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Abstract

An unbounded mapping of the half-line which has no 3-cycles is continuously extended
one-point compactification of the set of nonnegative real numbers. The extension is shown to
3-cycle so that the Li–Yorke theorem may be applied to the extension to efficiently obtain a scra
set that is then relativized to the original domain. More generally, this approach may invoke
known chaos theorems and can be applied to various types of mappings with infinite disconti
 2004 Elsevier Inc. All rights reserved.

In [3] the continuous, piecewise smooth mapping

φ(r) =
∣∣∣∣1− 1

r

∣∣∣∣, r > 0,

was used to study various properties of the solutions of the second-order equa
the title. The dynamical properties ofφ govern the dynamics of the sequence of ra
of consecutive termsxn/xn−1 for each solution{xn} of the second-order equation. O
particular interest here is Theorem 3 of [3] where the unique fixed point ofφ, namely,
r̄ = (

√
5 − 1)/2, was shown to be a snap-back repeller (in the general nonsmooth s

and Marotto’s theorem from [2] was then used to establish the chaotic nature ofφ on the
set of positive irrationals which is invariant underφ. In this note, we consider a simpl
approach using a continuous extension ofφ that uses the Li–Yorke theorem in [1].

This is an indirect application of the Li–Yorke theorem becauseφ itself does not have
period-3 point. Interestingly,φ does have period-p points for all positive integersp �= 3 and
in [3] these points were explicitly determined using the Fibonacci numbers. Our appro
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here not only simplifies the proof of Theorem 3 in [3] considerably and avoids tech
difficulties associated with a direct application of Marotto’s theorem, but in a sense i
completes the list of periodic solutions forφ by adding a “3-cycle that passes through∞.”

For reference, we say that a mappingf of the real line ischaotic in the sense of [1] if it
has ascrambled set; i.e., a setS with the following properties:

(i) S is uncountable, contains no periodic points off andf (S) ⊂ S.
(ii) For everyx, y ∈ S andx �= y,

lim sup
k→∞

∥∥f k(x) − f k(y)
∥∥ > 0, lim inf

k→∞
∥∥f k(x) − f k(y)

∥∥ = 0.

(iii) For everyx ∈ S and periodicy,

lim sup
k→∞

∥∥f k(x) − f k(y)
∥∥ > 0.

Here now is the aforementioned theorem from [3] and its shorter proof.

Theorem. The mapping φ is chaotic in the sense of [1].

Proof. Let [0,∞] be the one-point compactification of[0,∞) and defineφ∗ on [0,∞] as
follows:

φ∗(r) = φ(r), 0 < r < ∞, φ∗(0) = ∞, φ∗(∞) = 1.

Note thatφ∗ extendsφ continuously to[0,∞] and furthermore,φ∗ has a 3-cycle
{1,0,∞}. Since[0,∞] is homeomorphic to [0,1], by the Li–Yorke Theoremφ∗ is chaotic
on [0,∞] in the sense of [1]. To show thatφ is chaotic on(0,∞), we find a scrambled se
for it. Let S∗ be a scrambled set forφ∗ and define

S = S∗ −
[
{∞} ∪

∞⋃
n=0

φ−n(0)

]
⊂ (0,∞).

Note thatS is uncountable becauseS∗ is uncountable and because each inverse im
φ−n(0) is countable for alln = 0,1,2, . . . (easy to see, and in fact it is shown in [3] th⋃∞

n=0 φ−n(0) is the set of all nonnegative rational numbers). Further, sinceφ(S) ⊂ S and
φ|S = φ∗|S it follows thatS is a scrambled set forφ and the proof is complete.�
Remarks. (1) The idea behind the above proof can obviously be extended to more g
maps that have infinite discontinuities. In particular, the infinite discontinuity of a ma
which the above procedure applies may occur in the interior of an interval. An exam
provided by the one-parameter family

fa(r) = 1

|r| − a, 0 < a < 2, r ∈ [−a,∞), r �= 0.

Unlike φ, we note that the mapsfa are smooth on the domain given above. It can
shown thatfa has a 3-cycle for eacha > 1 and ata = 1 the continuous extensionf ∗

1 = f ∗
to the one-point compactification[−a,∞] defined as
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f ∗(r) = f1(r) for r ∈ [−a,∞), r �= 0, f ∗(0) = ∞, f ∗(∞) = −a = −1

has a 3-cycle{−1,0,∞}. Therefore, the above proof can be repeated here fora � 1.

With regard to the existence of full orbits, note that ifa is rational then the set of positiv
irrationals is invariant underfa . Hence, the singularity at 0 is never visited if the init
valuer0 is irrational; chaotic orbits and scrambled sets then exist within the set of irra
numbers. Note that the scrambled sets are unbounded.

(2) In the absence of 3-cycles for the extended maps, it is possible that an unstab
point is a snap-back repeller (in the general sense used in [3] based on a remark
If so, then a scrambled set exists by the main result of [2]. For example, the unique
point of fa is a snap-back repeller for the extensionfa for a � 1/

√
a. Finally, it is of

interest that the concept of snap-back repellers applies not only to maps of the lin
have no periodic points at the top of the Sharkovski ordering, but also to maps of h
dimensional Euclidean spaces with infinite discontinuities. So in principle the proc
outlined in this paper can be extended to these higher dimensional maps.
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