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1. INTRODUCTION

The equation,

x s f x , . . . , x , n s 1, 2, 3, . . . 1Ž . Ž .n ny1 nym

Ž .is a higher order or delay autonomous difference equation if the order m
is a fixed positive integer larger than 1. The real-valued function f is
assumed continuous on Rm, and x , . . . , x g R are the initial values. In1ym 0
addition to the fact that discretizations of scalar differential equations

Ž .result in equations of type 1 , direct applications of difference equations
of order greater than 1 date back to more than half a century ago and
nowadays these equations are increasingly encountered in both social and

w x w xnatural sciences; see, 4 and 6 for some applications and additional
references.

Ž . Ž .A solution x of f x, . . . , x s x is a fixed point or equilibrium of Eq.
Ž . Ž . Ž .1 . Like its differential analogs, 1 can be and often is translated into a
first-order vector equation; the instability or the asymptotic stability of x
may then be determined by linearizing the associated vector function,

V u , . . . , u s f u , . . . , u , u , . . . , u ,Ž . Ž .Ž .˙f 1 m 1 m 1 my1

Ž .at its fixed point X s x, . . . , x and determining the maximum possible˙
modulus for eigenvalues}or the spectral radius}of the derivative of V .f

* E-mail address: hsedaghat@ruby.vcu.edu.

255

0022-247Xr98 $25.00
Copyright Q 1998 by Academic Press

All rights of reproduction in any form reserved.



HASSAN SEDAGHAT256

This is adequate for many purposes; on the other hand, in many applied
Žproblems e.g., when unusual dynamical behavior occurs at certain param-

eter values in a model, or information is needed on the extent of the basin
.of attraction of a sink as well as in theoretical questions on the nonlinear

aspects, one or more of the following may occur:
1Ž . Ž .a f hence also V is not C -smooth at X ;f

1Ž .b f is C -smooth at X but the derivative of V has eigenvalues off
modulus one;

Ž .c Some information is needed on how close to X a vector of initial
Žconditions must be selected in order to ensure convergence to x e.g., it is

.desired to show that x is globally asymptotically stable .
To discuss the stability of x when any one of these conditions applies,

we need a deeper understanding of the properties of f than is required for
Ž .linearization when the latter is applicable . In this article, we take a new

step in this direction by considering functions f that satisfy certain norm
inequalities on Rm. The origin of the inequalities to be considered in the
following text, is found in the case m s 1 and the inequality,

< <f x y x - x y x . 2Ž . Ž .

Ž .If 2 holds for all x in some deleted neighborhood U of x then x is easily
Ž .seen to be asymptotically stable, although if the reverse of 2 holds on U

Ž . Ž .then x is strongly unstable or repelling . Note that 2 generalizes lin-
< Ž . <earization on the line because it implies the inequality f 9 x F 1 when f

1 Ž .is C -smooth at x. On the other hand, inequality 2 is not necessary for
asymptotic stability of x for m s 1; indeed, several conditions that are
both necessary and sufficient for asymptotic stability on the line are now

w x w x Ž .known}see 7 and 8 . The salient feature of 2 for our purposes here is
that it admits direct generalization to higher dimensions if the absolute
value on the right is replaced by a norm on Rm to yield

m5 5f X y x - X y X , X g R . 3Ž . Ž .

Ž .We present results that explore the consequences of 3 and related
inequalities. Among the issues discussed here are the following:

Ž .I Demonstrate asymptotic stability relative to the invariant sets
Ž .of V whose elements satisfy 3 relative to the sup-norm}see Theorem 1;f

Ž . 1 Ž .II For C -smooth maps condition I applies in some cases where
Ž .a unit eigenvalue exists for the derivative DV X ;f

Ž . Ž .III The invariant sets in I cannot be contained in certain regions
m Žof R having X on their boundary this establishes a connection to the

.Liapunov theory }see Theorem 2 and related discussions;
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Ž . Ž .IV Inequality 3 has no useful vector analogs for V in anyf
p Ž . pl -norm. Further, 3 itself in l -norms with p - ` does not imply asymp-

totic stability;
Ž .V Demonstrate exponential stability relative to the invariant sets

Ž .of V whose elements satisfy a stronger version of 3 with a positivef
coefficient less than unity on the right side}see Theorem 3;

1Ž .VI For C -smooth maps and small neighborhoods of X, establish
Ž .the equivalence of the condition in V to a well-known linearization

condition}see Theorem 4;
Ž .VII Demonstrate instability with the aid of a general class of sets

Ž . Ž .that include invariant sets of V whose elements satisfy the reverse of 3f
relative to the sup-norm}see Theorem 5.

We address these and several other matters in the sequel. A few
examples illustrate the applicability of our results to specific problems for

Ž . Ž .which some of a ] c hold.

2. PRELIMINARIES

In the sequel, we assume that f is continuous and that m G 2 unless
otherwise noted.

General notation. In addition to V defined in the Introduction, thef
following notation is used in the sequel:

5 5 � < < < <4 Ž . mX s max j , . . . , j is the sup-norm of X s j , . . . , j g R ;1 m 1 m
m mŽ . � 5 5 4 Ž .B X ; r s X g R : X y X - r s x y r, x q r is the open ball

in the sup-norm, centered at the fixed point X and of radius r ) 0;
p : Rm ª R denotes the projection into the ith coordinate, i.e.,i

Ž .p u , . . . , u s u , i s 1, . . . , m;i 1 m i

f s  fr u is the ith partial derivative of f : Rm ª R;i i

5 Ž .5 m < Ž . < m=f X s Ý f X for all X g R ;1 is1 i

S and Sy denote the boundary and the closure of a set S, respec-
tively;

f ( g is the composition of two functions f and g ;
F n is the composition of a function F: Rm ª Rm with itself n times,

n s 1, 2, 3, . . . with F 0 defined to be the identity map.

Some basic definitions. 1. A nonempty subset S of Rm is positively
m m Ž .invariant under a map F: R ª R if F S ; S. In the sequel, by an

in¨ariant set we mean a set that is positively invariant under F s V .f
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m m2. A fixed point X g R of a continuous map F of R is asymptoti-
mcally stable relatï e to a set M ; R if X g M is Liapunov stable in the

relative topology on M and every point of M is attracted to X ; i.e.,
n mŽ .F X ª X as n ª ` for all X g M. If M s R , then X is globally

asymptotically stable.
Ž . Ž .3. If M s B X ; r then we may say that a fixed point x of 1 is

Ž .asymptotically stable relative to the interval x y r, x q r ; in this case, the
Ž . Ž .initial values are unordered sets of m real numbers in x y r, x q r .

Other basic definitions and concepts such as asymptotic stability, Lia-
punov stability, linearization, etc. that are used here are well known and

w x w xare readily found in the literature; see, e.g., 4, Chap. 1 and 5, Chap. 1 .
The next two results complete our preliminary discussion.

LEMMA 1. For any function f : Rm ª R, and for all integers k ) m,

p (V k s f (V ky i , i s 1, . . . , m , 4Ž .i f f

although for e¨ery 1 F k F m,

¡ ky if (V u , . . . , u , i s 1, . . . , k y 1,Ž .f 1 m
k ~p (V u , . . . , u s 5Ž . Ž .f u , . . . , u , i s k ,Ž .i f 1 m 1 m¢u , i s k q 1, . . . , m.iyk

Ž . mProof. For each point X s u , . . . , u g R note that1 m

V 2 X s V f X , u , . . . , u s f V X , f X , u , . . . , u .Ž . Ž . Ž . Ž .Ž . Ž .Ž .f f 1 my1 f 1 my2

Proceeding in this way, it is clear that we obtain inductively,

V m X s f V my 1 X , f V my 2 X , . . . , f X . 6Ž . Ž . Ž . Ž . Ž .Ž . Ž .ž /f f f

Ž . Ž .The previous process in particular establishes 5 . However, as for 4 , note
Ž .that 6 implies

V mq 1 X s f V m X , f V my 1 X , . . . , f V X ,Ž . Ž . Ž . Ž .Ž . Ž .Ž .ž /f f f f

Ž . Ž .so that 4 holds for m q 1. Suppose now that 4 for some k ) m. Then

V kq1 XŽ .f

s f V k X , p (V k X , . . . , p (V k XŽ . Ž . Ž .Ž .ž /f 1 f my1 f

s f (V k X , f (V ky1 X , f (V ky2 X , . . . , f (V kymq1 X .Ž . Ž . Ž . Ž .Ž .f f f f

Ž .Therefore, 4 holds for all k ) m by induction.
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� 4 Ž .LEMMA 2. If the sequence x is a solution of 1 generated by a ¨ectorn
Ž .of initial ¨alues X s x , . . . , x , then0 0 1ym

x s f V ny1 X , n s 1, 2, 3, . . . .Ž .Ž .n f 0

3. ASYMPTOTIC STABILITY

Ž .THEOREM 1. Let x g R be a fixed point of 1 and let T be a closed,
in¨ariant set containing X. Define the set,

m 5 5 � 4A s A f ; x s X g R : f X y x - X y X j X .Ž . Ž .� 4˙ ˙

Then X is asymptotically stable relatï e to each in¨ariant subset S of T l A
that is closed in T ; in particular, x attracts e¨ery trajectory with a ¨ector of

Ž .initial ¨alues x , . . . , x g S.0 1ym

Proof. Let S be a T-closed, invariant subset of T l A. Then

k kf V X y x - V X y X , 7Ž . Ž . Ž .Ž .f f

for all positive integers k and for every X g S. Next, for 1 F k F m y 1,
Ž .observe that by 5 ,

V k u , . . . , uŽ .f 1 m

s f V ky1 u , . . . , u , . . . , f u , . . . , u , u , . . . , u , 8Ž . Ž . Ž .Ž .ž /f 1 m 1 m 1 myk

and further,

5 5V X y X F X y X , 9Ž . Ž .f

Ž . Ž .for all X g A. Now 9 , 8 and induction on k imply that

k 5 5V X y X F X y X , 10Ž . Ž .f

Ž . Ž . Ž .for k s 1, . . . , m y 1. Therefore, from 7 , 10 , and 6 we may conclude
that

m my1V X y X s max f V X y x , . . . , f X y xŽ . Ž . Ž .Ž .½ 5f f

5 5- X y X , 11Ž .
Ž .for all X g S. Next, let X s x , . . . , x be any vector of initial values0 0 1ym

Ž . Ž .for 1 in S. Then 11 implies that

m n m mŽny1. mŽny1.V X y X s V V X y X - V X y X ,Ž . Ž . Ž .Ž .f 0 f f 0 f 0
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for every positive integer n. Therefore, the sequence,

m nV X y X , n s 1, 2, 3, . . .Ž .½ 5f 0

is strictly decreasing to a limit r G 0 as n ª `. If r ) 0 and V is the0 0 0
Ž . � m nŽ .4forward limit set of the vector sequence V X , thenf 0

V ;  B X ; r l S ; T l A ,Ž .0 0

where the first inclusion holds because S is closed in T. Therefore, by the
m Ž .invariance of V under V , for any Y g V , 11 implies0 f 0

m 5 5r s V Y y X - Y y X s r ,Ž .0 f 0

m nŽ .which is impossible. Hence, for every X g S, V X ª X as n ª `. By0 f 0
Lemmas 1 and 2,

V m n X s x , . . . , x ,Ž . Ž .f 0 m ny1 mŽny1.

so it may be concluded that for all i s 1, . . . , m,

m n< <x y x F V X y X ª 0,Ž .m nyi f 0

as n ª `. It follows that x ª x; thus X attracts every point of S, and Sn
Ž .is closed, so X g S. With 9 implying the stability of X in the relative

topology on A, the proof is complete.

Theorem 1 is, of course, valid with T s Rm; on the other hand, in many
w .mapplied models, the positive orthant T s 0, ` is the relevant invariant

set, to which attention may be restricted. It should be emphasized that if
mT / R , then it is possible that X g  T , as in the next example.

EXAMPLE 1. The third-order equation,

x s ax q bx exp ycx y dx , a, b , c, d G 0, c q d ) 0Ž .n ny1 ny3 ny1 ny3

12Ž .

w xrepresents a special case of the flour beetle population model; see 3
where it is shown in particular that when a q b F 1 and a, b ) 0, then the

3 Žorigin is asymptotically stable relative to the nonnegative octant in R i.e.,
all nonnegative solutions are attracted to the origin and the beetles

.become extinct . We now show that the same conclusion holds under the
conditions,

a q b F 1, b ) 0 13Ž .
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using Theorem 1. Before proceeding, it is worth noting that the lineariza-
Ž .tion of 12 at the origin has a unit eigenvalue when a q b s 1; this

w xresulted in a separate proof in 3 for a q b F 1 that uses the detailed
Ž . Ž .properties of 12 . This is not necessary; we need only observe that if 13

Ž . w .3 Ž . Ž .holds, then for all x, y, z g 0, ` , x, y, z / 0, 0, 0 ,

� 4ax q bz exp ycx y dz F a q b exp ycx y dz max x , zŽ . Ž .
� 4- a q b max x , y , zŽ .

� 4F max x , y , z ,

so Theorem 1 implies that the origin is a stable global attractor of
nonnegative solutions. If a q b - 1, then Theorem 3 in the following text
shows that the origin is exponentially stable for all nonnegative solutions;
clearly, this global information could not be obtained by linearization
alone.

The remarkable laboratory research on the flour beetle population
patterns is still continuing, with experiments under way at the time of the

w xwriting of this article; see 2 .

EXAMPLE 2. However, as a simple application of Theorem 1, with
S s A s Rm it is easy to check that the equation,

2 2 < <x s ax exp yc x q ??? qx , 1 F k F m , a F 1, c ) 0Ž .n nyk ny1 nym

14Ž .

has a globally asymptotically stable fixed point at the origin. Note that
< <when k s m and a s 1, then the characteristic polynomial equation for

Ž . m Ž .14 is l y a s 0. Therefore, e¨ery eigenvalue of the linearization of 14
< <lies on the unit circle in this case. For a - 1 the global nature of

asymptotic stablity could not be inferred from linearization alone.
Theorem 1 applies more generally to any continuous, real-valued func-

tion g with the property,

g X - 1, X / 0, . . . , 0 ,Ž . Ž .
w Ž 2 2 .x Ž .in place of the function a exp yc u q ??? qu in 14 .1 m

COROLLARY 1. Let A be open in Theorem 1. Then x is asymptotically
Ž .stable relatï e to x y r, x q r , where r ) 0 is the largest real number such

mŽ .that B X ; r ; A. In particular, if A s R , then x is globally asymptotically
stable.

Proof. Although the ball in the statement of the corollary is not closed,
Ž . Ž .note that for r in the proof of Theorem 1,  B X ; r ; B X ; r if0 0

Ž .X g B X ; r . Hence, V ; A and the rest of the proof of Theorem 1 is0 0
applicable.
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Ž .Remarks. 1 In spite of its finite-dimensional settings, Theorem 1 is
Žnot norm-blind and may be false if a norm other than the sup-norm say,

.the Euclidean norm is used in the definition of A. Counterexamples
involving linear functions are easy to construct.

Another way of looking at this metric-sensitivity of Theorem 1 is to note
that if the graph of f in Rmq 1 lies within the complement of the closed
polyhedral cone,

< < < < < <C x s u , . . . , u : u y x G max u y x , . . . , u y x ,Ž . Ž . � 4˙ � 4mq 1 1 mq1 mq1 1 m

Ž .for all u , . . . , u in a deleted neighborhood of X, then A is open and1 m
Corollary 1 applies. However, if the graph of f lies within the complement
of the Euclidean cone,

1r2m
2< <u y x G u y x ,Ž .Ýmq 1 i

is1

in a deleted neighborhood of X, then Theorem 1 need not apply, because
the Euclidean cone is properly contained in the polyhedral one. This
preference for the polyhedral cones is to some extent due to the interest-

� 4 ming geometric fact that the set C , . . . , C of all polyhedral cones in R1 m
Žcentered at any point, say, the origin, provides a symmetric covering with

.nonoverlapping interiors of each sup-norm ball centered at that point.
This is not true of other norms; for example, Euclidean cones do not have
a similar property with respect to the spherical balls of the Euclidean norm
when m ) 2.

Ž .2 It is evident that the set,

m 5 5X g R : V X y X - X y X 15Ž . Ž .½ 5f

Ž . Ž .is contained in A f ; x . Because the set 15 is easily generalizable to
m Ž .arbitrary maps of R not just V , how much would we lose by using thef

Ž . Ž .set 15 in Theorem 1? For an answer, consider a linear map f u , . . . , u1 m
m m m< < Ž .s Ý a u with Ý a - 1; then A f ; 0 s R where 0 is the origin.is1 i i is1 i

Ž . � 4Even for such f , the set 15 plus 0 cannot contain any neighborhoods of
the origin, not just in the sup-norm, but also in the l p-norm for all

Ž Ž .0 - p - ` assuming a / 0, consider the vectors a, 0, . . . , 0 where a ª1
.0 . In particular, we would not be able to use the restricted version of

Ž .Theorem 1 based on 15 to prove the global asymptotic stability of the
origin for the aforementioned linear map!

mŽ . Ž . 5 53 The functional s X s X y X on R is not a Liapunov˙
Ž .function for V in the traditional or strict sense, because as inequality 9f
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Ž Ž .. Ž .shows, the Liapunov]LaSalle difference s V X y s X is not negativef
w xdefinite on A. Nevertheless, the general theory in 5 is applicable to s ,

and raises the question as to whether Theorem 1 can alternately be proved
Žusing the aforementioned general theory of course, because of the sup-

.norm, we need not look for a Liapunov function . Because the latter
theory does not make explicit use of the sup-norm, and even with the
sup-norm, its conclusions involve the maximal invariant subset of

m 5 5E s E f ; x s X g R : V X y X s X y X ,Ž . Ž .˙ ˙ ½ 5f

� 4rather than the invariant singleton X ; E, to prove Theorem 1 it is
� 4necessary to show that X is the maximal invariant set of V in E l A.f

We begin by observing in the next lemma that E l A has a simple
geometric structure; for m G 2, define the polyhedral set P ; Rm asm

< < < < < <P s P x s u , . . . , u : u y x F max u y x , . . . , u y x ,Ž . Ž . � 4˙ ˙ � 4m m 1 m m 1 my1

Žso that P is just the complement of the interior of the polyhedral conem
.C .m

Ž . Ž . Ž . Ž .LEMMA 3. E f ; x l A f ; x s P x l A f ; x .m

Proof. Let f and the fixed point x be given so that their explicit
Ž .mention is not necessary. X s u , . . . , u g E l A implies that1 m

f X y x - V X y XŽ . Ž .f

< < < <s max f X y x , u y x . . . , u y x ,Ž .� 41 my1

< < < <so u y x cannot exceed u y x for all k s 1, . . . , m y 1; therefore,m k
X g P . Conversely, if X g P l A, thenm m

< < < <f X y x - max u y x , . . . , u y x ,Ž . � 41 my1

which implies that X g E.

In particular, if A s Rm then E s P so that E can be quite large withm
a nonempty interior. However, there is also the next result.

� nŽ .4THEOREM 2. Each trajectory V X with a ¨ector of initial ¨aluesf 0
X g P l A, X / X, must exit P in at most m y 1 steps. In particular,0 m 0 m
� 4X is the largest in¨ariant subset of E l A.

Ž 0 0 .Proof. Let X s x , . . . , x g P l A, X / X. Then using the defi-0 1 m m 0
nitions of A and P we easily conclude thatm

0 0< < < <f X y x - max x y x , . . . , x y x . 16Ž . Ž .� 40 1 my1
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Ž .Given that the number of arguments inside the ‘‘max’’ in 16 is now
�reduced by one, let us assume inductively that for some k g 1, 2, . . . , m y

41 it was shown that

f X y xŽ .j
0 0 j< < < <- max x y x , . . . , x y x , X s V X g P l A , 17Ž . Ž .˙� 41 myk j f 0 m

for all j s 0, 1, . . . , k y 1. If

X s V k X g P l A , 18Ž . Ž .k f 0 m

Ž .then using Lemma 1 and 17 we obtain

0 0< < < <f X y x - max x y x , . . . , x y x . 19Ž . Ž .� 4k 1 myk

0 0< < < < Ž . Ž .If x y x ) x y x in 19 for all i s 1, 2, . . . , m y k y 1, then 17my k i
implies that

0< <x y x ) f X y x , j s 0, 1, . . . , k y 1. 20Ž .Ž .my k j

Ž .However, 18 and Lemma 1 imply that

0< <x y x F max f X y x , . . . , f X y x , 21� 4Ž . Ž . Ž .my k ky1 0

Ž . Ž .which contradicts 20 . Hence, inequality 19 reduces to

0 0< < < <f X y x - max x y x , . . . , x y x ,Ž . � 4k 1 myky1

Ž . Ž .and because of 21 , 17 in turn reduces to

0 0< < < <f X y x - max x y x , . . . , x y x , 22Ž .Ž . � 4j 1 myky1

as long as X g P l A for all j s 0, 1, . . . , k. It follows by induction thatj m
Ž .17 holds for each k s 1, 2, . . . , m y 1 so long as X remains in P l Aj m

Ž .for j F k y 1. In particular, for k s m y 1, 17 gives

0< <f X y x - x y x , j s 0, 1, . . . , m y 2. 23Ž .Ž .j 1

Ž .Now, if X g P , then because of 23 ,my 1 m

0 0< < < <x y x F max f X y x , . . . , f X y x - x y x ,� 4Ž . Ž .1 my2 0 1

which is impossible. Therefore, if X g P l A for k s 1, 2, . . . , m y 2k m
then X f P . The proof of the last assertion is now immediate frommy 1 m
Lemma 3.
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4. EXPONENTIAL STABILITY

In this section we obtain a stronger asymptotic stability result by
restricting the set A of the previous section. We also discuss the precise
relationship of the results to be obtained with linearized asymptotic
stability, which is also of exponential type.

Ž . ŽDEFINITIONS. A fixed point x of 1 is exponentially stable or an
. Ž . � 4exponential sink if there is g g 0, 1 such that for every solution x ofn

Ž .1 with initial conditions x , . . . , x in some nontrivial interval contain-0 1ym
ing x we have for all n G 1,

n< <x y x F cg ,n

Ž .where c s c x , . . . , x ) 0 is independent of n. Exponential stability0 1ym
Ž w x.for X is similarly defined with obvious modifications see, e.g., 1 and

exponential stability relative to a set M is defined in the same way as the
analogous asymptotically stable case.

An exponentially stable fixed point is asymptotically stable with the
added distinction that convergence near an exponential sink is faster and
more easily noticed than near a nonexponential one.

Ž . Ž .THEOREM 3. Let x g R be a fixed point of 1 and for fixed a g 0, 1 ,
Ž .define the closed set,

m 5 5A s A f ; x s X g R : f X y x F a X y X .Ž . Ž .� 4˙ ˙a a

Then X is exponentially stable relatï e to the largest in¨ariant subset of A .a

Proof. Let S be the largest invariant subset of A , and note that Sa

must be closed. A straightforward modification of the proof of Theorem 1
shows that

m n mŽny1.V X y X F a V X y X ,Ž . Ž .f 0 f 0

for all positive integers n and for every X g S. Therefore, for all i s0
1, . . . , m,

m n n< < 5 5x y x F V X y X F a X y X ,Ž .m nyi f 0 0

i.e., for every n G 1,

n r m< < 5 5x y x F a X y X ,n 0

and the exponential stability of x follows immediately.
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Ž . � 4COROLLARY 2. Let a g 0, 1 , and assume that X is in the interior of
w xA . Then x is exponentially stable relatï e to x y r, x q r , where r ) 0 is thea

mŽ .largest real number such that B X ; r ; A . In particular, if A s R , then xa a

is globally exponentially stable.

Remarks. Because linearized asymptotic stability is also of exponential
type, a relationship between Theorem 3 and the linearization theorem can
be expected at the local level when f is continuously differentiable. Some
remarks are in order before we discuss this relationship. First, we note that

ˆif f has continuous partial derivatives on a deleted neighborhood U of X
then the inequality,

5 5f X y x F a X y X 24Ž . Ž .
ˆ ˆŽ . Ž .can hold on U i.e., U ; A for some a g 0, 1 even if the partiala

ˆderivatives are unbounded on U, as in Example 3. Second, if the partial
Ž .derivatives of f exist but are not continuous at X, then 24 may hold on

some neighborhood of X although in every neighborhood of X there is X
such that

=f X ) 1, 25Ž . Ž .1

Ž .see Example 4 . On the other hand, when f is continuously differentiable,
it is a well-known consequence of Rouche’s theorem that the reverse of`

Ž . Ž .the inequality in 25 implies asymptotic stability for the linearization of 1
1w x Ž .at x; see, e.g., 4 . We now show that for a C map f , the reverse of 25

Ž .for all X sufficiently near X is equivalent to condition 24 holding in a
neighborhood of X.

Ž .THEOREM 4. Let x be a fixed point of 1 and assume that f is continu-
Ž .ously differentiable at X. Then X is in the interior of A for some a g 0, 1 ifa

and only if ,

=f X - 1. 26Ž . Ž .1

Ž .In particular, Corollary 2 generalizes condition 26 to continuous maps.

Ž .Proof. Assume that 26 holds. Then due to the continuity of the f ,i
there is d ) 0 such that

< <a s sup =f u , . . . , u : u y x F d , j s 1, . . . , m - 1.Ž .˙ � 41 m j1

yŽ . Ž .Now for all X s u , . . . , u in the closed ball B s B X ; d , the mean1 m
value theorem for real-valued functions on Rm implies that

m
1

f X y x s f tX q 1 y t X u y x dt ,Ž . Ž . . Ž .ÝH i i
0 is1
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so that

f X y xŽ .
m

1
5 5F X y X f tu q 1 y t x , . . . , tu q 1 y t x dt ,Ž . Ž .Ž .ÝH i 1 m

0 is1

Ž .and 24 holds on B; hence, X g B ; A . Conversely, suppose thata

=f X G 1.Ž . 1

Ž . Ž . Ž .Define the translation g X s f X q X y x and note that g 0, . . . , 0 s 0˙
with

=g 0, . . . , 0 G 1. 27Ž . Ž .1

Ž .Define c s c , . . . , c , where˙ 1 m

1, if g 0, . . . , 0 G 0,Ž .ic si ½ y1, if g 0, . . . , 0 - 0,Ž .i

� < < < <4 < <and observe that for every t g R, max c t , . . . , c t s t . Next define w :1 m
R ª R as

w t s g tc ,Ž . Ž .˙

so that w is continuously differentiable at t s 0 and
m m

w9 0 s g 0, . . . , 0 c s g 0, . . . , 0 s =g 0, . . . , 0 .Ž . Ž . Ž . Ž .Ý Ý 1i i i
is1 is1

Ž . Ž .Let a g 0, 1 be fixed. By 27 and the mean value theorem of calculus,
< <there is d ) 0 such that for t - d we havea a

< < < <w t s w9 t t ) a t ,Ž . Ž .0

Ž .where t is between t and 0. Hence, for X s u , . . . , u s tc q X and0 1 m
Ž .t g yd , d ,a a

< < < < < <f X y x s g tc ) a t s a max u y x , . . . , u y x ,Ž . Ž . � 41 m

Ž . Ž .no matter what constant a g 0, 1 is chosen. Hence, 24 cannot hold in
any neighborhood of X ; i.e., X cannot be in the interior of A .a

Ž .Remark. Note that inequality 26 is a generalization of the one-dimen-
< Ž . <sional inequality f 9 x - 1, though it is not as strong for m G 2 as the

Ž .conclusion of linearization theorem, which may be abbreviated as r X -
1, with r denoting the spectral radius.
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5. INSTABILITY

Ž .When f is continuously differentiable but DV X has eigenvalues off
unit modulus, then neither linearization nor Theorem 3 apply, as stability
Ž .if it exists may be of nonexponential type. In this case, one may consider

Ž .applying Theorem 1 as in Examples 1 and 2 , or if instability is suspected,
the next result in which invariant sets are convenient but not necessary.

Ž . Ž .THEOREM 5. Let x be a fixed point of 1 , and define the open set,
m 5 5A9 s A9 f ; x s X g R : f X y x ) X y X .Ž . Ž .� 4˙ ˙

Assume that there is an open subset S ; A9 such that:
yŽ . Ž . � 4a S l  A9 l B X ; d s X for some d ) 0;

kŽ . Ž Ž .. � 4b V S l B X ; d ; S for some k g 1, . . . , m ;f

� 4 Ž . Ž .Then for e¨ery solution x of 1 with X g S l B X ; d , there is q suchn 0
< <that x y x G d . In particular, x is unstable.q

Ž .Proof. Let X s x , . . . , x be a vector of initial conditions in0 0 1ym
Ž .S l B, where B s B X ; d , and note that there are two possible cases:

Ž . k nŽ .I V X g S l B for all positive integers n, or:f 0

Ž . k jŽ .II there is a least integer j G 1 such that V X f S l B.f 0

Ž .To show that case I cannot occur, we observe that

k n kŽny1. kŽny1.V X y X G f V X y x ) V X y X , 28Ž . Ž . Ž . Ž .Ž .f 0 f 0 f 0

for all n G 1, where the first inequality in the foregoing text holds because
Ž . �5 k nŽ .k F m and Lemma 1 applies. If I holds, the real sequence V X yf 0

54 Ž . Ž xX , which is strictly increasing by 28 , must have limit r g 0, d as0
Ž . � k nŽ .4n ª `. The forward limit set V of the vector sequence V X is0 f 0

Ž .then contained in A9 l  B X ; r . To see that V ; A9, we note that0 0
Ž .y Ž .V ; S l B . If X g V l  S l B but X f S, then X g S ; A9; if0 0

X g S, then X g Byl S so X f  A9 and because X is in the closure
of A9, it follows that X g A9 and the claim about V is proved. But now,0
as in the proof of Theorem 1, the definition of A9 and the invariance of
V under V k imply that for any Y g V we have0 f 0

k 5 5r s V Y y X G f Y y X ) Y y X s r ,Ž . Ž .0 f 0

Ž .which is impossible. Therefore, case I cannot occur.
Ž . kŽ jy1.Ž .In case II , the definition of j implies that V X g S l B so thatf 0

k jŽ .by our hypothesis V X is in S but not in B. Therefore,f 0

k j k j< <x y x s f V X y x ) V X y X G d . 29Ž . Ž . Ž .Ž .k jq1 f 0 f 0
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Ž .Because case I cannot occur, for each X g S there is always a j such0
Ž . 5 5that 29 holds, regardless of how small X y X is. It follows that x is0

not stable.

Remark. It is easy to see that

m 5 5A9 f ; x s X g R : V X y X ) X y X . 30Ž . Ž . Ž .½ 5f

Thus, unlike A, the expansive set A9 can be defined in terms of Vf
Ž .without loss; however, because the right side of 30 does not properly

contain A9, there is also no significant gain in adopting such a definition in
this article.

EXAMPLE 3. Consider the equation,

x s ax p x q , a, p , q ) 0, x , x G 0. 31Ž .n ny1 ny2 y1 0

Ž .Clearly, the origin is always a fixed point of 31 and if p q q / 1, then
there is also a positive fixed point,

1rŽ1ypyq.x s a .

We only analyze the stability of origin where linearization is not applicable
Žwhen p - 1 or q - 1 by contrast, the sets of parameter values in

.Examples 1 and 2 where linearization fails are ‘‘thin’’ . In addition, if
Ž . p qf x, y s ax y and either of the last two inequalities hold, then the

Ž .left-hand side of 25 will be unbounded in each neighborhood of the
origin, even when the origin can be shown to be exponentially stable.

There are three cases to consider: First, assume that p q q ) 1, where
Ž . w xfor every d g 0, x and x, y g 0, d we have

pqq pq1yq� 4 � 4f x , y F a max x , y F ad max x , y ,Ž . Ž .
with

pqqy1 pqqy1ad - ax s 1.

Letting d ª x, Theorem 3 implies that the origin is exponentially stable in
2Ž . w .31 relative to 0, x , regardless of the value of a.

Next, assume that p q q - 1 and define the bounded open set,
pqqS s x , y : 0 - y - x , y - x - ay .� 4Ž .

ŽNotice that S ; A9 and it is easy to see that S is invariant under V whichf
.is more than is required by Theorem 5 . Hence, the origin is unstable in

this case, again regardless of the value of a. In Fig. 1, S is graphed for
a s 1, p s 1r4, and q s 1r3, together with A9 and A. The latter two sets
are separated in this case by the zero level curve of the function,

1r4 1r35 5 � 4f X y x y X y X s x y y max x , y ,Ž .
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Ž . Ž .FIG. 1. An invariant set S for x 1r4 y 1r3 .ˆ ˆ

Ž .whose equation as well as the equation for the lower boundary of S is
easy to compute. Of course, a rather quick way of visually identifying the
sets A and A9 is by drawing at least one nonzero level curve.

Finally, consider the case p q q s 1. This is the only case where the
value of a affects stability, and the only case where the origin is the unique
fixed point, if to avoid degeneracy, we assume that a / 1. Then we have

Ž . Ž . Ž .two cases: i a - 1 and ii a ) 1. In case i , for all x, y G 0,

pqq� 4 � 4f x , y F a max x , y s a max x , y ,Ž . Ž .

so Theorem 3 implies that the origin is globally exponentially stable. In
Ž .case ii , the open wedge,

S s x , y : y ) 0, y - x - ay� 4Ž .

is contained in A9 and it is invariant under V . The instability of originf
now follows by Theorem 5.
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EXAMPLE 4. For our final example, consider the one-parameter, sec-
ond-order equation,

ax xny1 ny2 'x s , a ) 0, a / 2 , 32Ž .n 2 2'x q xny1 ny2

where we assume for continuity that the right-hand side is zero at the
Ž .origin. Then the only fixed point of 32 occurs at the origin, where the

Ž . Ž 2 2 .y1r2function on the right-hand side, namely, f x, y s axy x q y has
zero, but discontinuous partial derivatives. Hence, linearization is not
applicable; but with the aid of Theorems 3 and 5 we can show that the

' 'origin is globally exponentially stable if a - 2 , and is unstable if a ) 2 .
< < < <Note that for x G y ,

2y a
< < < < < <� 4f x , y s a x F max x , y . 33Ž . Ž .( 2 2 'x q y 2

< < < < Ž .The same is true for x F y , as seen by switching x and y in 33 . Hence,
'if a - 2 , then Theorem 3 establishes the global exponential stability of 0.

'Next, for x, y ) 0 and a ) 2 , define

2'S s x , y : y ) 0, y - x - a y 1 y .Ž .� 4
� 4The linear wedge S is an invariant subset of A9 l x ) y . Hence, by

Theorem 5 the origin is unstable.
Ž .With regard to the inequality 25 and Theorems 3 and 4, we mention

that the partial derivatives of f are constant on lines y s cx through the
origin, and on each such line,

a c3 q 1Ž .
=f x , cx s , x ) 0.Ž . 1 3r22c q 1Ž .

It is easily seen that the supremum of the preceding ratio over all c ) 0 is
' Ž .a; thus if 1 - a - 2 then 25 holds in every neighborhood of the globally

exponentially stable origin.
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