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Abstract

An unbounded mapping of the half-line which has no 3-cycles is continuously extended to the
one-point compactification of the set of nonnegative real numbers. The extension is shown to have a
3-cycle so that the Li—Yorke theorem may be applied to the extension to efficiently obtain a scrambled
set that is then relativized to the original domain. More generally, this approach may invoke other
known chaos theorems and can be applied to various types of mappings with infinite discontinuities.
0 2004 Elsevier Inc. All rights reserved.

In [3] the continuous, piecewise smooth mapping

1
¢(r)=‘1——
;

, r>0,

was used to study various properties of the solutions of the second-order equation in
the title. The dynamical properties gf govern the dynamics of the sequence of ratios
of consecutive terms, /x,—1 for each solution{x,} of the second-order equation. Of
particular interest here is Theorem 3 of [3] where the unique fixed poigt, afamely,
7 = (+/5— 1)/2, was shown to be a snap-back repeller (in the general nonsmooth sense)
and Marotto’s theorem from [2] was then used to establish the chaotic natgrerothe
set of positive irrationals which is invariant undgr In this note, we consider a simpler
approach using a continuous extensiopahat uses the Li—Yorke theorem in [1].

This is an indirect applicatimof the Li—Yorke theorem becausgdtself does not have a
period-3 point. Interestingly; does have periog-points for all positive integers # 3 and
in [3] these points were explicitly determgd using the Fibonacci numbers. Our approach
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here not only simplifies the proof of Theorem 3 in [3] considerably and avoids technical
difficulties associated with a direct application of Marotto’s theorem, but in a sense it also
completes the list of periodic solutions f@rby adding a “3-cycle that passes througt’’

For reference, we say that a mappinof the real line i<haotic in the sense of [1] if it
has ascrambled set; i.e., a setS with the following properties:

(i) Sisuncountable, contains no periodic pointsfoand f(S) C S.
(i) Foreveryx,ye S andx £y,

limsup] () = )] > 0. liminf[.7f0) — S0 =0,
(iii) For everyx € S and periodicy,
Iilzn sup| ff ) — fFF | > 0.

Here now is the aforementioned theorem from [3] and its shorter proof.

Theorem. The mapping ¢ is chaotic in the sense of [1].

Proof. Let [0, oco] be the one-point compactification @, co) and definep* on [0, co] as
follows:

¢*(r)=¢ (), O0<r<oo, ¢*(0) =00, ¢*(c0) =1.

Note that¢* extends¢ continuously to[0, co] and furthermoreg* has a 3-cycle
{1, 0, co}. Since[0, oco] is homeomorphicto [0,1], by the Li—Yorke Theorefh is chaotic
on [0, oo] in the sense of [1]. To show thatis chaotic on(0, co), we find a scrambled set
forit. Let $* be a scrambled set fgr* and define

o
§S=5"— |:{oo} ulJ ¢—”(0)] C (0, 00).
n=0
Note thatS is uncountable becaus¥ is uncountable and because each inverse image
¢~ "(0) is countable for alh =0, 1, 2, ... (easy to see, and in fact it is shown in [3] that
U209 "(0) is the set of all nonnegative rational numbers). Further, sfr& c S and
¢|s = ¢*|s it follows that S is a scrambled set fa¥ and the proof is complete.O

Remarks. (1) The idea behind the above proof can obviously be extended to more general
maps that have infinite discontinuities. In particular, the infinite discontinuity of a map to
which the above procedure applies may occur in the interior of an interval. An example is
provided by the one-parameter family

1

fa(”)zﬁ —a, O<a<?2 rel[—a, ), r#0.
r
Unlike ¢, we note that the mapg, are smooth on the domain given above. It can be

shown thatf, has a 3-cycle for each> 1 and atz = 1 the continuous extensiofj’ = f*
to the one-point compactificatiqr-a, oo] defined as
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f*r)= fa(r) forre[—a,o0), r #0, f*(0) =00, f*(o0)=—a=-1

has a 3-cyclé—1, 0, co}. Therefore, the above proof can be repeated here fof.

With regard to the existence of full orbits, note that it rational then the set of positive
irrationals is invariant undef,. Hence, the singularity at O is never visited if the initial
valueryg is irrational; chaotic orbits and scrambled sets then exist within the set of irrational
numbers. Note that the scrambled sets are unbounded.

(2) In the absence of 3-cycles for the extended maps, it is possible that an unstable fixed
point is a snap-back repeller (in the general sense used in [3] based on a remark in [2]).
If so, then a scrambled set exists by the main result of [2]. For example, the unique fixed
point of f, is a snap-back repeller for the extensifinfor a > 1/./a. Finally, it is of
interest that the concept of snap-back repellers applies not only to maps of the line that
have no periodic points at the top of the Sharkovski ordering, but also to maps of higher
dimensional Euclidean spaces with infinite discontinuities. So in principle the procedure
outlined in this paper can be extended to these higher dimensional maps.
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