
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Proof. We prove only (a) since the proofs of (b) and (c) use similar reasoning using Lemma 5. Recall that the second-order
cofactor equation (19) in Theorem4 is equivalent to the pair of first-order cofactor equations (8) and (9). Let {rn} be a solution
of (7) having prime period p. If ρ is not a p-th root of unity then by Lemma 5(b) Eq. (8) has a solution {tn} in C with prime
period p. Another application of Lemma 5 to Eq. (9) shows that the solution {xn} of (19) in R and hence, of (1) also has prime
period p. �

It is worth pointing out that if |ρ| ≥ 1 then the periodic solution of (1) in Corollary 6(a) is not attracting even if the
corresponding solution {rn} of (7) is attracting. Therefore, such solutions may be difficult to identify numerically. Only when
|ρ| < 1 and the homogeneous part of the cofactor equation (19) fades away do the solutions of the factor equation (7)
determine the asymptotic behavior of solutions of (1).

In closing, we discuss the solutions of a third-order version of (1), i.e., k = 2 to illustrate the various aspects of the
preceding results. Consider the autonomous difference equation

xn+1 = a0xn + a1xn−1 + a2xn−2 + g(xn + b1xn−1 + b2xn−2) (24)

where a0, a1, a2, b1, b2 ∈ R and g : R → R. If a2 = b2 = 0 then (24) reduces to an autonomous version of the second-order
equation (3). We assume here that b2 ≠ 0.

The polynomial Q of (24) is the quadratic u2
+ b1u + b2 whose roots are complex if and only if b21 < 4b2. These complex

conjugate roots are shared by the polynomial P if and only if conditions (20) hold. Since k = 2 we calculate

p0 = ρ − a0, p1 = ρ2
− a0ρ − a1

q0 = 1, q1 = ρ + b1
p′

0 = ρ̄ + p0 = −b1 − a0, q′

0 = 1.

Note that ρ + ρ̄ = −2µ cos θ = −b1 and ρρ̄ = µ2
= b2. Thus conditions (20) in this case are

a1 = b1(a0 + b1) + b2, a2 = −b2(a0 + b1). (25)

We may alternatively obtain (25) using (12) and (13). If b21 < 4b2 and conditions (25) hold then (24) is equivalent to the
pair of equations

rn+1 = (a0 + b1)rn + g(rn), (26)
xn+1 = −b1 xn − b2xn−1 + rn+1 (27)

for n ≥ 0 where the initial value of (26) is r0 = x0 + b1 x−1 + b2x−2 for a given triple of real initial values x0, x−1, x−2 for
(24).

Next, suppose that g is a rational function of the following type

g(u) =
A
u

+ B + Cu, A, B, C ∈ R, A ≠ 0. (28)

With this g the difference equation is an example of a third-order rational recursive equation. A second-order version of
this equation is a rational equation of type (4) that is studied in [20].

If B = 0 and C = −a0 − b1 then the factor equation (26) reduces to

rn+1 =
A
rn

. (29)

Every solution of (29) has period 2 with cycles {r0, A/r0} as long as r0 ≠ 0. Since ρ ≠ ±1, corresponding to each solution
of (29) with period two, the solution of (24) whose triple of initial values (x−2, x−1,x0) is not on the plane u+b1v+b2w = 0
(so that r0 ≠ 0) has period 2. This plane which passes through the origin is in fact the singularity (or forbidden) set of (24)
in this case. The aforementioned periodic solutions of (24) have cycles {ξ0, ξ1} that we calculate in two stages using (23).
First, for (8) with γ = ρ̄ we calculate the cycles {τ0, τ1} in C as

τ0 =
r0 + ρ̄A/r0
1 − ρ̄2

, τ1 =
ρ̄r0 + A/r0
1 − ρ̄2

.

Next, using {τ0, τ1} in (23) we calculate the cycles {ξ0, ξ1} for (24) as

ξ0 =
ρτ0 + τ1

1 − ρ2
=

ρr0 + ρρ̄A/r0 + ρ̄r0 + A/r0
(1 − ρ2)(1 − ρ̄2)

=
(1 + ρρ̄)A/r0 + (ρ + ρ̄)r0
1 − (ρ2 + ρ̄2) + ρ2ρ̄2

.

Since ρρ̄ = b2 and ρ + ρ̄ = −b1 it follows that

ρ2
+ ρ̄2

= (ρ + ρ̄)2 − 2ρρ̄ = b21 − 2b2
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and thus,

ξ0 =
(1 + b2)A/r0 − b1r0
1 − (b21 − 2b2) + b22

=
A(1 + b2) − b1r20
r0[(1 + b2)2 − b21]

.

As expected, ξ0 ∈ R. A similar calculation yields

ξ1 =
r20 (1 + b2) − Ab1
r0[(1 + b2)2 − b21]

.

If 0 < b2 < 1 then |ρ| = µ =
√
b2 < 1. In this case, every solution of (24) converges to a 2-cycle ξ0 and ξ1. These limit

cycles depend on r0 and thus, on the initial values x−2, x−1,x0 in the sense that all initial points on the planeu+b1v+b2w = r0
converge to the same limit cycle. However, if b2 ≥ 1 then other types of solutions, including unbounded solutions are
possible for (24) that are driven by the homogeneous part of (27). To observe the 2-cycles numerically it is necessary to use
the initial values

x−2 = ξ0, x−1 = ξ1, x0 = r0 − b1ξ1 − b2ξ0 = ξ0.

Going in a different direction, if the function g in (28) has a 3-cycle then as is well-known, it has cycles of all possible
lengths. In this case, if 0 < b2 < 1 then (24) also has cycles of all possible lengths. A set of parameter values that imply this
situation is A = 1, C = 1 − a0 − b1 and B = −

√
3; see [20]. In this case, (26) is

rn+1 =
1
rn

−
√
3 + rn

and its 3-cycle is found to be

σ0 =
2

√
3


1 + cos

π

9


, σ1 = g(σ0), σ2 = g(σ1).

In summary, we extended a number of previous results on the semiconjugate factorizations of second-order equations
of type (1) to cases of order three and greater. Since in this case the associated polynomials of (1) have degree 3 or greater
a mix of real and complex roots may occur. We showed that the decomposition of (1) into lower-order equations via a
complex root and its conjugate yields a factor–cofactor pair in the sense described in Section 5.6 of [21] within the real
number system thus bypassing the need for complex coefficients. We used this factorization to study boundedness and the
occurrence of periodic solutions and limit cycles for (1).
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