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Abstract

Each solution{xn} of the equation in the title is either eventually periodic with period 3 or e
it converges to zero—which case occurs depends on whether theratio of the initial values of{xn}
is rational or irrational. Further, the sequence of ratios{xn/xn−1} satisfies a first-order differenc
equation that has periodic orbits of all integer periodsexcept3.p-cycles for eachp �= 3 are explicitly
determined in terms of the Fibonacci numbers. In spite of the non-existence of period 3, the
positive fixed point of the first-order equation is shown to be a snap-back repeller so the irr
ratios behave chaotically.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Consider the second-order difference equation

xn+1 = |xn − xn−1|, n = 0,1,2, . . . . (1)

Forn = 0, we may assume that the initial valuesx−1, x0 are non-negative and for no
triviality, at least one is positive. In [5], the related equation

xn+1 = cxn + a|xn − xn−1| (2)

is discussed as a member of a more general class, and in particular it is shown t
0 � c < 1/2 andc < a < 1− c every (non-negative) solution of (2) converges to zero
non-monotonic fashion. The purpose of this note is to give a complete characteriza
the asymptotic behaviors of the solutions of Eq. (1), which may be obtained from (
settinga = 1 andc = 0. The solutions of (1) are seen to behave very differently from
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solutions of (2) withc = 0 and 0< a < 1; in particular, the origin is no longer attractin
even locally. The basic background that may be needed for this paper is found in
such as [2,6].

Dividing (1) on both sides byxn givesxn+1/xn = |1 − xn−1/xn| which can be written
as

rn+1 =
∣∣∣∣

1

rn
− 1

∣∣∣∣, n = 0,1,2, . . . , (3)

if we definern = xn/xn−1 for everyn � 0. We may think of (3) as the recursionrn+1 =
φ(rn), whereφ is the piecewise smooth mapping

φ(r) =
∣∣∣∣
1

r
− 1

∣∣∣∣, r > 0.

In this format, solutions{rn} of (3) can be written asrn = φn(r0) for n � 1. Sinceφ

is not defined atr = 0, the iteration process forφ stops at stepk if φk(r) = 0 for certain
values ofr > 0. For example,φ(1) = 0 sok = 1 whenr = 1. Such values ofr are generally
determined by iteratingφ backward from 0 to get

C =
∞⋃
i=0

φ−i (0) = {
r > 0: φi(r) = 0 for some positive integeri

} ∪ {0}.

The next result establishes a basic property of the setC with respect to the solution
of (1).

Lemma 1. If {xn} is a solution of(1) with x0/x−1 ∈ C, then{xn} eventually has period3.

Proof. By assumptionr0 = x0/x−1 ∈ C; therefore,x−1 �= 0 and there isk � 0 such that
rk = φk(r0) = 0 for some least integerk. Hence,xk = 0 and it readily follows that

{xn} = {x−1, x0, . . . , xk−1,0, xk−1, xk−1,0, xk−1, xk−1,0, . . .}. �
In the sequel, it is convenient to use the following “halves” ofφ:

φ1(r) = 1

r
− 1, 0 < r � 1, φ2(r) = 1− 1

r
, r � 1.

Notice that bothφ1 andφ2 are one-to-one maps whose inverses are easily computed

φ−1
1 (r) = 1

1+ r
, r � 0, φ−1

2 (r) = 1

1− r
, 0 � r < 1.

The mappingφ has a unique fixed point

r̄ =
√

5− 1

2
which is the same as the unique fixed point forφ1 becauseφ2 does not intersect the 45
degree line. Next, we define the set

D =
∞⋃

φ−i (r̄) = {
r > 0: φi(r) = r̄ for some non-negative integeri

}
.

i=0
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Note thatr̄ = φ0(r̄) ∈ D and thatD ∩ C is empty. The next result establishes a ba
property of the setD based on the fact thatr̄ < 1; the simple proof is omitted.

Lemma 2. If {xn} is a solution of(1) with x0/x−1 ∈ D, then{xn} is eventually decreasin
monotonically to zero.

2. The asymptotic dichotomy

Sinceφ is a rational form, we see thatC ⊂ Q+, whereQ+ is the set of all non-negativ
rational numbers. However,D ∩ Q+ is empty. Therefore, by Lemmas 1 and 2, perio
solutions of (1) may exist when the initial valuesx0, x−1 are rational, whereas solution
that converge to zero can occur when the initial values are irrational. Theorem 1
shows that this dichotomy is descriptive ofall solutions of (1). We need one more lemm
before stating the theorem.

Lemma 3. Let {xn} be a solution of(1). If xk > xk−1 for somek � 0, thenxn < xk for all
n > k.

Proof. Under the given hypotheses we have thatxk+1 = xk − xk−1 < xk. Therefore,
xk+2 = xk −xk+1 < xk, and thus,xk+3 � max{xk+1, xk+2} < xk. The last step by inductio
extends ton > k + 3 and completes the proof.�
Theorem 1. (a) If x0/x−1 /∈ Q+ then the corresponding solution{xn} of (1) converges to
zero.

(b) If x0/x−1 /∈ Q+ ∪ D then the solution{xn} converges to zero but it is not eventua
monotonic.

(c)C = Q+; thus ifx0/x−1 ∈ Q+ then the corresponding solution{xn} of (1) has period
3 eventually.

Proof. (a) Sincer0 = x0/x−1 /∈ C, it follows that rn �= 0,1 for all n. This implies that
xn �= 0, xn−1 for all n. Therefore, eitherxn < xn−1 for all n in which casexn converges
to zero monotonically, or there isk1 � 0 such thatxk1 > xk1−1 > 0. In the latter case
Lemma 3 implies thatxn < xk1 for all n > k1. If the sequence{xn} is not eventually de
creasing, then there is an increasing sequenceki of positive integers such that

xk1 > xk2 > · · · > xki > · · ·
and fori = 1,2,3, . . . ,

xn < xki if ki < n � ki+1.

These facts imply thatxn → 0 asn → ∞.
(b) Convergence follows from part (a). If{xn} is eventually monotonic, then there

k � 0 such thatxn < xn−1 or equivalently,rn < 1 for all n � k. We show that this leads t
a contradiction. Sincer0 /∈ D, it follows thatrn �= r̄ for all n. Note that forr ∈ (1/2, r̄),

φ2(r) = φ2
1(r) = φ1

(
φ1(r)

) = 2r − 1
< r.
1− r
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Thus, if rk ∈ (1/2, r̄) then there isj with φj (rk) = φ
j
1(rk) � 1/2; i.e., rk+j � 1/2 and

therefore,rk+j+1 � φ1(1/2) = 1 which is a contradiction. We conclude that{xn} is not
eventually monotonic.

(c) Because of Lemma 1, it is only necessary to show thatQ+ ⊂ C. To this end, let
r0 ∈ Q+, wherer0 = x0/x−1. First, let us assume that bothx0 andx−1 are integers. The
the corresponding solution of (1) also has integer termsxn. For eachn, eitherxn � xn−1
or xn > xn−1. In the latter case, Lemma 3 implies thatxn+i < xn for i � 1 and in the
former case, eitherrn = 1 ∈ C or xn must decrease in value. Since there are only finitely
many integers involved, it follows thatrn = 1 or xn = 0 for somen; i.e., rn = 1 or 0 for a
sufficiently large integern which means thatr0 ∈ C.

Next, letx0 andx−1 be any pair of real numbers such thatr0 = x0/x−1 is rational. Then
r0 = q0/q−1, whereq0, q−1 are positive integers so by the preceding argument,r0 ∈ C and
the proof is complete. �
Corollary 1. Let {xn} be a solution of(1). Then

(a) {xn} has period3 eventually if and only ifx0/x−1 ∈ Q+ or x−1 = 0.
(b) xn = xk(r̄)

n−k for somek � 0 with xk � x0 if and only ifx0/x−1 ∈ D.
(c) Let x−1 �= 0. Thenxn → 0 asn → ∞ if and only ifx0/x−1 /∈ Q+.
(d) {xn} is unstable in all cases; i.e.,(1) has no stable solutions.

The next corollary is the ratios version of Corollary 1.

Corollary 2. Let {rn} be a solution of(3). Then
(a) rk = 0 for somek � 0 (sorn is undefined forn > k) if and only ifr0 ∈ Q+.
(b) For r0 /∈ Q+, {rn} is unstable.

3. Periodic ratios and regular oscillations

Let us take a closer look at the solutions of (3) whenr0 is irrational. We begin by
showing that Eq. (3) has periodic solutions of all possible periods except 3. With m
modifications, the next theorem applies toeventuallyperiodic solutions as well.

Theorem 2. (a)Equation(3) has ap-periodic solution for everyp �= 3.
(b) If {r1, . . . , rp} is a periodic solution of(3) then for the corresponding solution{xn}

of (1) it is true that

xn = x0ρ
n/p if n/p is an integer,

xn � x0αρn/p otherwise,

where

ρ =
p∏

i=1

ri < 1, α = max{r1, . . . , rp}ρ−(1−1/p) > 1.
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Proof. (a) Letr1 > 1. Thenr2 = φ(r1) = φ2(r1) = 1− 1/r1 < 1 and

r3 = φ(r2) = φ1(r2) = 1

r2
− 1 = 1

r1 − 1
.

Though it is possible thatr3 = r1, to examine potential 3-cycles, let us assume
r3 < 1. Then

r4 = 1

r3
− 1 = r1 − 2.

Clearly r4 �= r1, so a period-3 solution cannot occur with two points less than 1. S
φ2 maps the interval(1,∞) into (0,1), a period-3 solution cannot have two or more poi
greater than 1. We can also rule out a period-3 solution having all three points less
sinceφ1 is strictly decreasing on the interval (0,1). Therefore, (3) cannot have a per
solution. Next, we seek cycles of the form

r1 > 1, 0 < rk < 1, k = 2,3, . . . , p. (4)

To explicitly determine a 2-cycle, set

r1 > 1, r2 = φ2(r1) = r1 − 1

r1
, r3 = φ1(r2) = 1

r1 − 1
(5)

and solve the equationr3 = r1 to obtain

r1 = 1+ √
5

2
= γ, r2 =

√
5− 1√
5+ 1

= 1

γ 2 .

The numberγ here is the so-called “golden mean.” For explicitly listing cycles of len
p � 4 that satisfy conditions (4) we need the famous Fibonacci numbers

y1 = 1, y2 = 2, y3 = 3, y4 = 5, y5 = 8, y6 = 13, . . . ,

that are generated by the linear initial value problem

yn+1 = yn + yn−1, y0 = 1, y−1 = 0. (6)

Following the pattern that was started above, namely

r4 = r1 − 2

1− 0
, r5 = r1 − 3

2− r1
, . . . ,

we claim that

rk = yk−4r1 − yk−2

yk−3 − yk−5r1
, k = 4,5, . . . , p, (7)

with rk given by (5) fork = 1,2,3. If we assume that (7) holds for somek, then

rk+1 = 1

rk
− 1 = yk−3 − yk−5r1 − yk−4r1 + yk−2

yk−4r1 − yk−2
= yk−1 − yk−3r1

yk−4r1 − yk−2
,

where we used (6) for the last equality. This establishes (7) by induction. Next, using (
we can solve the equationrp+1 = r1 or

yp−3r1 − yp−1 = r1

yp−2 − yp−4r1
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r1 = 1

2

[
yp−4 +

√
y2
p−4 + 4yp−4yp−1

]
, p � 4,

which together with (5)–(7) completely determines thep-cycle that satisfies conditions (4
for p �= 3.

(b) Without loss of generality, letr1 = x1/x0. If {r1, . . . , rp} is a solution with periodp,
and

ρ = r1r2 . . . rp,

then for each positive integerk,

xkp = r1r2 . . . rpx(k−1)p = x(k−1)pρ = · · · = x0ρ
k.

More generally, writingn = kp + l, where 0� l � p − 1, we get

xn = rnrn−1 . . . rn−l+1xkp � max{r1, . . . , rp}x0ρ
n/p−l/p

� x0 max{r1, . . . , rp}ρ−(p−1)/pρn/p

which establishes the assertion aboutxn. Clearly, if ρ < 1 thenα > 1 since at least on
of thep points of the cycle must exceed 1. Finally,ρ < 1 for otherwise the subsequen
{x0ρ

k} of {xn} with n = pk would be unbounded ifρ > 1, or {xn} would be periodic with
periodp if ρ = 1. But neither of these cases is possible.�
Remark. To prove Theorem 2(a) it would have sufficed to exhibit a period-5 solution
showing that period-3 solutions are not possible. Then the proof would be comple
cause of the Sharkovski ordering of cycles (see [8], [1] or [6]). However, using the sp
nature ofφ it was possible to do more and exhibit thep-cycles explicitly.

4. Chaotic ratios and irregular oscillations

It is an interesting fact that whereas the only possible period for the solutions of E
is 3, this is in fact the only period that doesnot occur for the solutions of the associat
ratios equation (3)! To identify the source of this mutual exclusion, we need to look
generalization of (1), namely,the two-parameter equation

xn+1 = |axn − bxn−1|. (8)

In [7] it shown that the parameter valuesa = b = 1 are bifurcation thresholds that whe
crossed, 3-periodic solutions occur for (1). Indeed, such solutions of (8) are shown to
only for points(a, b) on the smooth cubic curve

a3 + ab − b3 = 1, a � 1, (9)

in the parameter plane that has(1,1) as an endpoint; further,(1,1) is the only point on the
trace of (9) where the orbits of the 3-periodic solutions contain the origin; other para
values on the curve (9) yield positive 3-periodic solutions for (8). We refer to [7] for a
tional details and a thorough study of the dynamics of (8). In the remainder of this s
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we show that the non-periodic solutions of (3) include chaotic solutions in the sense
by using the concept of snap-back repellers from [4].

Before stating the next theorem, for convenience we quote a fundamental result on
from [4] as a lemma. This result refers to the following concept: For a continuous mF

of Rm, an isolated fixed point̄x is asnap-back repeller(in the weak or non-smooth sens
if there is a sequence{Bk}lk=−∞ of compact sets inRm satisfying the following conditions

(1) Bk converges tōx ask → −∞;
(2) F is one-to-one on eachBk andF(Bk) = Bk+1 for everyk;
(3) x̄ ∈ int(Bl) andBl ∩ Bk is empty for 1� k < l.

Snap-back repellers are more commonly defined in the differentiable setting wh
more intuitive description is possible. However, the mappingφ to which Theorem 3 below
applies is not smooth so we need to use the more general definition of snap-back re
that was quoted above. For a proof of the following lemma, see [4] or [6].

Lemma 4. If F has a snap-back repeller, thenF is chaotic in the sense that

(I) There is a positive integerN such that for each integerp � N , F has a point of period
p (not necessarily stable);

(II) F has a scrambled setS, i.e., an uncountable set satisfying
(i) F(S) ⊂ S andS contains no periodic points ofF ,
(ii) for everyx ∈ S everyy where eithery ∈ S andx �= y, or y is a periodic point

of F ,

lim sup
k→∞

∥∥Fk(x) − Fk(y)
∥∥ > 0,

(iii) there is an uncountable setS0 ⊂ S such that for everyx, y ∈ S0,

lim inf
k→∞

∥∥Fk(x) − Fk(y)
∥∥ > 0.

We note that Theorem 2(a) already establishes part (I) above in a stronger form
mappingφ. So we use Lemma 4 to prove the following

Theorem 3. The mappingφ has a scrambled setS; hence, if{xn} is a solution of(1) with
initial values satisfyingx0/x−1 ∈ S, then the sequence{xn/xn−1} of consecutive ratios i
chaotic.

Proof. We show that̄r is a snap-back repeller forφ. DefineIl = [r̄ − δ, r̄ + δ] for δ > 0
small enough thatIl ⊂ (1/2,1). Thenr̄ ∈ int(Il ) as required by condition (3) in the defin
tion of snap-back repeller. To complete the proof, we note that

φ−1
1 (r) = 1

1+ r
� 1, r � 0, φ−1

2 (r) = 1

1− r
� 1, 0 � r < 1.

Defineαl = r̄ − δ, βl = r̄ + δ andIl−1 = φ−1
2 (Il) = [αl−1, βl−1], where

αl−1 = φ−1(αl) > 1, βl−1 = φ−1(βl) > 1.
2 2
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ThenIl−1 ⊂ (1,∞) andIl−1 ∩ Il is empty. Further,

φ−1
1 (Il−1) = [

φ−1
1 (βl−1),φ

−1
1 (αl−1)

]
.

Let βl−2 = φ−1
1 (αl−1), αl−2 = φ−1

1 (βl−1) and defineIl−2 = [αl−2, βl−2]. Then

αl−1 > 1> r̄ ⇒ βl−2 = φ−1
1 (αl−1) < φ−1

1 (r̄) = r̄

so that

Il−2 ⊂ (0, r̄). (10)

Next, we define

Il−3 = φ−1
1 (Il−2) = [

φ−1
1 (βl−2),φ

−1
1 (αl−2)

] = [αl−3, βl−3]
and notice thatαl−3 > φ−1

1 (r̄) = r̄ andβl−3 � 1. Hence,

Il−3 ⊂ (r̄,1]. (11)

Now, if for j � 2 we define the sequence

Il−j = φ−1
1 (Il−j+1) = [αl−j , βl−j ],

where

αl−j = φ−1
1 (βl−j+1) = 1

1+ βl−j+1
, βl−j = φ−1

1 (αl−j+1) = 1

1+ αl−j+1
,

then from (10) and (11) it follows that 0< αl−j , βl−j � 1 for j � 2 and thus, the interval
Il−j are well defined. In fact, ifφ−2

1 (r) = φ−1
1 (φ−1

1 (r)), then

αl−2j = φ−2
1 (αl−2j+2) > 0, βl−2j = φ−2

1 (βl−2j+2) < r̄.

We claim that

αl−2j , βl−2j → r̄ asj → ∞. (12)

If this is true, then

αl−2j−1 = φ−1
1 (βl−2j ) → r̄ , βl−2j−1 = φ−1

1 (αl−2j ) → r̄ ,

and it follows that the compact intervalsIl−j converge tor̄ . From this and the fact tha
φ1 is strictly decreasing on(0,1] it necessarily follows that̄r is a snap-back repeller (i
the definition of snap-back repeller we may takek � 2 to be the least integerj for which
Il−j ∩ Il is non-empty).

To prove the claim (12), it suffices to show that ifs ∈ (0, r̄) then

lim
n→∞ φ−2n

1 (s) = r̄ . (13)

To see this, observe that ifr < r̄ then

φ−2
1 (r) = 1+ r

2+ r
> r

1+ 1/r̄

2+ r̄
= r.

That is,

φ−2(r) > r for r ∈ (0, r̄). (14)
1
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Further,φ−2
1 is an increasing function sincedφ−2

1 /dr = 1/(2+ r)2 > 0. It follows that

r < φ−2
1 (r) < r̄ for r ∈ (0, r̄)

sinceφ−2
1 (r̄) = r̄, and together with (14), this proves that{φ−2n

1 (s)} is an increasing se
quence in(0, r̄). Therefore, (13) is true, which proves (12) and thus completes the
that r̄ is a snap-back repeller. The proof of the theorem is completed upon app
Lemma 4. �
Remarks. (1) (Elements ofD). Each intervalIl in the proof of Theorem 3 contains a
inverse image of̄r, i.e., an element of the setD mentioned earlier from which all eventual
monotonic solutions arise. It is possible to explicitly list these particular elements ofD.
Starting withr̄ , we compute

r∗ = φ−1
2 (r̄) = 1

1− r̄
= 2

3− √
5
.

Next, we obtain successive inverse imagesφ−n
1 (r∗) for all positive integersn. It can be

shown by straightforward induction that

φ−n
1 (r∗) = 2yn + yn−2 + yn−2

√
5

2yn+1 + yn−1 + yn−1
√

5
,

whereyn is thenth Fibonacci number as generated by the difference equation (6).
(2) The mappingφ is a one-dimensional semiconjugate factor of the mapping

F(x, y) = (|x − y|, x)
,

namely, the standard vectorization or the unfolding of Eq. (1). The ratios may be natura
considered a link betweenφ andF . We have seen the usefulness of this semiconju
relationship above in describing the asymptotic behavior of Eq. (1). For more on
dimensional semiconjugates in general as well as other examples, see [6].
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