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Abstract

Each solution{x,} of the equation in the title is either eventually periodic with period 3 or else,
it converges to zero—which case occurs depends on whetheatibeof the initial values of{x,}
is rational or irrational. Further, the sequence of rafigs/x,_1} satisfies a first-order difference
equation that has periodic orbits of all integer periedsept3. p-cycles for eachp # 3 are explicitly
determined in terms of the Fibonacci numbers. In spite of the non-existence of period 3, the unique
positive fixed point of the first-order equation is shown to be a snap-back repeller so the irrational
ratios behave chaotically.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Consider the second-order difference equation
Xntl=|xp —xp—1/, n=0,1,2,.... Q)

Forn =0, we may assume that the initial values;, xo are non-negative and for non-
triviality, at least one is positive. In [5], the related equation

Xp4l =Xy +alx, — xu—1| (2)

is discussed as a member of a more general class, and in particular it is shown that for
0< ¢ <1/2andc < a < 1 - ¢ every (non-negative) solution of (2) converges to zero in a
non-monotonic fashion. The purpose of this note is to give a complete characterization of
the asymptotic behaviors of the solutions of Eq. (1), which may be obtained from (2) by
settinga = 1 andc = 0. The solutions of (1) are seen to behave very differently from the
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solutions of (2) withc = 0 and O< a < 1; in particular, the origin is no longer attracting,
even locally. The basic background that may be needed for this paper is found in books
such as [2,6].

Dividing (1) on both sides by, givesx,+1/x, = |1 — x,—1/x,| which can be written
as

1
=1

I'n

'n+1 = , n=012 ..., (3)

if we definer, = x, /x,—1 for everyn > 0. We may think of (3) as the recursiep,; =
¢ (rn), whereg is the piecewise smooth mapping

, r>0.

1
¢(r)=‘——1
-

In this format, solutiongr,} of (3) can be written ag, = ¢" (r9) for n > 1. Since¢
is not defined at = 0, the iteration process f@r stops at steg if $*(r) = 0 for certain
values ofr > 0. For examplep (1) = 0 sok = 1 whenr = 1. Such values of are generally
determined by iterating backward from O to get

o
C=|J¢(0) = {r>0: ¢(r) =0 for some positive integey U {0}.
i=0
The next result establishes a basic property of thesefith respect to the solutions
of (1).

Lemma 1. If {x,} is a solution of(1) with xo/x_1 € C, then{x, } eventually has perio8.

Proof. By assumptiong = xo/x_1 € C; therefore,x_; # 0 and there i% > 0 such that
rx = ¢*(ro) = 0 for some least integér. Hence x; = 0 and it readily follows that

{xp}={x_1,x0, ..., xk=1,0, xx—1, xx=1, 0, xp—1, x4-1,0,...}. O

In the sequel, it is convenient to use the following “halvespof
1 1

$1(r)=--1, 0<r<l, $20r)=1——, r=1

r r

Notice that bothy; and¢g, are one-to-one maps whose inverses are easily computed,
1 1
-1 -1
¢]_ (r):]_—-i—}"’ r>os ¢2 (r):E7 0<r<1'
The mappingp has a unique fixed point
V-1
2

which is the same as the unique fixed point garbecausep, does not intersect the 45-
degree line. Next, we define the set

F=

o
D=|J¢7' () = {r > 0: ¢’ (r) =7 for some non-negative integé}.
i=0
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Note thatr = ¢°(7) € D and thatD N C is empty. The next result establishes a basic
property of the seD based on the fact that< 1; the simple proof is omitted.

Lemma 2. If {x,} is a solution of(1) with xo/x_1 € D, then{x,} is eventually decreasing
monotonically to zero.

2. Theasymptotic dichotomy

Sinceg is a rational form, we see thatc QT, whereQ™ is the set of all non-negative
rational numbers. HoweveR) N Q% is empty. Therefore, by Lemmas 1 and 2, period-3
solutions of (1) may exist when the initial valueg, x_1 are rational, whereas solutions
that converge to zero can occur when the initial values are irrational. Theorem 1 below
shows that this dichotomy is descriptivealf solutions of (1). We need one more lemma
before stating the theorem.

Lemma 3. Let{x, } be a solution of(1). If x; > x;_1 for somek > 0, thenx,, < x; for all
n>k.

Proof. Under the given hypotheses we have that; = x; — xx—1 < x¢. Therefore,
Xk42 = Xk — Xk+1 < Xk, and thusxy3 < maxX{xxt1, xrk+2} < xi. The last step by induction
extends to: > k + 3 and completes the proof.0

Theorem 1. () If xo/x_1 ¢ Q* then the corresponding solutids,,} of (1) converges to
zero.

(b) If xo/x_1 ¢ QT U D then the solutiorix,} converges to zero but it is not eventually
monotonic.

(c) C =QT;thusifxg/x_1 € QT then the corresponding solutign, } of (1) has period
3 eventually.

Proof. (a) Sincerg = xo/x_1 ¢ C, it follows thatr, # 0,1 for all n. This implies that
xn # 0, x,—1 for all n. Therefore, eithex, < x,—1 for all n in which casex,, converges
to zero monotonically, or there i > 0 such thaty, > x;,—1 > 0. In the latter case,
Lemma 3 implies that, < x, for all n > k;. If the sequencéx,} is not eventually de-
creasing, then there is an increasing sequénoépositive integers such that

Xy > Xy >+ > Xy > -+
andfori=1,2,3,...,
Xp <xp; ki <n <kiy1.

These facts imply that,, — 0 asn — oo.

(b) Convergence follows from part (a). {k,} is eventually monotonic, then there is
k > 0 such thatk, < x,_1 or equivalentlyy, < 1 for all n > k. We show that this leads to
a contradiction. Sincey ¢ D, it follows thatr, # r for all n. Note that forr € (1/2,7),
2r—1
1—r

B2(r) = p2(r) = p1(d2(r)) =

<r.
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Thus, ifre € (1/2,7) then there isj with ¢/ (rx) = ¢ (ri) < 1/2; i.e., rk4; < 1/2 and
therefore iy j+1 > ¢1(1/2) = 1 which is a contradiction. We conclude that,} is not
eventually monotonic.

(c) Because of Lemma 1, it is only necessary to show @ratc C. To this end, let
ro € QF, whererg = xo/x_1. First, let us assume that bath andx_; are integers. Then
the corresponding solution of (1) also has integer tetmg-or eachn, eitherx,, < x,-1
or x, > x,—1. In the latter case, Lemma 3 implies that,; < x,, fori > 1 and in the
former case, either, = 1 € C or x, must decrease in value. 8mthere are only finitely
many integers involved, it follows that = 1 orx,, = 0 for somen; i.e.,r, =1 or O fora
sufficiently large integer which means thaty € C.

Next, letxg andx_; be any pair of real numbers such thgt= xo/x_1 is rational. Then
ro = qo/q—1, Wherego, g—1 are positive integers so by the preceding argumerd,C and
the proof is complete. O

Corollary 1. Let{x,} be a solution of(1). Then
(a) {x,,} has period3 eventually if and only ifp/x_1 € Q* or x_1 =0.
(b) x,, = xx (F)"~* for somek > 0 with x; < xg if and only ifxg/x_1 € D.
(c)Letx_1#0. Thenx, — 0asn — oo if and only ifxg/x_1 ¢ Q™.
(d) {x,} is unstable in all cases.e., (1) has no stable solutions.

The next corollary is the ratios version of Corollary 1.

Corollary 2. Let{r,} be a solution of(3). Then
(a) ry = 0 for somek > 0 (sor, is undefined for > k) if and only ifrg € Q.
(b) For ro ¢ QF, {r,} is unstable.

3. Periodicratiosand regular oscillations

Let us take a closer look at the solutions of (3) wheris irrational. We begin by
showing that Eq. (3) has periodic solutions of all possible periods except 3. With minor
modifications, the next theorem appliesteentuallyperiodic solutions as well.

Theorem 2. (a) Equation(3) has ap-periodic solution for every = 3.
(b) If {r1, ..., rp} is a periodic solution of(3) then for the corresponding solutidm,, }
of (1) itis true that

x, =x0p™P  if n/pis aninteger
xn < xoap™P  otherwise

where

14
p:l_[r,- <1, a:max{rl,...,rp}pf(lfl/p) > 1.
i=1
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Proof. (a) Letry > 1. Thenro = ¢ (r1)) = ¢2(r1)=1—1/r1 <1 and

1 1
"3=¢("2)=¢1(r2)=g_1:rl_l.

Though it is possible thatz = r1, to examine potential 3-cycles, let us assume that
r3 < 1. Then

ra= 1 —1=r-2
r3
Clearlyrs # r1, S0 a period-3 solution cannot occur with two points less than 1. Since
¢2 maps the intervall, co) into (0, 1), a period-3 solution cannot have two or more points
greater than 1. We can also rule out a period-3 solution having all three points less than 1,
sinceg is strictly decreasing on the interval (0,1). Therefore, (3) cannot have a period-3
solution. Next, we seek cycles of the form

r>1, O<nrp<l k=23,...,p. 4)

To explicitly determine a 2-cycle, set

rn—1 1
r1>1, ro=o(r1) = ——, r3=¢1(rp) = —— (5)
ri ri—1

and solve the equation = r1 to obtain
1++/5 V5-1 1
= = . r2 = = —.
2 Y V5+1  y?

The numben here is the so-called “golden mean.” For explicitly listing cycles of length
p > 4 that satisfy conditions (4) we need the famous Fibonacci numbers

ri

yi=1 y2=2, y3=3, ya=5, y5=8 yg=13 ...,
that are generated by the linear initial value problem

Yn+1=Yn + Yn-1, yo=1, y-1=0. (6)
Following the pattern that was started above, namely
r—2 r—3
T o r5:2—r1’ v

we claim that
Ik }’k—2’
Yk—3 — Yk—5I'1
with r¢ given by (5) fork = 1, 2, 3. If we assume that (7) holds for sorhgthen

k=4,5,...,p, 7)

1 Yk—3 — Yk—5I'1 — Yk—4r1+ Yk—2  Yk—1— Yk-3r1
rep1=——1= = ,
Tk Yk—4r1 — Yk-2 Yk—4r1 — Yk-2
where we used (6) for the last equality. Thigablishes (7) by induction. Next, using (7)
we can solve the equatiof; 1 =ry or

Yp—3r1L— Yp-1
Yp—2— Yp-4r1

ri
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to obtain the value

1
n=s [yp-a+ \/yzzz—zt +Ayp-ayp-1]. P24,

which together with (5)—(7) completely determines pheycle that satisfies conditions (4)
for p # 3.

(b) Without loss of generality, let = x1/x0. If {r1,...,7,} is a solution with periog,
and

P=T1r2...Tp,

then for each positive integér

k
Xkp =T1r2. .. I'pX(k—=1)p = X(k—=1)pP =+ = X000 .

More generally, writing: = kp + 1, where 0< [ < p — 1, we get

-1
Xn =Tnlpn—-1...Tn—1+1Xkp <maxry, ..., Ip }xop”/p /P
<xomaxri, ..., rp}p_(”_l)/”,o”/”

which establishes the assertion abeut Clearly, if p < 1 thena > 1 since at least one
of the p points of the cycle must exceed 1. Finally< 1 for otherwise the subsequence
{x0p*} of {x,} with n = pk would be unbounded j > 1, or{x,} would be periodic with
periodp if p = 1. But neither of these cases is possible

Remark. To prove Theorem 2(a) it would have sufficed to exhibit a period-5 solution after
showing that period-3 solutions are not possible. Then the proof would be complete be-
cause of the Sharkovski ordering of cycles (see [8], [1] or [6]). However, using the specific
nature ofg it was possible to do more and exhibit thecycles explicitly.

4. Chacticratiosand irregular oscillations

Itis an interesting fact that whereas the only possible period for the solutions of Eq. (1)
is 3, this is in fact the only period that doast occur for the solutions of the associated
ratios equation (3)! To identify the source of this mutual exclusion, we need to look at a
generalization of (1), namelthe two-parameter equation

Xp41 = |ax, — bx,_1]. (8)

In [7] it shown that the parameter values= b = 1 are bifurcation thresholds that when
crossed, 3-periodic solutions occur for (1). Indeed, such solutions of (8) are shown to occur
only for points(a, b) on the smooth cubic curve

a3+ab—b3=1, a>1, 9)

in the parameter plane that hds 1) as an endpoint; furthe¢l, 1) is the only point on the
trace of (9) where the orbits of the 3-periodic solutions contain the origin; other parameter
values on the curve (9) yield positive 3-periodic solutions for (8). We refer to [7] for addi-
tional details and a thorough study of the dynamics of (8). In the remainder of this section
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we show that the non-periodic solutions of (3) include chaotic solutions in the sense of [3]
by using the concept of snap-back repellers from [4].

Before stating the nexttheorem, for convenience we quote a fundamental result on chaos
from [4] as a lemma. This result refers to the following concept: For a continuousFfmap
of R™, an isolated fixed point is asnap-back repelletin the weak or non-smooth sense)
ifthereisa sequenc{e?k}i?oo of compact sets iiR" satisfying the following conditions:
(1) By convergesta ask — —oo;
(2) F is one-to-one on eacB; and F (By) = By1 for everyk;
(3) x €int(B;) andB; N By is empty for 1<k <.

Snap-back repellers are more commonly defined in the differentiable setting where a
more intuitive description is possible. However, the mappging which Theorem 3 below
applies is not smooth so we need to use the more general definition of snap-back repellers
that was quoted above. For a proof of the following lemma, see [4] or [6].

Lemma4. If F has a snap-back repeller, thehis chaotic in the sense that

() Thereis a positive integeY such that for each integer > N, F has a point of period
p (not necessarily stabje
(I) F has a scrambled s&t, i.e., an uncountable set satisfying
(i) F(S)c S andS contains no periodic points df,
(i) for everyx € S everyy where eithery € S andx # y, or y is a periodic point
of F,

limsup|| F*(x) — F*(y)| > 0,
k—o00

(iii) thereis an uncountable s§§ C S such that for every, y € So,
liminf | F*(x) — F*(»)|| > 0.
k— 00

We note that Theorem 2(a) already establishes part (1) above in a stronger form for our
mappings. So we use Lemma 4 to prove the following

Theorem 3. The mapping has a scrambled s&t; hence, if{x,} is a solution of(1) with
initial values satisfyingeo/x_1 € S, then the sequende,, /x,—1} of consecutive ratios is
chaaotic.

Proof. We show thar is a snap-back repeller f@r. Definel; = [r — 8,7 + §] for § > 0
small enough thak; c (1/2, 1). Thenr € int(f;) as required by condition (3) in the defini-
tion of snap-back repeller. To complete the proof, we note that

1 1
-1 -1
?1 (V)ngl, r =0, o (V)=E>1, 0<r<1l

Defineqy =7 — 68, /=7 + 8 andlj_1 = ¢El(11) = [a—1, Bi—1], Where

a-1=¢; ) >1,  Bi=¢, (B > 1.



38 H. Sedaghat / J. Math. Anal. Appl. 291 (2004) 31-39

Thenl;_1 C (1, 00) andl;—1 N I; is empty. Further,
o1 *(h-1) = [¢1 T (Bi-1), ¢1 (1))
Let B—2 = ¢1 (1), as—2 = ¢1 *(Bi—1) and definelj_» = [o—2, fi—2]. Then
wo1>1>7 = fo=¢r -1 <o @) =F
so that
I_>C(0,7). (20)
Next, we define
I3 = ¢ (I-2) = [67 (Bi-2). b1 (1-2)] = [1-3. i3]
and notice thaty_3 > ¢; *(7) =7 andp;_3 < 1. Hence,
I_3C (7,11 (11)
Now, if for j > 2 we define the sequence
I j=¢7 U jy1) =l j. i,

where

1 1
;= ¢1 (,Blfj+l) = m m,
then from (10) and (11) it follows that@ «;—;, 8- ; < 1 for j > 2 and thus, the intervals
I, are well defined. In fact, b7 2(r) = o7 21 (1)), then

) Bi-j= ¢;|Tl(alfj+l) =

Q2j = ¢172(01172,‘+2) >0, Bi—2j = ¢172(,3172,‘+2) <Tr.
We claim that
a—2j, fi—2j > F asj — oo. (12)
If this is true, then
Q_2j-1= ¢1_1(,31—2j) -, Bi—2j-1= ¢1_1(061—2j) -7,

and it follows that the compact intervals_; converge to-. From this and the fact that
¢1 is strictly decreasing o0, 1] it necessarily follows thak is a snap-back repeller (in
the definition of snap-back repeller we may take 2 to be the least integgrfor which
I—; N 1; is non-empty).

To prove the claim (12), it suffices to show that i€ (0, ) then

lim. P72 (s) = 7. (13)

To see this, observe thatiif< 7 then

_ 1+r 1+1/r
2 _ —
o (r)_2+r>r 57 =r.

That is,
¢7%()>r forre(0,7). (14)
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Further,gbl*2 is an increasing function sina&piz/dr =1/(2+r)? > 0. It follows that
r <¢£2(r) <r forre(0,r)

sinceq&;z(f) =r, and together with (14), this proves tr{aigz"(s)} is an increasing se-
guence in(0, 7). Therefore, (13) is true, which proves (12) and thus completes the proof
that 7 is a snap-back repeller. The proof of the theorem is completed upon applying
Lemma4. O

Remarks. (1) (Elements ofD). Each intervall; in the proof of Theorem 3 contains an
inverse image of, i.e., an element of the s& mentioned earlier from which all eventually
monotonic solutions arise. It is possible tepécitly list these particular elements d.
Starting withr, we compute

1 2
1-7 3-.5

Next, we obtain successive inverse imagg$ () for all positive integers. It can be
shown by straightforward induction that

r* =y N(F) =

2)’11 + yn—2+ )’11—2\/3
2yn+l + Yn—1+ )’n—l\/g’
wherey, is thenth Fibonacci number as generated by the difference equation (6).
(2) The mapping is a one-dimensional semiconjugate factor of the mapping
F(-x7 y) = (|-x _y|ax)a

namely, the standard vectorization or thealding of Eq. (1). The ratios may be naturally
considered a link betweef and F. We have seen the usefulness of this semiconjugate
relationship above in describing the asymptotic behavior of Eq. (1). For more on one-
dimensional semiconjugates in general as well as other examples, see [6].
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