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Global behaviours of rational difference equations of orders
two and three with quadratic terms

H. Sedaghat*

Department of Mathematics, Virginia Commonwealth University, Richmond, VA, USA

(Received 10 March 2008; final version received 13 March 2008 )

We determine the global behaviours of all solutions of the following rational difference
equations

xnþ1 ¼
axn21

xnxn21 þ b
; xnþ1 ¼

axnxn21

xn þ bxn22

; a; b . 0:

These equations are related to each other via semiconjugate relations that also let us
reduce them to first-order equations. Using this approach, we determine the forbidden
sets of each equation explicitly and show that for initial values outside the forbidden
sets, their solutions may converge to 0, or to a positive fixed point, or they may be
periodic of period 2 or unbounded. In some cases, different types of solutions coexist
depending on the initial values.

Keywords: rational; quadratic; second-order; third-order; semiconjugate; periodic

2000 Mathematics Subject Classification: 39A10; 39A11

1. Introduction

Rational difference equations containing polynomial terms of degree 2 (or quadratic

terms) either in their numerators or their denominators have not not been widely or

systematically studied, although some such equations have been discussed previously in

the literature; see Ref. [5] and the references listed therein. In particular, different types of

second-order rational equations with quadratic terms are discussed in Refs. [4,6,7].

The equations that we study in this paper belong to this category. Specifically, we

investigate the global behaviour of all solutions of the second-order rational difference

equation

xnþ1 ¼
axn21

xnxn21 þ b
; a; b . 0; x0; x21 [ R; ð1Þ

and also of the third-order equation

xnþ1 ¼
axnxn21

xn þ bxn22

; a; b . 0; x0; x21; x22 [ R: ð2Þ
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These equations are related in the sense that after extracting a first-order linear

equation from (2), it reduces to (1). This process is a type of semiconjugate factorisation;

our discussion of semiconjugates here is self-contained, but [9,10] contain additional

details if desired. Equation (1) can further be reduced to a (nonhomogeneous) linear

difference equation after a first-order rational equation is factored out of it. Using these

procedures, we determine the forbidden sets (see Ref. [8]) of singular points of (2) and (1)

explicitly and give global characterisations of all solutions of these equations.

2. The second-order equation

The results in this section update and extend those in Ref. [2] (from non-negative solutions

to all real solutions) using a different approach in proofs that is based on order reduction.

For reference, we observe that if {xn} is any solution of equation (1) then so is {2xn};

further, each of the quadrants (0, 1)2 and (21, 0)2 (i.e. first and third quadrants of R2,

respectively) is invariant under (1).

Equation (1) has an equivalent, one parameter representation which is slightly easier to

work with. Substituting xn=
ffiffiffi
b

p
for xn and c for a/b in (1) gives the equivalent equation

xnþ1 ¼
cxn21

xnxn21 þ 1
: ð3Þ

If c # 1 then the origin is the unique fixed point of (3). If c . 1 then in addition to the

origin (3) also has a pair of fixed points

�x^ ¼ ^
ffiffiffiffiffiffiffiffiffiffiffi
c2 1

p
:

It is relevant at this point to mention that the linearization of (3) at each of these fixed

points has two real eigenvalues 1/c, 21. Therefore, the nonzero fixed points are

nonhyperbolic. Further, the function

f ðu; vÞ ¼
cv

uvþ 1
; ð4Þ

that defines our equation is decreasing in u and increasing in v. The following general

result from Ref. [3] outlines the kinds of behaviour we can expect of the solutions of

equation (3).

Lemma 1. Let I be a set of real numbers and let F:I £ I ! I be a function F(u, v) that

decreases in u and increases in v. Then for every solution {xn} of the equation

xnþ1 ¼ Fðxn; xn21Þ;

the subsequences x2n of even terms and x2nþ1 of odd terms do exactly one of the following:

(1) they are both increasing;

(2) they are both decreasing; and

(3) eventually, one of them is increasing and the other is decreasing.

The next result is needed in the sequel; its straightforward proof is omitted.
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Lemma 2. (a) If yn satisfies the first-order, nonautonomous equation

yn ¼ rnyn21;

where rn is a given sequence of real numbers, then

yn ¼ y0r1r 2 . . . rn:

(b) If yn satisfies the first-order, nonautonomous equation

yn ¼
sn

yn21

;

where y0 – 0 and sn is a given sequence of nonzero real numbers, then

y2n ¼
y0s2s4 . . .s2n

s1s3 . . .s2n21

; y2nþ1 ¼
s1s3 . . .s2nþ1

y0s2s4 . . .s2n

:

We now consider solutions of (3) from initial points (x0, x21) other than (0,0) that are

located on one of the coordinate axes. These solutions have a different global character

than those generated by initial points off the coordinate axes.

Lemma 3. Let c . 0 and the initial values satisfy

x0x21 ¼ 0; x0 þ x21 ¼ d – 0: ð5Þ

Then the terms of a solution of (3) alternate between 0 and cnd. In particular, if c . 1,

then solutions satisfying (5) are unbounded, and if c ¼ 1 then such solutions are periodic.

Proof. If x0 ¼ d, x21 ¼ 0 then from (3) it follows that x2n21 ¼ 0 for all n $ 1. For the even

terms, we have

x2n ¼
cx2n22

x2n21x2n22 þ 1
¼ cx2n22 ¼ c2x2n24 ¼ · · · ¼ cnx0 ¼ cnd;

as desired. The case x0 ¼ 0 which results in the even-indexed terms being zeros is proved

similarly.

A key feature of (1) is that off the coordinate axes it is reducible to a linear

nonhomogeneous equation. If x0 x21 – 0 and we multiply both sides of (1) by xn and

substitute

1

tn
¼ xnxn21; ð6Þ

in the result, then we obtain the first-order, linear nonhomogeneous equation

tnþ1 ¼
1

c
tn þ

1

c
; t0 ¼

1

x0 x21

: ð7Þ
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The explicit solution of (7) is obtained by a straightforward induction argument as

tn ¼

1þbc2n

c21
; b8 c21

x0x21
2 1; if c – 1

nþ a; a8 1
x0x21

; if c ¼ 1

8<
: ; n ¼ 0; 1; 2; . . . ð8Þ

Before discussing the solutions of (3), we determine the subset of R2 that must be

excluded. This ‘forbidden set’ is in fact the set of all pre-images of the complement of the

domain of the function f in (4) under the unfolding of f (i.e. the mapping (u, v) ! [f(u, v),u]

of R2). Such pre-images make up the backward orbits of points in the complement of

the domain under the unfolding of f, so that if the initial values are chosen outside the

forbidden set then the solution will never enter that set. The next result shows in particular

that for equation (3) the forbidden set is contained entirely in the interiors of the second

and fourth quadrants of R2. A

Lemma 4. The forbidden set F1 of equation (3) is a sequence of hyperbolas as follows:

F1 ¼
[1
n¼0

{ðu; vÞ : uv ¼ 2mn}; ð9Þ

where for n ¼ 0,1,2, . . . ,

mn ¼

ðc21Þ
c nþ121

; if c – 1

1
nþ1

; if c ¼ 1

8<
:

Proof. We show that starting from an initial point (y0, y21) with y0y21 ¼ 21, the

backward orbits of (3) stay in F1. This fact is established by first noting that for the

backward orbits, the product reciprocals 1/(ykyk21) ¼ sk satisfy the equation

sk ¼ g21ðsk21Þ; gðtÞ ¼
1

c
t þ

1

c
; s0 ¼

1

y0y21

¼ 21:

This is true because product reciprocals satisfy equation (7) for the forward orbits of (3).

Next, the inverse of g is easily calculated as g 21(s) ¼ cs 2 1 and by a straightforward

induction

1

ykyk21

¼ sk ¼ g2kðs0Þ ¼ 2
Xk
j¼0

c j:

It follows that the points (yk, yk21) are on the hyperbolas (9).

We note that the closure F̄1 consists of F1 together with the two coordinate axes.

Lemma 3 discusses solutions of (3) that start from a point on the coordinate axes. The next

result considers the remaining solutions of (3). A

Theorem 1. Assume that (x0, x21) � F̄1 and let {xn} be the solution of (3) starting from

this initial point.

(1) If c # 1 then {xn} converges to 0.

(2) If c . 1 then {xn} converges to a cycle {j0, j1} of period 2 (not necessarily prime)
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that satisfies the relation

j0j1 ¼ c2 1;

i.e. period 2 solutions are located on the hyperbola uv ¼ c 2 1 inR2. Further, if b

is as in (8) and

Pn ¼
Yn
k¼1

1þ bc22kþ1

1þ bc22k
; ð10Þ

then P ¼ limn!1Pn [ (0,1). Furthermore, j0 ¼ j1 ¼ ^
ffiffiffiffiffiffiffiffiffiffiffi
c2 1

p
¼ �x^ if and

only if

x0P ¼ �x^; ð11Þ

where it is x̄þ or x̄2 depending on whether x0P . 0 or x0P , 0, respectively. Thus,

exceptional solutions from initial values satisfying (11) converge to x̄^.

Proof. (a) Let c , 1 and first assume that x0x21 . 0 in which case (7) implies that

xn xn21 ¼ (1/tn) . 0 for all n. We may also assume that x0, x21 . 0 so that xn . 0 for all n

(the case x0, x21 , 0 is treated in essentially the same way or made redundant by noticing

that the purely negative solutions are in one to one correspondence with the purely positive

ones and with the same absolute values). From (3), we have

xnþ1 ¼
cxn21

xnxn21 þ 1
, cxn21:

Proceeding as in the proof of Lemma 3, it follows that the even and odd terms satisfy

the relations:

x2n , cn x0; x2n21 , cn x21:

It follows that xn ! 0 as n ! 1. Next, consider the case x0x21 , 0. In this case, since the

negative fixed point –1/(1 2 c) of (7) is repelling, every non-constant solution of (7) will

approach1 or21 monotonically. Hence xnxn21 ¼ (1/tn) ! 0 and there is k $ 1 such that

xnxn21 . 21 for all n . k. For the constant solution tn ¼ 21/(1 2 c) of (7) we have

xnxn21 ¼ 2(1 2 c) so xn xn21 . 21 for all n. Thus xn xn21 þ 1 . 0 for all sufficiently large

n and for all such n,

jxnþ1j ¼
cjxn21j

xnxn21 þ 1
, cjxn21j:

Now, the preceding argument can be applied again with minor modifications to

complete the proof for the case c , 1.

Next, let c ¼ 1. In this case, from either (7) or (8) we see that tn ! 1 as n ! 1 so

that there is k $ 1 such that xnxn21 ¼ (1/tn) . 21 for all n . k. Thus as argued in the

case c , 1, we may assume without loss of generality that x0, x21 . 0. From (6) and (8),
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we infer that {xn} satisfies the first-order rational equation

xn ¼
1=tn
xn21

¼
1

ðnþ aÞxn21

; a ¼
1

x0 x21

. 0: ð12Þ

By Lemma 2(b), the even and odd terms of the sequence generated by the iteration of

(12) may be written as

x2n ¼ x0
ð1þ aÞð3þ aÞ · · · ð2n2 1þ aÞ

ð2þ aÞð4þ aÞ · · · ð2nþ aÞ
; x2nþ1 ¼ u0

ð2þ aÞð4þ aÞ · · · ð2nþ aÞ

ð3þ aÞ · · · ð2nþ 1þ aÞ
;

where u0 ¼ 1/[x0(1 þ a)]. To show that x2n ! 0 it suffices to show that

Qk ¼
1þ a

2þ a

� �
3þ a

4þ a

� �
· · ·

2k2 1þ a

2k þ a

� �
! 0 as k!1: ð13Þ

A similar argument holds for x2nþ1 ! 0. Equation (13) is true if lnQk ! 21, or

equivalently if ln(1/Qk) ! 1; i.e.

X1
j¼1

ln
2jþ a

2j2 1þ a

� �
¼ 1: ð14Þ

Equality (14) is true by a comparison test given that
P1

j¼11=ð2jþ aÞ ¼ 1 and

lim
j!1

ln½ð2jþ aÞ=ð2j2 1þ aÞ�

1=ð2jþ aÞ
¼ 1:

(b) First, from either (7) or (8) we see that tn ! 1/(c 2 1) . 0 as n ! 1. Hence

xnxn21 ¼ (1/tn) . 0 for all sufficiently large n and as in the case c ¼ 1 we may assume

without loss of generality that x0, x21 . 0. This implies that b [ ( 2 1, 1) in (8) with

b – 0 for non-constant solutions. By Lemma 2(b), (8) and (10),

x2n ¼ x0
Yn
k¼1

1=t2k
1=t2k21

� �
¼ x0

Yn
k¼1

1þ bc22kþ1

1þ bc22k
¼ x0Pn:

Clearly, x2n converges to a finite, positive limit if Pn does. To prove the convergence of

Pn, it is sufficient to show that

X1
k¼1

ln
1þ bc22kþ1

1þ bc22k

� �����
���� , 1: ð15Þ

Since the logarithms in the above sum are negative if and only if b , 0, (15) is proved

by considering two cases and using the same comparison test in each case. For b , 0, the

series in (15) is finite because the series
P1

k¼1bc
22k converges for c . 1 and

lim
k!1

ln½ð1þ bc22kþ1Þ=ð1þ bc22kÞ�

bc22k
¼ c2 1:

For b , 0, the same argument using the convergent series
P1

k¼1ð2bÞc22k establishes

the finiteness of the series in (15). Also, a similar argument establishes that x2nþ1

H. Sedaghat220
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converges to a finite positive limit. Thus, there are j0,j1 . 0 such that

lim
n!1

x2n ¼ j0; lim
n!1

x2nþ1 ¼ j1:

Further, the values j0, j1 are related as follows:

j0j1 ¼ lim
n!1

x2nþ1x2n ¼ lim
n!1

1

t2nþ1

¼ c2 1:

From the preceding argument, we also infer that Pn converges to a positive finite

limit P and

x2n ¼ x0Pn; x2nþ1 ¼
1

x0Pnt2nþ1

:

Taking limits as n ! 1 and setting j0 ¼ j1 completes the proof. A

Remarks.

(1) It may be worth mentioning at this stage that for c . 1, the hyperbola uv ¼ c 2 1

is just the invariant level set containing the fixed points x̄^ of equation (7) with

respect to the semiconjugate link (6). Theorem 1 states in particular that this

invariant set is attracting, and further, the solutions of (3) within the invariant set

itself are 2-periodic (except for the constant solutions �x^). For general remarks

about semiconjugate geometry see Ref. [9].

(2) To gain a better understanding of the effects of the quadratic term in (3), at least

for the non-negative solutions, let us consider what happens when the term xnxn21

in the denominator is made linear by dropping either xn or xn21. The resulting

equations are still second-order and of the variety discussed in Ref. [8]:

ðaÞ xnþ1 ¼
cxn21

xn þ 1
; ðbÞ xnþ1 ¼

cxn21

xn21 þ 1
: ð16Þ

The next result about equations (16) suggests that the occurrence of xn in equation (3)

promotes oscillatory and unbounded behaviour in that equation whereas by contrast the

occurrence of xn21 in the denominator of (3) tends to curb unboundedness and oscillations.

The proofs of some of the statements below are straightforward; for proofs of the rest and

some related results, see Refs. [1,8].

Proposition.

(1) If c , 1 then the origin is a stable global attractor of all non-negative solutions of

each of the equations in (16).

(2) If c ¼ 1 then all non-negative solutions of (16)(a) satisfying (5) are periodic with

either even or odd terms 0, whereas all positive solutions (that are not strictly

decreasing) converge to a periodic solution with alternating 0 and positive terms.

For Equation (16)(b), all non-negative solutions converge to 0, whether or not

they satisfy (5).

(3) If c . 1 then both equations in (16) have the same positive fixed point x̄ ¼ c 2 1.

Locally, for (16)(a) x̄ is a saddle point and for (16)(b) x̄ is a stable node.

(4) If c . 1 then all positive solutions of (16)(b) converge to x̄, whereas all solutions
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of (16)(a) that do not start from an initial point on the stable manifold of �x are

unbounded and oscillatory, with the subsequences of even terms and odd terms

one converging to 0 and the other to 1.

(5) If c . 1 then all non-negative solutions of (16)(a) satisfying (5) have their

subsequences of even terms and odd terms one being0 and the other converging to1.

The non-negative solutions of (16)(b) satisfying (5) have their subsequences of even

terms and odd terms one being 0 and the other converging to �x. In particular, (16)(b)

has no unbounded, non-negative solutions.

3. The third-order equation

We now consider the solutions of the third-order equation (2). This equation is

homogeneous of degree 1 with respect to the multiplicative group of nonzero real numbers

so we can use the idea in Ref. [10]. Dividing both sides of (2) by xn and rearranging terms

gives

xnþ1

xn
¼

axn21

xn þ bxn22

¼
axn21=xn22

ðxn=xn21Þðxn21=xn22Þ þ b
:

Now substituting rn ¼ xn/xn21 in the above gives

rnþ1 ¼
arn21

rnrn21 þ b
; xn ¼ rnxn21: ð17Þ

We recognise the first of the above equations as equation (1); thus the ratios of

consecutive terms of (2) satisfy (1). The second equation in (17), which is linear of order 1,

has already been discussed in Lemma 2(a). The initial values are determined by those of

equation (2) as

r0 ¼
x0

x21

; r21 ¼
x21

x22

if x21x22 – 0:

Equation (2) has no isolated fixed points and in particular, its domain does not include

the origin. For intial points (x0, x21, x22) [ R3, (2) is in fact undefined on the plane

x0 ¼ 2bx22. In what follows, it is convenient to state the analogs of (7) and (8) for

equation (1):

tnþ1 ¼
b

a
tn þ

1

a
; t0 ¼

1

r0r21

¼
x22

x0
: ð18Þ

The explicit solution of (18) is obtained by a straightforward induction argument as

tn ¼
u b

a

� �n
þ 1

a2b
; u8 x22

x0
2 1

a2b
; if a – b

n
b
þ a; a8 x22

x0
; if a ¼ b

8<
: ; n ¼ 0; 1; 2; . . . ð19Þ

Lemma 5. The forbidden set F2 of (2) is a sequence of planes containing the origin inR
3 as

follows:

F2 ¼
[1
n¼0

{ðu; v;wÞ : u ¼ 2gnw}< {ðu; v;wÞ : u ¼ 0}< {ðu; v;wÞ : v ¼ 0}; ð20Þ

H. Sedaghat222
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where for n ¼ 0, 1, 2, . . . ,

gn ¼

ða2bÞ

ða=bÞnþ121
; if a – b

b
nþ1

; if a ¼ b

8<
:

Proof. We note that xnþ1 ¼ 0 if and only if xnxn21 ¼ 0 and xn þ bxn22 – 0. Thus as long

as the latter inequality is true and xn – 0, then xnþ1 – 0. Next, suppose that none of the

initial values is zero. Then, we see that xnþ1 cannot be defined if xn þ bxn22 ¼ 0. This is

true if and only if

2b ¼
xn

xn22

¼
xn

xn21

xn21

xn22

¼ rnrn21: ð21Þ

Now, we proceed as in the proof of Lemma 4 but use the inverse of (18) with

s0 ¼ 21/b since the denominator of (1) is zero when r0r21 ¼ 2b. The straightforward

calculations show that starting from nonzero inital values, (21) holds if and only if

x0 ¼ 2gnx22 for some n.

Next, suppose that x0 x21 – 0. If x22 ¼ 0 then form (2) we calculate x1 ¼ ax21 – 0 so

we may drop x22 and start with nonzero initial values x21, x0, x1 to which the preceding

argument applies. So finally suppose that x0 x21 ¼ 0. If x21 ¼ 0 then x2 is undefined, and if

x0 ¼ 0 then x3 is undefined. Thus if the initial point (x0, x21, x22) is in either of the planes

u ¼ 0 or v ¼ 0 then xn is undefined for some n $ 1. Thus, the set F2 in (20) is the forbidden

set of equation (2).

We note that in contrast to F1, the set F2 is closed and includes all three coordinate axes

as well as two of the three coordinate planes. Hence we do not expect an analog of Lemma

3 for equation (2). A

Theorem 2. Let {xn} be a solution of (2) with initial point (x0 , x21, x22) � F2.

(1) If a , b þ 1 then limn!1xn ¼ 0:
(2) If a ¼ b þ 1 then {xn} converges to a cycle {z0, z1} of period 2 (not necessarily

prime) where z1 ¼ j1z0 with j1 as in Theorem 1 and

z0 ¼ x0
Y1
n¼1

1

1þ u1ð1þ 1=bÞ2n ; u1 ¼
bx21

x1
2 1: ð22Þ

In particular, if j1 ¼ 1 then {xn} converges to the single number z0 .

(3) If a . b þ 1 then each of the secquences {x2n} and {x2nþ1} is unbounded.

Proof. (a) If (x0, x21, x22) � F2 then we may assume without loss of generality that

x22 – 0. From the second equation in (17) and Lemma 2(a) we have

xn ¼ x0r1r2 . . . rn:
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If a # b then by Theorem 1, rn ! 0 as n ! 1; therefore, limn!1xn ¼ 0. Now,

suppose that b , a , b þ 1. In this case, we can write

x2n ¼ x0ðr1r2Þðr3r4Þ · · · ðr2n21r2nÞ ¼
x0

t2t3 · · · tn
; ð23Þ

x2nþ1 ¼ r2nþ1x2n ¼
x0

t2t3 . . . tnt2nþ1r2n
: ð24Þ

From (19), it follows that tn ! 1/(a 2 b) . 1 so Theorem 1 implies that r2n ! j0 – 0.

Therefore, both x2n and x2nþ1 approach 0 as n ! 1. This conlcudes the proof of (a).

(b) If a 2 b ¼ 1 then from (19) and (23) we obtain

x2n ¼ x0
Yn
k¼1

1

1þ u1½b=ðbþ 1Þ�k
¼ x0

Yn
k¼1

1

1þ u1ð1þ 1=bÞ2k
;

where u1 is as in (22). Since 1 þ u1(1 þ (1/b))2k . 0 for all large k, the convergence

of the product sequence is established by showing that

X1
n¼1

j ln ð1þ B2kAÞj , 1; jAj , 1; B . 1: ð25Þ

Since (25) is trivially true for A ¼ 0 and since for A – 0 we have

lim
k!1

jlnð1þ B2kAÞj

B2kjAj
¼ 1;

comparison with the convergent series
P1

n¼1B
2kjAj shows that (25) is true. Thus

x2n ! z0 where z0 is as in (22). Further, since by Theorem 1, limn!1r2nþ1 ¼ j1 it

follows from (24) that x2nþ1 ! j1z0 as n ! 1.

(c) If a 2 b . 1 then from (19) it follows that 1/tn ! a 2 b . 1 as n ! 1. Hence (23)

and (24) imply that both of the even and odd indexed sequences x2n and x2nþ1 are

unbounded. A

References

[1] A.M. Amleh, E. Camouzis, and G. Ladas, On second order rational difference equations, part 1, J. Differ.
Equ. Appl. 13 (2007), pp. 969–1004.

[2] ———, On the dynamics of a rational difference equation, part 1, Int. J. Differ. Equ., to appear.
[3] E. Camouzis and G. Ladas, When does local stability imply global attractivity in rational equations?,

J. Differ. Equ. Appl. 12 (2006), pp. 863–885.
[4] E. Camouzis et al., On the rational recursive sequence xnþ1 ¼ bx2n=ð1þ x 2n21Þ, Adv. Differ. Equ. Comput.

Math. Appl. (1994), pp. 37–43.
[5] M. Dehghan et al., Dynamics of rational difference equations containing quadratic terms, J. Differ. Equ.

Appl., to appear.
[6] R. DeVault et al., On the recursive sequence xnþ1 ¼ A/xn þ B/xn21, J. Differ. Equ. Appl. 6 (2000),

pp. 121–125.
[7] E.A. Grove et al., On the rational recursive sequence xnþ1 ¼ (axn þ b)/(gxn þ d)xn21, Comm. Appl.

Nonlinear Anal. 1 (1994), pp. 61–72.
[8] M.R.S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open

Problems and Conjectures, Chapman and Hall, Boca Raton, 2002.
[9] H. Sedaghat, Nonlinear Difference Equations: Theory with Applications to Social Science Models, Kluwer

Academic, Dordrecht, 2003.
[10] ———, A note: All homogeneous second order difference equations of degree one have semiconjugate

factorizations, J. Differ. Equ. Appl. 13 (2007), pp. 453–456.

H. Sedaghat224

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
i
r
g
i
n
i
a
 
C
o
m
m
o
n
w
e
a
l
t
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
9
:
2
3
 
6
 
M
a
r
c
h
 
2
0
0
9


