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Semiconjugate factorizations of higher order linear difference
equations in rings

H. Sedaghat*

Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA

(Received 8 February 2013; final version received 28 July 2013)

We use a new nonlinear method to study linear difference equations with variable
coefficients in a non-trivial ring R. If the homogeneous part of the linear equation has a
solution in the unit group of a ringwith identity (a unitary solution), thenwe show that the
equation decomposes into two linear equations of lower orders. This decomposition,
known as a semiconjugate factorization in the nonlinear theory, is based on sequences of
ratios of consecutive terms of a unitary solution. Such sequences, which may be called
eigensequences, are well suited to variable coefficients; for instance, they provide a
natural context for the expression of the Poincaré–Perron theorem. As applications, we
obtain new results for linear difference equationswith periodic coefficients and for linear
recurrences in rings of functions (e.g. the recurrence for the modified Bessel functions).

Keywords: linear; semiconjugate factorization; eigensequence; unitary solution; rings
of functions; periodic coefficients

AMS Subject Classification: 39A06; 39A10; 39B52

1. Introduction

A linear, non-homogeneous difference equation with variable coefficients is defined as

xnþ1 ¼ a0;nxn þ a1;nxn21 þ · · ·þ ak;nxn2k þ bn; ð1Þ

where fbn} and faj;n} are given sequences in a non-trivial ring R for j ¼ 0; 1; . . . ; k:
Equation (1) may be unfolded in the standard way to a map of a ðk þ 1Þ-dimensional

R-module (or vector space, if R is a field). In this form there is extensive published

literature extending the classical theory on the real line to a diverse selection of rings that

include finite rings, rings of polynomials and rings of functions; see, e.g. [1–3,6,9,10,18].

We pursue a different approach in this paper, using a method originally developed for

nonlinear difference equations. Specifically, we explore the existence of a semiconjugate

factorization (SC-factorization) of (1) in its underlying ring R into two or more linear

difference equations of lower orders. While a linear equation may have many different

SC-factorizations, the equations with lower orders are generally nonlinear. In this study we

obtain a SC-factorization where the lower order equations are also linear. The key

requirement for the existence of such a SC-factorization is the existence of a special type

of sequence that we call an eigensequence of (1); eigenvalues are essentially constant

eigensequences.

We show that in a ring R with identity, quotients of the consecutive terms of a unitary

solution (invertible terms) form an eigensequence in R. In particular, this leads to a simple
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and natural expression for the classical Poincaré–Perron theorem in this context; see

Section 4.6. SC-factorization generalizes the classical notion of operator factorization of a

homogeneous equation with constant coefficients over the real or complex numbers. SC-

factorizations of linear equations over arbitrary non-trivial fields are studied in chapter 7 of

[15]. The results in this study substantially extend those in [15] to rings and add several

new results, including results for equations with periodic coefficients and for recurrences

in rings of functions; see Sections 5 and 6.

In particular, rings of functions on a given set are typically not fields but the SC-

factorization method applies to linear difference equations in such rings in essentially the

same way (finding an eigensequence) as it does to linear difference equations in a field. We

study SC-factorizations of linear difference equations in rings of functions and apply the

results to obtain explicit formulas for the solutions of some known higher order functional

difference equations; e.g. second-order recurrences that define modified Bessel functions,

but with arbitrary initial functions.

2. Preliminaries

A (forward) solution of (1) is defined, as usual, to be any sequence fxn} in R that satisfies

the equation for n $ 0. Given the recursive nature of (1) it is clear that with any k þ 1

given initial values xj [ R for j ¼ 0; 1; . . . ; k (the number k þ 1 being the order of the

difference equation) (1) generates a unique solution in R through iteration, since R is

closed under its addition and multiplication. If bn ¼ 0 for all n then (1) is homogeneous

and in this case, the constant sequence xn ¼ 0 for n $ 0 is a solution of (1), namely, the

trivial solution.

In the classical theory of higher order linear difference equations in the field of real

numbers, linear operators such as the those used to define (1) may be ‘factored’ using their

eigenvalues; see, e.g. section 2.3 in [4]. This elementary procedure yields both a reduction

of order for a linear difference equation and a symbolic ‘operator method’ for obtaining its

solutions. For discussions of these basic classical notions, including operator methods, see

[4] or [8].

In this section, for the reader’s convenience we present some general results from

[15] that are valid for all difference equations of recursive type, not just the linear

equations.

Let G be a non-trivial group and consider the recursive difference equation, or

recurrence

xnþ1 ¼ f nðxn; xn21; . . . ; xn2kÞ; ð2Þ

where f n : Gkþ1 ! G is a given function for each n $ 0: Starting from a set of k þ 1 initial

values xj [ G for j ¼ 0; 1; . . . ; k a unique solution of (2) is obtained by iteration.

Equation (2) may be unfolded in the usual way to a first-order recurrence

Xnþ1 ¼ FnðXnÞ

on Gkþ1, where Fn : Gkþ1 ! Gkþ1. Let k $ 1, 1 # m # k: Suppose that there is a sequence
of maps Fn : Gm ! Gm and a sequence of surjective maps Hn : Gkþ1 ! Gm that satisfy the

SC relation

Hnþ1 +Fn ¼ Fn +Hn ð3Þ

H. Sedaghat252



for a given pair of function sequences fFn} and fFn}: Then we say that Fn is SC to Fn for

each n and that the sequence fHn} is a form symmetry of (2). Since m , k þ 1; the form
symmetry fHn} is order-reducing.

We state the next core result from [15] as a lemma here.

Lemma 1. (SC-factorization). Let G be a non-trivial group and let k $ 1, 1 # m # k be

integers. If hn : Gk2mþ1 ! G is a sequence of functions and the functions Hn : Gkþ1 ! Gm

are defined by

Hnðu0; . . . ; ukÞ ¼ ½u0 * hnðu1; . . . ; ukþ12mÞ; . . . ; um21 * hn2mþ1ðum; . . . ; ukÞ�
where * denotes the group operation in G, then the following statements are true:

(a) The function Hn is surjective for every n $ 0.

(b) If fHn} is an order-reducing form symmetry then the difference equation (2) is

equivalent to the system of equations

tnþ1 ¼ fnðtn; . . . ; tn2mþ1Þ; ð4Þ
xnþ1 ¼ tnþ1 * hnþ1ðxn; . . . ; xn2kþmÞ21 ð5Þ

whose orders m and k þ 12 m, respectively, add up to the order of (2).

(c) The map Fn in (3) is the standard unfolding of equation (4) to Gm for each n $ 0.

Remark 2. Part (c) above permits us to stay within the context of higher order difference

equations. Being able to work within this context is especially beneficial in the case of

non-recursive equations (including some linear equations) which do not in general unfold

to maps on modules over rings (or vector spaces over fields) and therefore, their solutions

are not determined via group actions. Extensions of the method of this study to non-

recursive equations no longer rely on semiconjugacy but they do retain the basic concepts

of form symmetry and factor-cofactor pairs; see [15], chapter 8.

Definition 3. The pair of equations (4) and (5) constitutes the SC-factorization of (2).

This pair of equations is a triangular system (see [19]) since (4) is independent of (5). We

call (4) the factor equation of (2) and (5) its cofactor equation.

Note that (4) has order m and (5) has order k þ 12 m: Consider the following special

case of Hn in Lemma 1 with m ¼ k

Hnðu0; u1; . . . ; ukÞ ¼ ½u0 * hnðu1Þ; u1 * hn21ðu2Þ; . . . ; uk21 * hn2kþ1ðukÞ�; ð6Þ
where hn : G! G is a given sequence of maps. The SC-factorization of (2) in this case is

tnþ1 ¼ fnðtn; . . . ; tn2kþ1Þ; ð7Þ

xnþ1 ¼ tnþ1 * hnþ1ðxnÞ21 ð8Þ
in which the factor equation has order k and the cofactor equation has order 1.

The next result gives a necessary and sufficient condition for the existence of a form

symmetry of type (6); see [15] for the proof.
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Lemma 4 (Invertible-map criterion). Let G be a non-trivial group and assume that

hn : G! G is a sequence of bijections. For arbitrary elements u0; v1; . . . ; vk [ G and every

n $ 0 define z0;nðu0Þ ; u0 and for j ¼ 1; . . . ; k define

zj;nðu0; v1; . . . ; vjÞ ¼ h21
n2jþ1ðzj21;nðu0; v1; . . . ; vj21Þ21

* vjÞ: ð9Þ

Then (2) has the form symmetry (6) if and only if the quantity

f nðz0;n; z1;nðu0; v1Þ; . . . ; zk;nðu0; v1; . . . ; vkÞÞ * hnþ1ðu0Þ ð10Þ
is independent of u0 for every n $ 0. In this case (2) has a SC-factorization into (7) and (8)

where the factor functions in (7) are given by

fnðv1; . . . ; vkÞ ¼ f nðz0;n; z1;nðu0; v1Þ; . . . ; zk;nðu0; v1; . . . ; vkÞÞ * hnþ1ðu0Þ: ð11Þ

In the context of rings, the group G in the preceding result is the additive group of the

ring so that * denotes addition and thus (9), (10) and (8) read, respectively, as follows:

zj;nðu0; v1; . . . ; vjÞ ¼ h21
n2jþ1ðvj 2 zj21;nðu0; v1; . . . ; vj21ÞÞ;

f nðz0;n; z1;nðu0; v1Þ; . . . ; zk;nðu0;v1; . . . ; vkÞÞ þ hnþ1ðu0Þ and xnþ1 ¼ tnþ1 2 hnþ1ðxnÞ:

A basic class of maps hn in rings is defined next.

Definition 5. Let R be a ring and let fan} be a sequence in R such that an – 0 for all n. A

linear form symmetry is defined as the special case of (6) with hnðuÞ ¼ 2anu; i.e.

½u0 2 anu1; u1 2 an21u2; . . . ; uk21 2 an2kþ1uk�: ð12Þ

If a is not a zero divisor then hðuÞ ¼ 2au is one-to-one or injective since for every

u; v [ R

hðuÞ ¼ hðvÞ ) 2aðu2 vÞ ¼ 0 ) u2 v ¼ 0:

In general, h is not surjective even if R contains no zero divisors (consider a [ Z,

a – ^1). But if R has an identity and each a is a unit then each h is a bijection with inverse

h21ðuÞ ¼ 2a21u:

Remark 6. Many nonlinear difference equations possess the linear form symmetry (12);

see [15,16]. The SC-factorizations of such nonlinear equations always have a linear

cofactor.

3. SC-factorization in rings

Assume that the underlying ring R of (1) has a (multiplicative) identity denoted by 1. For

such a ring, the set of all units (elements having multiplicative inverses or reciprocals) is a

group, namely the unit group, that we denote by G.
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3.1. Unitary sequences

A unitary sequence is any sequence in G. If fun} is a unitary sequence then the sequence

funþ1u
21
n } of right ratios of fun} is well defined and unitary. Similarly, the sequence

fu21
n unþ1} of left ratios is well defined and unitary. If R is commutative then the

sequences funþ1u
21
n } and fu21

n unþ1} are the same, representing the ratios sequence of fun}:
Call two sequences fxn} and fyn} in R right equivalent (or left equivalent) if there is a

unit u such that yn ¼ xnu (or yn ¼ uxn) for all n. These two relations on the set of sequences

in R are indeed equivalence relations, and if fxn} is unitary then so are fxnu} and fuxn}.
The next result has the same flavour as the result in calculus which states that

differentiable functions having the same derivative are equal up to a constant.

Lemma 7. Let R have an identity and fxn} and fyn} be unitary sequences. Then fxn} and

fyn} are right (or left) equivalent if and only if their sequences of right (or left) ratios are

equal.

Proof. Suppose that fxn} and fyn} are right equivalent. Then yn ¼ xnu for some unit u and

all n so that

ynþ1y
21
n ¼ xnþ1uðxnuÞ21 ¼ xnþ1u u21x21

n

� � ¼ xnþ1x
21
n ;

i.e. the sequences of right ratios are the same. Conversely, suppose that ynþ1y
21
n ¼ xnþ1x

21
n

for all n $ 0 and define u ¼ x21
0 y0: Then

x1u ¼ x1x
21
0 y0 ¼ y1y

21
0 y0 ¼ y1:

This equality also implies that u ¼ x21
1 y1 so the preceding argument may be repeated

to show that xnu ¼ yn for all n $ 0: A similar argument proves the left-handed case. A

3.2. The SC-factorization theorem

Recall that the existence of a linear form symmetry (12) implies that (2) has a SC-

factorization with a first-order, linear non-homogeneous cofactor equation

xnþ1 ¼ tnþ1 þ anþ1xn: ð13Þ

The following necessary and sufficient condition for the existence of a linear form

symmetry is a consequence of the invertible-map criterion with G being the additive group

of the ring.

Lemma 8. Let R be a ring with identity. Equation (2) has the linear form symmetry (12) if

and only if there is a unitary sequence fan} in R such that the quantity

f nðu0; z1;nðu0; v1Þ; . . . ; zk;nðu0; v1; . . . ; vkÞÞ2 anþ1u0 ð14Þ
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is independent of u0 for all n, where for j ¼ 1; . . . ; k,

zj;nðu0; v1; . . . ; vjÞ ¼
Yj21

i¼0

an2i

 !21

u0 2
Xj
i¼1

Yj
m¼i

an2mþ1

 !21

vi: ð15Þ

Proof. Define hnðuÞ ¼ 2anu for each n so that h21
n ðuÞ ¼ 2a21

n u for all n. If we define

zj;0 ¼ u0 and for j ¼ 1; . . . ; k set

zj;nðu0; v1; . . . ; vjÞ ¼ a21
n2jþ1½zj21;nðu0; v1; . . . ; vj21Þ2 vj�

recursively, then the first assertion of the lemma is true by the invertible-map criterion. To

prove (15), observe that

z1;nðu0; v1Þ ¼ a21
n ðu0 2 v1Þ ¼ a21

n u0 2 a21
n v1

which proves (15) if j ¼ 1. Suppose that (11) is true for indices less than j where j # k:
Then

zj;nðu0; v1; . . . ; vjÞ ¼ a21
n2jþ1½zj21;nðu0; v1; . . . ; vj21Þ2 vj�

¼ a21
n2jþ1

Yj22

i¼0

an2i

 !21

u0 2
Xj21

i¼1

Yj21

m¼i

an2mþ1

 !21

vi 2 vj

2
4

3
5

¼
Yj21

i¼0

an2i

 !21

u0 2
Xj21

i¼1

Yj
m¼i

an2mþ1

 !21

vi 2 a21
n2jþ1vj

¼
Yj21

i¼0

an2i

 !21

u0 2
Xj
i¼1

Yj
m¼i

an2mþ1

 !21

vi;

and the proof is complete. A

Theorem 9. Let R be a ring with identity. The linear equation (1) has the linear form

symmetry (12) with unit coefficients if there is a unitary sequence fan} that satisfies the

relation

anþ1 ¼ a0;n þ
Xk
j¼1

aj;n
Yj21

i¼0

an2i

 !21

: ð16Þ

The corresponding SC-factorization of (1) is

tnþ1 ¼ a00;ntn þ a01;ntn21 þ · · ·þ a0k21;ntn2kþ1 þ bn; ð17Þ

xnþ1 ¼ anþ1xn þ tnþ1; ð18Þ
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where for m ¼ 0; . . . ; k2 1, tmþ1 ¼ xmþ1 2 amþ1xm and

a0m;n ¼ 2
Xk

i¼mþ1

ai;n
Yi

j¼mþ1

an2jþ1

 !21

:

Proof. By Lemma 8 it is only necessary to determine a unitary sequence fan} in R such that

for each n (14) is independent of u0 for the following functions:

f nðu0; . . . ; ukÞ ¼ a0;nu0 þ a1;nu1 þ · · ·þ ak;nuk þ bn:

For arbitrary u0; v1; . . . ; vk [ R and j ¼ 1; . . . ; k define zj;nðu0; v1; . . . ; vjÞ as in

Lemma 8. Then expression (14) is

2anþ1u0 þ bn þ a0;nu0 þ a1;nz1;nðu0; v1Þ þ · · ·þ ak;nzk;nðu0; v1; . . . ; vkÞ

¼ bn þ 2anþ1 þ a0;n þ
Xk
j¼1

aj;n
Yj21

i¼0

an2i

 !21
2
4

3
5u0 2Xk

j¼1

aj;n
Xj
i¼1

Yj
m¼i

an2mþ1

 !21

vi:

The above quantity is independent of u0 if and only if the coefficient of u0 is zero for all

n; i.e. if and only if fan} satisfies the difference equation (16). Dropping the u0 terms

leaves the following:

bn 2
Xk
j¼1

aj;n
Xj
i¼1

Yj
m¼i

an2mþ1

 !21

vi

2
4

3
5 ¼ bn 2

Xk
j¼1

Xk
i¼j

ai;n
Yj
m¼i

an2mþ1

 !21
2
4

3
5vj: ð19Þ

From this expression, we obtain the SC-factorization of (1). The cofactor equation (18)

is simply (13) while the factor equation is obtained using (7), the above calculations and

(19). Finally, (17) is obtained by slightly adjusting the summation indices to simplify

notation. A

3.3. Complete SC-factorizations

Equation (17) is once again linear but with order less than (1) by one. If (17) also possesses

a unitary solution in R then it is reducible in order by a second application of Theorem 9. If

this process can be repeated k times, then a triangular system of k þ 1 first-order equations

is obtained that is equivalent to (1). A complete SC-factorization of this type is calculated

for equation (31); see chapter 7 of [15] for further information.

3.4. The inversion form symmetry

Equation (16) is not only a consequence of the invertible map criterion but it is also related

to a different SC-factorization. Think of fan} as a solution of the following kth order
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rational difference equation on the (multiplicative) unit group G of R

rnþ1 ¼ a0;n þ
Xk
j¼1

aj;n
Yj21

i¼0

rn2i

 !21

: ð20Þ

If in the homogeneous part of (1), i.e. the linear equation

xnþ1 ¼ a0;nxn þ a1;nxn21 þ · · ·þ ak;nxn2k ð21Þ

aj;n [ G for all j, then (20) is in fact the factor equation of a SC-factorization in G of (21)

and the cofactor equation is xnþ1 ¼ rnþ1xn; see [14]. The inversion form symmetry that

yields this SC-factorization is ½u0u21
1 ; u1u

21
2 ; . . . ; uk21u

21
k �. This (nonlinear) form

symmetry is characteristic of all difference equations that are homogeneous of degree 1,

linear or not; see [14] or chapter 4 in [15]. On the other hand, notice that the factor equation

(20) of (21) relative to the inversion form symmetry is nonlinear, whereas the factor

equation (17) relative to the linear form symmetry is again linear.

4. Characteristic equation and eigensequences

The sequence fan} in Theorem 9 is a solution of the nonlinear difference equation (20).

Since fan} plays a fundamental role in the SC-factorization of (1), it is necessary to

examine (20) closely.

4.1. The characteristic difference equation

Equation (20) may be written in a way that does not involve inversion. Multiply it on both

sides by the quantity rnrn21· · ·rn2kþ1

rnþ1rnrn21· · ·rn2kþ1 ¼ a0;nðrnrn21· · ·rn2kþ1Þ þ a1;nðrn21· · ·rn2kþ1Þ
þ a2;nðrn22· · ·rn2kþ1Þ þ · · ·þ ak21;nrn2kþ1 þ ak;n

which may be written more succinctly as

Yk
i¼0

rn2iþ1 2
Xk21

j¼0

aj;n
Yk21

i¼j

rn2i

 !
2 ak;n ¼ 0: ð22Þ

This equation is not as esoteric as it may appear at first glance. To clarify, consider the

special homogeneous case with constant coefficients, i.e.

xnþ1 ¼ a0xn þ a1xn21 þ · · ·þ akxn2k: ð23Þ

Then (22) reduces to the following difference equation:

rnþ1rn· · ·rn2kþ1 2 a0ðrn· · ·rn2kþ1Þ2 a1ðrn22· · ·rn2kþ1Þ2 · · ·2 ak21rn2kþ1 2 ak ¼ 0:

ð24Þ
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A constant solution (or fixed point) rn ¼ r of (24) must satisfy the polynomial equation

r kþ1 2 a0r
k 2 a1r

k21 2 · · ·ak ¼ 0: ð25Þ
The right-hand side of (25) is recognizable as the characteristic polynomial of (23)

whose roots are indeed the eigenvalues of the linear homogeneous equation (23).

4.2. Eigensequences and eigenvalues

Definition 10. The difference equation (22) in a ring R is the characteristic equation of

the homogeneous part of (1), i.e. the linear difference equation (21). Each solution of (22)

in R is an eigensequence of (21). An eigenvalue is a constant eigensequence. An

eigensequence whose every term is a unit in the ring is unitary. An eigensequence

containing a zero divisor is improper.

To illustrate the concepts in Definition 10 and a concrete application of Theorem 9,

consider the difference equation

xnþ1 ¼ xn þ xn21; ð26Þ
also known as the Fibonacci recurrence because with initial values x0 ¼ 0 and x1 ¼ 1 (26)

generates the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . . , denoted fFn}. The characteristic

equation of (26) is

rnþ1rn 2 rn 2 1 ¼ 0: ð27Þ
This equation has no solutions in the ring of integers Z, constant or otherwise. For let

r1; r2 [ Z and note that r1 – 0 because clearly rn ¼ 0 does not solve (27). Now (27) has a

solution r2 [ Z if and only if r1 ¼ ^1: Either r1 ¼ 1, r2 ¼ 2 so that r3 ¼ 3=2 � Z or

r1 ¼ 21, r2 ¼ 0 and no value is defined for r3: Hence, (26) has no eigensequences in Z.

The eigenvalues (constant eigensequences) of this equation are roots ð1^ ffiffiffi
5

p Þ=2 of its
characteristic polynomial r 2 2 r 2 1: Thus (26) has no eigenvalues inQ; but unlike Z, in

Q (27) can be stated as rnþ1 ¼ 1þ 1=rn. Iteration starting from (say) r0 ¼ 1 yields

rn ¼ Fnþ1=Fn, a unitary eigensequence for (26). Theorem 9 then yields a SC-factorization,

in Q, of (26) consisting of the pair of equations

tnþ1 ¼ a00;ntn; a00;n ¼ 2
Fn

Fnþ1

; xnþ1 ¼ Fnþ2

Fnþ1

xn þ tnþ1:

See Theorem 12 for a generalization of this example.

4.3. Non-unitary and improper eigensequences

Consider the second-order linear difference equation

xnþ1 ¼ 2xn 2 4xn21; x0; x1 [ Z ð28Þ
whose characteristic equation rnþ1rn 2 2rn þ 4 ¼ 0 has no constant solutions

(eigenvalues) in Z because the polynomial r 2 2 2r þ 4 has complex roots r ¼ 1^ i
ffiffiffi
3

p
.

But the characteristic equation does have a (non-unitary) period 3 solution in Z given by

f1;22; 4; 1;22; 4; . . . } as may be checked by direct substitution. This is a proper

eigensequence since Z does not contain zero divisors.
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The difference equation (28) is also valid in finite rings Zm of integers modulo a given

positive integer m and different cases occur. For instance, Z17 is a field so the above

eigensequence is unitary. But in Z18 where all even numbers are zero divisors the same

sequence of period 3 is an improper eigensequence. Also note that for some values ofm the

polynomial r 2 2 2r þ 4 has roots in Zm which are eigenvalues of (28); e.g. in the field Z7

the roots are 3 and 6 while in the ring Z12 the roots are 4 and 10 ; 22ðmod 12Þ, both of

which are improper.

Improper eigensequences are undesirable because ring extensions do not render them

unitary and Theorem 9 cannot be applied. Nevertheless, SC-factorizations are possible

with non-unitary, even improper eigensequences. Consider the following difference

equation in an arbitrary non-trivial ring R

xnþ1 ¼ ðaþ bÞxn 2 abxn21 þ cn: ð29Þ
The characteristic equation of the homogeneous part of (29) is rnþ1rn 2 ðaþ bÞrn þ

ab ¼ 0: The constant solutions of this equation satisfy the polynomial equation (25),

which in this case is r 2 2 ðaþ bÞr þ ab ¼ 0. This evidently has a solution r ¼ b (if R is

commutative then r ¼ a is also a solution). While Theorem 9 is not applicable in the

absence of an identity and unitary solutions, a SC-factorization of (29) may be directly

obtained by rearranging its terms as xnþ1 2 bxn ¼ aðxn 2 bxn21Þ þ cn and defining a new

variable tn ¼ xn 2 bxn21 to obtain

tnþ1 ¼ atn þ cn; xnþ1 ¼ bxn þ tnþ1:

A somewhat extreme case occurs in the Boolean ring of all finite subsets of Z

(including the empty set) with the operations Aþ B ¼ ðAnBÞ< ðBnAÞ and AB ¼ A> B

for all finite A;B , Z: Equation (29) has a SC-factorization with two improper

eigenvalues a, b in this commutative ring where the empty set is the zero element and

every non-empty set is a zero divisor.

4.4. Unitary solutions and eigensequences

A potential difficulty in applying Theorem 9 is finding the sequence fan} that satisfies

(20), i.e. finding a solution of (22). In this section we discuss how to calculate fan}

indirectly, by extracting it from a unitary solution of (21) in R; i.e. a solution of (21) that is

contained in the unit group G. Let fxn} be such a unitary solution for a given set of initial

values x0; x1; . . . ; xk [ G. Multiplying (21) by x21
n and rearranging terms gives

xnþ1x
21
n ¼ a0;n þ a1;nxn21x

21
n þ a2;nxn22x

21
n þ · · ·þ ak;nxn2kx

21
n

¼ a0;n þ a1;nxn21x
21
n þ a2;nxn22 x21

n21xn21

� �
x21
n þ · · ·

þ ak;nxn2k x21
n2kþ1xn2kþ1

� �
x21
n2kþ2xn2kþ2

� �
· · · x21

n21xn21

� �
x21
n

¼ a0;n þ a1;n xnx
21
n21

� �21þa2;n xn21xn22ð Þ21 xnx
21
n21

� �21þ· · ·

þ ak;n xn2kþ1x
21
n2k

� �21
xn2kþ2x

21
n2kþ1

� �21
· · · xnx

21
n21

� �21
:

If rn ¼ xnx
21
n21 for each n then the above equation can be written as follows:

rnþ1 ¼ a0;n þ a1;nr
21
n þ a2;nr

21
n21r

21
n þ · · ·þ ak;nr

21
n2kþ1r

21
n2kþ2· · ·r

21
n21r

21
n or

rnþ1 ¼ a0;n þ a1;nr
21
n þ a2;nðrnrn21Þ21 þ · · ·þ ak;nðrnrn21 . . . rn2kþ1Þ21;

ð30Þ
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which is precisely equation (20). Thus, the sequence frn} of right ratios of fxn} satisfies

(20). It is often easier to find a unitary solution of (21) than to look for a particular solution

of (20). Once a unitary solution of (21) is identified, an eigensequence may be extracted

from it using the next result that supplements and completes Theorem 9.

Theorem 11. Let R be a ring with identity. A (unitary) sequence in R is an eigensequence

of (21) if and only if it is the right ratio sequence of a unitary solution of (21).

Proof. Let frn} be a unitary eigensequence of (21), choose x0 [ G and define xj ¼ rjxj21

for j ¼ 1; . . . ; k: Then xj [ G for each j and

rjþ1xj ¼ a0;n þ a1;nr
21
j þ a2;nr

21
j21r

21
j þ · · ·þ ak;nr

21
j2kþ1r

21
j2kþ2· · ·r

21
j21r

21
j

� �
xj

¼ a0;nxj þ a1;nr
21
j xj þ a2;nr

21
j21r

21
j xj þ · · ·þ ak;nr

21
j2kþ1r

21
j2kþ2· · ·r

21
j21r

21
j xj

¼ a0;nxj þ a1;nxj21 þ a2;nr
21
j21xj21 þ · · ·þ ak;nr

21
j2kþ1r

21
j2kþ2· · ·r

21
j22r

21
j21xj21;

where we used the fact that r21
j xj ¼ xj21: Similarly, r21

j21xj21 ¼ xj22 which yields a further

reduction

rjþ1xj ¼ a0;nxj þ a1;nxj21 þ a2;nxj22 þ · · ·þ ak;nr
21
j2kþ1r

21
j2kþ2· · ·r

21
j22xj22:

Next, r21
j22xj22 ¼ xj23 and the above calculation may be continued to ultimately yield

rjþ1xj ¼ a0;nxj þ a1;nxj21 þ a2;nxj22 þ · · ·þ ak;nxj2k:

Define the right-hand side as xjþ1, then proceed to rjþ2xjþ1 and repeat the calculation to

generate a new value

xjþ2 ¼ rjþ2xjþ1 ¼ a0;nxjþ1 þ a1;nxj þ a2;nxj21 þ · · ·þ ak;nxjþ12k:

The values of xn generated by the above construction satisfy the linear equation (21)

for n ¼ jþ 1; jþ 2; . . . Therefore, fxn} is a unitary solution of (21) whose right ratio

sequence is frn} (by construction). The converse is true by the definition of eigensequence
and the argument preceding this theorem. A

To illustrate the use of preceding ideas, consider the following difference equation in

the finite field Zp where p is a prime number

xnþ1 ¼ 2xn21 þ xn22 þ cn; x0; x1; x2 [ Zp; ð31Þ
where fcn} is an arbitrary sequence in Zp: The characteristic polynomial of the

homogeneous part of (31) is r 3 2 2r 2 1 ¼ ðr þ 1Þðr 2 2 r 2 1Þ. This has a root21 [ Zp,

a unit eigenvalue that yields the SC-factorization

tnþ1 ¼ a00tn þ a01tn21 þ cn; xnþ1 ¼ 2xn þ tnþ1;

where t1 ¼ x0 þ x1, t2 ¼ x1 þ x2. The constant coefficients are a
0
0 ¼ a01 ¼ 1 which yield the

factor equation tnþ1 ¼ tn þ tn21 þ cn. The homogeneous part of this is the Fibonacci

recurrence (26) whose characteristic polynomial is r 2 2 r 2 1. This polynomial has roots in
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Zp if and only if p ; 0; 1; 4ðmod5Þ; see, e.g. [5]. Such roots (eigenvalues) readily yield a SC-
factorizationof (26) inZp.Moregenerally,Theorem9 is applicable viaTheorem11 if (26) has

a unitary solution in Zp, i.e. a solution that never visits 0. Zp contains (non-constant) zero-

avoiding solutions of (26) for infinitely many primes of type p ; 2; 3ðmod5Þ; see [17]. Let p
be such a prime and fun} a zero-avoiding solution of (26) inZp:Repeating the calculations for
(26) but replacing Fn with un gives the following complete SC-factorization for (31)

xnþ1 ¼ 2xn þ tnþ1;

tnþ1 ¼ unþ1

un
tn þ snþ1; t1 ¼ x1 þ x0;

snþ1 ¼ 2
un21

un
sn þ cn; s2 ¼ t2 2

u2

u1
t1:

4.5. Zero-avoiding solutions and fields of quotients

We may take an idea in the preceding discussion one step further. If R is a commutative

ring with identity and no zero divisors (i.e. R is an integral domain), then its complete ring

of quotients is a field in which R is embedded (see, e.g. [7], chapter 3). We denote this field

of quotients by QR which contains an isomorphic copy of R. The unit group ofQR is the set

QRnf0} of all non-zero elements of QR which contains Rnf0}. If QR is not isomorphic to R

then QR has an abundance of units that do not exist in R.

Let us call a sequence fxn} zero-avoiding if xn – 0 for all n. In particular, if R is a field

then a sequence is zero-avoiding if and only if it is unitary. The next result is a

consequence of Theorems 9 and 11 that reduces the search for eigensequences to a search

for zero-avoiding solutions.

Theorem 12. Let R be an integral domain with field of quotients QR and assume that the

parameters aj;n; bn in (1) are in R for all n and all j ¼ 0; 1; . . . ; k:

(a) If fxn} is a zero-avoiding solution of (21) in R then fxnx21
n21} is a (unitary)

eigensequence of (21) in QR:
(b) If (21) has a zero-avoiding solution fxn} in R then (1) has a SC-factorization in QR

consisting of the pair of equations (17) and (18) with parameters an ¼ xnx
21
n21 and

a0m;n all existing in QR for all m; n:

The earlier discussion of the Fibonacci recurrence (26) illustrates the use of this

theorem in a familiar case where the integral domain is Z with field of quotients Q.

4.6. The Poincaré–Perron theorem

The fact that eigensequences are ratio sequences of unitary solutions recalls the celebrated

theorem of Poincaré and Perron; see [12,13] or section 8.2 of [4]. Let R ¼ C and assume

that the coefficients ai;n in (21) converge to constants ai as n!1; i.e. (21) is a ‘Poincaré

difference equation’. In the language of eigensequences, the Poincaré–Perron theorem

may be stated as follows:

Each eigenvalue of (23) is a limit of an eigensequence of (21).

For example, the following Poincaré equation in the field R of real numbers

xnþ1 ¼ 1

n
xn þ xn21 ð32Þ
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has limiting autonomous equation ynþ1 ¼ yn21 with eigenvalues ^1: The characteristic

equation of (32) is rnþ1rn 2 rn=n2 1 ¼ 0 which may be stated also as

rnþ1 ¼ 1

n
þ 1

rn
: ð33Þ

It is readily verified by induction that the solution of (33) with r1 ¼ 1 may be

expressed as

r2n21 ¼ 1; r2n ¼ 2n

2n2 1
; n $ 1:

Thus limn!1rn ¼ 1, as expected. The eigensequence above actually yields much more

information in this case; by Theorem 9 it results in a SC-factorization that readily yields a

formula for the general solution of (32).

Also worth a mention is the fact that not every eigensequence of a Poincaré difference

equation converges to an eigenvalue of the limiting equation. For example, equation (28)

is autonomous, hence trivially of Poincaré type but as we saw previously, it has an

eigensequence of period 3 that is unitary in R.

5. Difference equations with periodic coefficients

In this section we study the following difference equation with periodic coefficients in a

non-trivial ring R, i.e.

xnþ1 ¼ anxn þ bnxn21; anþp1 ¼ an; bnþp2 ¼ bn; n ¼ 0; 1; 2; . . . ; ð34Þ
where the (minimal or prime) periods p1; p2 are positive integers with least common

multiple p ¼ lcmðp1; p2Þ; we refer to (34) as a difference equation of period p. We study

the solutions of (34) using periodic eigensequences rather than the Floquet exponents and

multipliers of the standard method (see, e.g. [4]). The method that is discussed below

applies in the general context of rings and is easily extended to non-homogeneous

equations.

5.1. Periodic eigensequences

A natural question for us is whether (34) has an eigensequence of period p in R. If so then

such an eigensequence yields a SC-factorization of the second-order equation into a pair of

first-order equations. This may occur regardless of whether (34) has any periodic solutions

since equation (34) does not generally possess any periodic solutions.

An eigensequence of period p exists in R if there is an initial value r1 [ R such that the

characteristic equation of (34), i.e. the first-order quadratic difference equation

rnþ1rn ¼ anrn þ bn ð35Þ
has a solution of period p in the ring R. Suppose that there are rj [ R that satisfy (35) for

j ¼ 1; 2; . . . ; p: Then

r2r1 ¼ a1r1 þ b1; r3r2 ¼ a2r2 þ b2:

Let L1 ¼ r1 so that r2L1 ¼ a1L1 þ b1. For j ¼ 2; . . . ; p define Ljþ1 ¼ ajLj þ bjLj21:
Then r2r1 ¼ r2L1 ¼ L2 so that

Journal of Difference Equations and Applications 263



r3L2 ¼ ðr3r2Þr1 ¼ a2r2r1 þ b2r1 ¼ a2L2 þ b2L1 ¼ L3;

r4L3 ¼ ðr4r3Þr2r1 ¼ a3r3r2r1 þ b3r2r1 ¼ a3L3 þ b3L2 ¼ L4;

..

.

By induction, for j ¼ 2; . . . ; p

rjþ1Lj ¼ ðrjþ1rjÞrj21· · ·r1 ¼ ajrjrj21· · ·r1 þ b3rj21· · ·r1 ¼ ajLj þ bjLj21 ¼ Ljþ1:

This process yields a solution frn} of (35) with period p if and only if rpþ1 ¼ r1; thus,

r1Lp ¼ rpþ1Lp ¼ apLp þ bpLp21 ) ðr1 2 apÞLp ¼ bpLp21: ð36Þ

The quantities L1; . . . ; Lp that are generated above evidently depend on r1 in a linear

way so there are aj;bj [ R such that

Lj ¼ ajr1 þ bj

for j ¼ 1; 2; . . . ; p: Inserting this form in (36) yields

ðr1 2 apÞðapr1 þ bpÞ2 bpðap21r1 þ bp21Þ ¼ 0;

r1apr1 þ r1bp 2 ðapap þ bpap21Þr1 2 ðapbp þ bpbp21Þ ¼ 0:
ð37Þ

The definition of Lj implies

ajþ1r1 þ bjþ1 ¼ ajðajr1 þ bjÞ þ bjðaj21r1 þ bj21Þ
¼ ðajaj þ bjaj21Þr1 þ ajbj þ bjbj21:

Suppose that R has an identity 1. By matching coefficients on the two sides of the

above equality, we see that the coefficients aj;bj satisfy (34) for j ¼ 1; 2; . . . ; pwith initial
values

a0 ¼ 0; a1 ¼ 1; b0 ¼ 1; b1 ¼ 0: ð38Þ

Using this fact to simplify (37) we conclude that if r1 is a root of the following

polynomial:

rapr þ rbp 2 apþ1r 2 bpþ1 ¼ 0; ð39Þ

then the solution frn} of (35) has period p. These observations prove the following result.

Theorem 13. Let R be a ring with identity 1 and for j ¼ 1; 2; . . . ; p, let aj;bj be obtained

by iteration from (34) subject to (38) such that the quadratic polynomial (39) is proper, i.e.

not 0 ¼ 0:

(a) If (34) has an eigensequence frn}1n¼1 of period p then r1 is a root of (39) in R.

(b) If r1 is a root of (39) in R and there are rj [ R satisfying (35) for j ¼ 2; . . . ; p; then
frn}1n¼1 is an eigensequence of (34) with period p.
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(c) If a root r1 of (39) in R is a unit and the recurrence

rjþ1 ¼ aj þ bjr
21
j ð40Þ

generates units r2; . . . ; rp in R, then frn}1n¼1 is a unitary eigensequence of (34) with

period p that yields the SC-factorization

tnþ1 ¼ 2bnr
21
n tn; t1 ¼ x1 2 r1x0; xnþ1 ¼ rnþ1xn þ tnþ1:

Polynomial (39) simplifies further if the coefficients aj; bj are in the centre of R, i.e. they
commute with all members of R. Then aj;bj are also in the centre of R so (39) reduces to

apr
2 þ ðbp 2 apþ1Þr 2 bpþ1 ¼ 0: ð41Þ

If an ¼ a and bn ¼ b are constants then p ¼ 1 and the quadratic polynomial (41)

reduces to r 2 2 ar 2 b ¼ 0; that is the characteristic polynomial of the autonomous linear

equation of order 2.

5.2. Examples of periodic difference equations

To illustrate applications of Theorem 13, consider the following difference equation of

period 3,

xnþ1 ¼ 2 cos
2pn

3

� �
xn þ xn21 ð42Þ

with a1 ¼ a2 ¼ 21 and a3 ¼ 2 and bn ¼ 1 constant. Although these coefficients are

defined in any ring with identity, for convenience we assume that the underlying ring is the

field R of real numbers. The numbers aj;bj are readily calculated from (42) using (38):

a2 ¼ 21; a3 ¼ 2; a4 ¼ 3; b2 ¼ 1; b3 ¼ 21; b4 ¼ 21:

The quadratic equation (41) 2r 2 2 4r þ 1 ¼ 0 in this case has two zeros ð2^ ffiffiffi
2

p Þ=2.
Let r1 ¼ ð22 ffiffiffi

2
p Þ=2 and use (40) to calculate r2 ¼ 1þ ffiffiffi

2
p

, r3 ¼ 22þ ffiffiffi
2

p
. Since these

are units in R, by Theorem 13 a unitary eigensequence with period 3 is obtained. If

r ¼ 21=ðr1r2r3Þ then the SC-factorization of (42) is readily calculated and the solution of
its factor equation is found to be

t3jþ1 ¼ r jt1; t3jþ2 ¼ 2
r jt1

r1
; t3jþ3 ¼ r jt1

r1r2
; j $ 0; t1 ¼ x1 2 r1x0:

The cofactor is xnþ1 ¼ rnþ1xn þ tnþ1: Since r ¼ 1þ ffiffiffi
2

p
. 1 it follows that all

solutions of (42) with t1 – 0 are unbounded. However, for initial values satisfying x1 ¼
r1x0 we have t1 ¼ 0; so tn ¼ 0 for all n and

x3n ¼ ð21Þnx0
rn

; x3nþ1 ¼ r1ð21Þnx0
rn

; x3nþ2 ¼ r1r2ð21Þnx0
rn

; n $ 1:

These special solutions of (42) converge to 0 exponentially for all x0.
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Next, consider the following variant of (42) which is a difference equation of period 6

xnþ1 ¼ 2 cos
2pn

3

� �
xn þ ð21Þn21xn21 ð43Þ

because the coefficients bn ¼ ð21Þn21 now have period 2. The numbersaj;bj in this case are

a2 ¼ 21; a3 ¼ 0; a4 ¼ 21; a5 ¼ 1; a6 ¼ 22; a7 ¼ 25; b2 ¼ 1;

b3 ¼ 21; b4 ¼ 21; b5 ¼ 2; b6 ¼ 23; b7 ¼ 28:

These numbers yield the quadratic equation r 2 2 r 2 4 ¼ 0 whose zeros are

ð1^ ffiffiffiffiffi
17

p Þ=2. Let r1 ¼ ð1þ ffiffiffiffiffi
17

p Þ=2 and use (40) to calculate

Since the above-listed numbers are units in R it follows that they are one cycle of an

eigensequence of period 6 which leads to a SC-factorization of (43) in a manner that is

similar to that discussed for (42).

If the quadratic polynomial (39) (or (41) in the commutative case) has no roots in the

underlying ring, then periodic eigensequences with period p do not exist in that ring.

However, other periodic eigensequences may exist (e.g. recall that the autonomous

equation (28) has no integer eigenvalues but has an eigensequence of period 3 in Z).

The absence of periodic eigensequences does not imply the same for non-periodic

eigensequences that yield SC-factorizations. In particular, for the following variant of (42)

xnþ1 ¼ 2 cos
2pn

3

� �
xn 2 xn21 ð44Þ

we find that a2 ¼ 21;a3 ¼ 0;a4 ¼ 1;b2 ¼ 21;b3 ¼ 1;b4 ¼ 3: With these coefficients

(41) has no roots so (44) has no eigensequences of period 3. But suppose we set r1 ¼ 1.

Then it can be verified by induction using the recurrence (40) that

r3jþ1 ¼ 3jþ 1; r3jþ2 ¼ 2
3jþ 2

3jþ 1
; r3jþ3 ¼ 2

1

3jþ 2
; j $ 0

is a (non-periodic) eigensequence for (44). Note that rnrnþ1rnþ2 ¼ 1 for all n so

t3jþ1 ¼ t1
Y3j
i¼1

1

ri
¼ t1

Yj21

i¼0

1

r3iþ1r3iþ2r3iþ3

¼ t1 ¼ x1 2 x0

and the solution of the factor equation may be expressed as

t3jþ1 ¼ t1; t3jþ2 ¼ t1

3jþ 1
; t3jþ3 ¼ 2

t1

3jþ 2
; j $ 0:

r2 r3 r4 r5 r6

ð29þ ffiffiffiffiffi
17

p Þ=8 ð1þ ffiffiffiffiffi
17

p Þ=8 ð3þ ffiffiffiffiffi
17

p Þ=2 ð212
ffiffiffiffiffi
17

p Þ=4 ð232
ffiffiffiffiffi
17

p Þ=4
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From the cofactor the general solution is calculated as follows:

x3jþ1 ¼ ð3jþ 1Þx3j þ t1; x3jþ2 ¼ 2
3jþ 2

3jþ 1
x3jþ1 þ t1

3jþ 1
¼ 2ð3jþ 2Þx3j 2 t1;

x3jþ3 ¼ 2
1

3jþ 2
x3jþ2 2

t1

3jþ 2
¼ x3j:

The last equation implies that x3j ¼ x0 for all j so the general solution of (44) is

xn ¼
x0; if n ¼ 3j;

x0nþ x1; if n ¼ 3jþ 1;

2x0n2 x1; if n ¼ 3jþ 2:

8>><
>>:

In particular, if x0 ¼ 0 then the solution f0; x1;2x1; . . . } of (44) has period 3 for all

x1 – 0:

6. SC-factorization in rings of functions

Difference equations in rings of functions have appeared in applied mathematics. Well-

known special functions such as Bessel functions satisfy recurrence relations that are

examples of difference equations on rings of real or complex-valued functions.

6.1. Rings of functions on a set

For functions from a non-empty set S into a non-zero ring R we define the operations of

addition and multiplication pointwise, i.e. for each s [ S

ðf þ gÞðsÞ ¼ f ðsÞ þ gðsÞ; ðfgÞðsÞ ¼ f ðsÞgðsÞ:

Other, less common types of ring operations are possible for functions but not

considered here. With these operations, the set RS of all functions from S into R is a

function ring and each subring RðSÞ of RS is a ring of R-valued functions on S. Note that

RðSÞ is commutative ifR is. If RðSÞ contains all the constant functions on S then we usually
think of these functions as elements ofR and thus, think ofR as a subring of RðSÞ. In this
section we assume that RðSÞ contains all the constants.

A ring of functions RðSÞ of the above type is also a function algebra; see, e.g. [7] or

[11]. An element u is a unit in RðSÞ if and only if uðsÞ – 0 for all s [ S: In this case, the

inverse of u is just its reciprocal 1=u. Since RðSÞ is closed under addition and

multiplication, if the parameters and initial values aj;n; bn; xj : S! R are in RðSÞ for all
j ¼ 0; 1; . . . ; k and all n, then the solution fxn} of (1) is also contained in RðSÞ.

In the familiar ring C½0; 1� of all continuous, real-valued functions on the interval [0,1]
the units are functions that are always either positive or negative and a zero divisor is a

function whose set of zeros has a non-empty interior in [0,1]. The ring of polynomialsF ½x�
with coefficients in a given field F is a familiar ring that may be viewed as a ring of

functions on F (or some subset of it) by interpreting the indeterminate as a variable; see

[11], chapter 4. In particular, if S ¼ ½0; 1� and F ¼ R then by the Weierstrass

approximation theorem F ½x� is a dense subring of C½0; 1� in the uniform topology.

Various rings of differentiable functions fall in-betweenF ½x� and the continuous functions
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and share the aforementioned properties of the continuous functions. But larger rings such

as bounded functions or integrable functions have different properties.

6.2. SC-factorizations

Corollary 14. Let RðSÞ be a ring of real-valued functions on a non-empty set S. Assume

that aj;nðsÞ $ 0 for all s [ S, j ¼ 0; 1; . . . ; k and all n. IfXk
j¼0

aj;nðsÞ . 0 ð45Þ

for all s [ S and all n then the homogeneous part of the difference equation (1) has unitary

solutions in RðSÞ: Therefore, (1) has a SC-factorization in RðSÞ that is given by (17) and (18).

Proof. Let aj;nðsÞ $ 0 for all s [ S and all n. Choose constant initial values uj ¼ 1 for

j ¼ 0; 1; . . . ; k in (21), i.e. the homogeneous part of (1). By (45),
Pk

j¼0aj;nðsÞ . 0 so

ukþ1ðsÞ ¼
Xk
j¼0

aj;kðsÞ . 0

for all s [ S: Thus ukþ1ðsÞ is a unit in RðSÞ and

ukþ2ðsÞ ¼
Xk
j¼0

aj;kþ1ðsÞukþ12jðsÞ ¼ a0;kþ1ðsÞukþ1ðsÞ þ
Xk
j¼1

aj;kþ1ðsÞ

for all s [ S: If
Pk

j¼1aj;kþ1ðsÞ ¼ 0 for some s then by (45) a0;kþ1ðsÞ – 0: It follows that
ukþ2 is also positive on S, hence a unit in RðSÞ. Proceeding in this fashion, it follows that

unðsÞ . 0 for all s [ S and all n. Thus funðsÞ} is a unitary solution of (15). By Theorem 11

the ratios sequence funðsÞ=un21ðsÞ} is a unitary eigensequence in RðSÞ so Theorem 9 yields

a SC-factorization for (1). A

Remark 15. Non-unitary solutions for (21) exist under the hypotheses of Corollary 14

because an initial function may not be a unit. Furthermore, none of the parameters

aj;nðsÞ; bnðsÞ in Corollary 14 may be units. For instance, the corollary applies to the

following difference equation in C½0; 1�
xnþ1ðrÞ ¼ að12 sin nprÞxnðrÞ þ br nð12 rÞxn21ðrÞ; a; b . 0; r [ ½0; 1�; n $ 1

in which a0;nðrÞ ¼ að12 sin nprÞ, a1;nðrÞ ¼ br nð12 rÞ and bnðrÞ ¼ 0 are non-units, but

for all r, n

a0;nðrÞ þ a1;nðrÞ ¼ að12 sin nprÞ þ br nð12 rÞ . 0:

6.3. The recurrence for modified Bessel functions

To illustrate an application of Corollary 14 consider the linear difference equation

xnþ1ðsÞ ¼ 2n

s
xnðsÞ þ xn21ðsÞ; s [ ð0;1Þ: ð46Þ
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This is the recurrence relation for the modified Bessel functions KnðsÞ of the second

kind, so-called because they are solutions of the second-order linear differential equation

known as the modified Bessel differential equation (see, e.g. [20]). In fact, the sequence of

functions fKnðsÞ} is a particular solution of (46) from specified initial values K0ðsÞ;K1ðsÞ.
According to Corollary 14 a unitary solution funðsÞ} of (46) is generated by any pair of

positive functions; e.g. u0ðsÞ ¼ u1ðsÞ ¼ 1: The first few terms are

u2ðsÞ ¼ 2

s
þ 1; u3ðsÞ ¼ 8

s2
þ 4

s
þ 1; u4ðsÞ ¼ 48

s3
þ 24

s2
þ 2

s
þ 1:

Now the ratios unðsÞ=un21ðsÞ define an eigensequence for (46) and yield the SC-

factorization

tnþ1ðsÞ ¼ 2
un21ðsÞ
unðsÞ tnðsÞ; xnþ1ðsÞ ¼ unþ1ðsÞ

unðsÞ xnðsÞ þ tnþ1ðsÞ

with t1ðsÞ ¼ x1ðsÞ2 ½u1ðsÞ=u0ðsÞ�x0ðsÞ ¼ x1ðsÞ2 x0ðsÞ: Iteration of the factor equation

yields tnðsÞ ¼ ð21Þn21t1ðsÞ=un21ðsÞ; inserting this into the cofactor, summation yields a

formula for the general solution of (46) in terms of the unitary solution funðsÞ} as follows:

xnðsÞ ¼ unðsÞx1ðsÞ þ
Xn21

i¼2

unðsÞ
uiðsÞ tiðsÞ ¼ unðsÞ x0ðsÞ þ t1ðsÞ

Xn21

i¼1

ð21Þi21

uiðsÞui21ðsÞ

" #
:

Different values of positive functions u0ðsÞ; u1ðsÞ yield different formulas but of

course, the same quantity xnðsÞ:

7. Conclusion and future directions

In this paper we studied SC-factorizations of linear difference equations in rings using the

nonlinear method of SC-factorization. For the typical (recursive) linear equation this

method supplements the standard methods that use modules and group actions. The

advantages offered by the SC-factorization method include the following:

. Because of its nonlinear origins, SC-factorization handles non-homogeneous terms

integrally, so it is not necessary to calculate a particular solution by independent

methods.

. Variable coefficients naturally fit into the eigensequence framework.

. For linear equations (homogeneous or not) with constant coefficients in an abstract

ring, it is often possible to find an eigensequence where eigenvalues do not exist and

ring extensions are not known or not feasible.

We obtained conditions that are sufficient but not necessary for the existence of SC-

factorizations. Relaxing or modifying the hypotheses in these cases should lead to broader

applicability. For example, extending Corollary 14 to include negative coefficients will lead,

among other things, to results for recurrences of special functions such as Bessel, Legendre,

Hermite and so on that are similar to the example of modified Bessel functions above.

Many challenges at different levels of generality remain. A ring with identity may

contain no unitary solutions of the homogeneous part of (1). For example, it is shown in

[17] that for certain primes, e.g. 2; 3; 7; 23; . . . , the field Zp contains no zero-avoiding

(hence unitary) solutions of (26). In such cases (1) fails to have the linear form symmetry

(12). However, non-existence of a particular form symmetry is not equivalent to the non-
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existence of a SC-factorization; see Section 3.4 on the (nonlinear) inversion form

symmetry. The question of whether in the absence of (12) other types of form symmetry

exist for which the factor or the cofactor equation is linear remains open.

With regard to the Poincaré–Perron theorem of Section 4.6, whether eigensequences

of a Poincaré difference equation in topological rings more general than R or C (e.g.

Banach algebras) converge to eigenvalues of the limiting equation is an interesting

problem for future discussion.

If R is not commutative then using different orders of multiplications of coefficients

aj;n with the variables xn2j in (1) may result in different equations (with the same set of

coefficients). Not all the results in this paper extend readily to these variants in the non-

commutative cases.

Finally, linear difference equations may occur in non-recursive forms; e.g. a0;nxnþ
a1;nxn21 þ · · ·þ ak;nxn2k ¼ bn, where the leading coefficient a0;n is not a unit in the ring R

for infinitely many n and the equation cannot be solved uniquely for xn. For non-recursive

difference equations even such basic issues as the existence and uniqueness of solutions

are not assured. For a study of reduction of order of non-recursive difference equations

(linear or quadratic), see [15].
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