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Using the method of semiconjugate factorization we obtain reductions in orders for
difference equations that are defined as products of complex exponential and power

functions. As an application of this type of reduction in order, we explain the
behaviours of positive solutions in special cases of such equations with real parameters.
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1. Introduction

Consider the following nonlinear difference equation of order k + 1

Xnp1 = XX et et T T ()
where the parameters a;, b; are complex numbers for j = 0,1, ...,k and {a,} is a given
sequence of complex numbers. A solution of (1) is a sequence {x,} of complex numbers
that satisfies (1) for all n = 1 if a set of initial values xo,x—1, ..., x—; is specified.

Equation (1) may also be written in the equivalent, more stylized form as a product of
power and exponential functions:

Kbt = WL BB B

with constants 3; = e %, j=0,1,...,k and vy, = e* for all n = 0. We may refer to
equation (1) as an expow difference equation for short.

Special cases of (1) with real parameters appear in the literature. For example, the
following expow difference equation of order two is derived from a discrete time
population model in [3]:

Xn4+1 = Xn—1 eX T ) (2)

with « a fixed real number. In particular, it is shown in [3] that if 0 < o = 1 then every
positive solution of (2) converges to a solution with period two. Numerical simulations
indicate that this statement is not true for o > 1. In this case, it is shown in [6] (also see
Example 12 below) that equation (2) exhibits a large variety of stable solutions depending
on the choice of (positive) initial values xy, x—;. These positive solutions include periodic
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solutions of all possible even periods as well as bounded, non-periodic solutions. The
approach in [6] is based on reducing equation (2) to an equation of order one whose
properties are known:

Ynt+1 = tn+1yne_yn (3)
where,
ea
thy1 = l_ .

n

We note that the second equation above for ¢, is independent of the equation (3) and an
explicit formula for its 2-periodic solution is easy to calculate. With this in mind, (3)
may be considered a reduction of order of equation (2) from two to one.

Equation (3) together with its associated equation (for the parameter ¢,41) constitute a
semiconjugate factorization of (2) over (0, o). The method of semiconjugate factorization
is discussed in detail in [6]. This method applies to any algebraic group so its potential
applicability extends to areas where discrete modelling naturally occurs (e.g. dynamics on
networks; see for instance, [4]).

In this paper, we use the concept of semiconjugacy to obtain reductions of order for
equation (1) over the set of complex numbers C. We first generalize a result stated in [6]
from the multiplicative group (0, c0) of all positive real numbers to all multiplicative
subgroups of C. Then we use this extended result (Lemma 1 below) to obtain our main
results in this paper on the reduction of order of equation (1). The proofs given here are
technically self-contained and do not require the PDE-based approach in [6]. However,
since the results in this paper belong to the category of semiconjugate factorization a brief
review of [6] offers additional insights into the nature of our results here.

As applications of our results we study the positive solutions of some special cases of
(1) with real parameters. These special cases are the ones seen in scientific models. The
exponential and power functions are then single-valued and one to one. Positive solutions
are guaranteed to exist uniquely for a given set of initial values xo,x—1, ..., x—, if

aj,bj,a, ER forall 0=j=k, n=0, xp,x-1,...,x4>0. @)

2. Semiconjugacy and reduction of order

Let C be the set of all complex numbers. The non-autonomous difference equation (1) of
order k + 1 unfolds to a sequence of self maps of CH as

nih ¢ —..—h ,
Fu(zo,21, - 20) = (20'2]" . .. ggte® 0% K205 ey Th—1),
for every point (zo,21, ..., %) € C*! at which the expression on the right is defined.

The unfolding functions F,, are also referred to as the associated vector maps of equation
(1); see, e.g. [5]. It follows that if {x,} is a solution of (1) then for all n,

A 0y —boxy = —bpxy—k

Fp(xn, ooy X)) = (X500 x00 e S Xy X1y« vy Xn—ka1)

= (xn+17xn»xn—17 e 7xn—k+l)-

Let Cy = C\{0}, a group under the ordinary multiplication of complex numbers. Our
primary purpose is to use the ideas in [6] to obtain a sequence of self maps ¢, : Co — Co
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and a map H : Ci™' — C, such that
H°F, = ¢,oH for all n = 0. (®)]

If (5) holds then we say that the difference equation (1) is semiconjugate to the first
order difference equation

Iht1 = ¢n(tn)a (6)

on Cy. Equation (6) is the factor equation and the function H(zg, z1, ..., zx) defines a form
symmetry. In the autonomous case (no explicit dependence on the independent variable n)
this is the same type of semiconjugacy as that introduced in [5] for maps of RY
(where maps are not limited to unfoldings of higher order equations).

In [6] a form symmetry is obtained for the following equation that generalizes (1)

Xpt+1 = Bn ¢f0(xn)¢’1 (-xnfl) o wk(-xnfk% (7)

where 8, > 0 for all n and each #; is a self map of the subgroup (0, c0) of Cy. The method
in [6] is based on the fact that equation (7) can be transformed into additive form using
exponential and logarithmic functions. Since the latter functions are homeomorphisms for
real numbers and functions, the solutions of (7) can be easily related to those of its additive
version.

The following basic lemma uses a new proof to extend the result in [6] to arbitrary
subgroups of Cy without using the complex exponential and logarithmic functions. This
lemma is essential for the derivation of our results on the expow equations. For a deeper
understanding of the origins of this result we refer to [6].

LEMMA 1. Let G be a non-trivial subgroup of Cy under ordinary multiplication and assume
that
Bux-; €G, ¥:G—G, j=0,...k, n=1.

If there is ¢ € Cy such that the following equality holds for all 7z € G,

1

Y@ @) =2 ®)
then (5) holds and equation (7) has a form symmetry
H(zo,z1, -, zk) = 20m(z1) -+ - lz), 20,215 -+, 2 € G, )
with the functions h; : G— C defined as
B =@ @ =1,k (10)

With the form symmetry defined by (9) and (10), the following pair of lower order
equations (called a semiconjugate factorization) is equivalent to (7):

tar1 = Buty,  to = xoh(x—1) - - he(x—g). (11)

Iny
h] (yn) cee hk(yn—k+l) ,

Vn+1 = yszxfj,ij,l,...,k—l (12)
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Proof. The unfoldings or associated vector functions F, of equation (7) are

Fo(zo,21, -y 20) = (Bavo(zo)n(z1) - .. n(z), 20,215 « -5 Zh—1)-
where (20,71, .. .,z) € GF1. Therefore, if H is defined by (9) and (10) then
H(Fu(z0,215 -+, 20) = Batho(z0) - - Pz (z0)h2(z1) - - - hi(zie—1)
= Butho(20)¥ (1) -+ -1 (- 1) (@) [P0 (20) ']
SRR FE T S TC
= Buth@ZE Yo@) g o) 1 (@)

On the other hand, if we define ¢,(z) = ,z¢ as in (11) for all z € G and all integers
n = 0 then

bn(H (20,21, -+, 20)) = Bulzohi (z)ha(z2) - - (i)
= Buzy 2] 1110(21)71}0 e [Zi:l Yo(ze1) ¢ - lﬂk—l(Zk—l)H} L[hk(Zk)]C
= .anngzl/fo(Zl)fC o ‘Ziill/fo(Zk—l)fckil 1 (@) Yz,

where the last equality follows by (8) because

ezl = 25 o)™ 1@ = 25 5 ) = ).

Hence equality (5) holds for each n.

To establish the equivalence of (7) to the system of equations (11) and (12) we show
that every solution {x,} of (7) corresponds uniquely to a solution {(¢,,y,)} of the system
and vice versa. First, let {x,} be the unique solution of (7) generated by a given set of
initial values xp,x_1, ...,x—¢ in G and define the sequence

= H(xm s 7xn—k)-

Then the semiconjugate relation (5) implies that
thv1 = Hpg1, X0, -0 Xn—kt 1)
= H(Buho(xp) - . - Y (Xn—1) X, Xn—15 + -+ s Xn—kt1)
= H(Fu(xn, ..., Xn—k))
= Gu(H(xn, - Xn—k))
= ¢u(tn).

Therefore, {#,} is the solution of equation (11) that is uniquely defined by the
initial value

to = xoh1(x—1) -+ h(x—p).

Further, notice that

Xnp1h1 () -+ - he(—kq1) = HQog1, X, -+ Xn—k1) = tagt,

so that (12) holds with y, = x,, for all n = —k.
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Conversely, let {(#,,y,)} be the unique solution of the system of equations (11) and
(12) with a given set of initial values

t07y—l7y—27"'7y—kEG- (13)

We note that #, generates the sequence {f,} which satisfies (11) independently of
equation (12). These values 7, then contribute to the calculation of the sequence {y,}
which satisfies (12). By the latter equation,

Iny1 = yn-‘rlhl(yn) T hk()’n*k-&—l) = H(yn-‘rlv T 7ynfk+1)~

It follows that for alln = 0, ¢, = H(y,, ..., Ys—t). Now by equations (5), (11), (12) and the
definition of H,

Pu(tn)

hi(ya) -+ e (Yn—k+1)
— d)n(H(ym s 7Ynfk))

hi(yn) - e (Yn—rk11)
_ HEQns -5 ¥0-1))

hi(yn) - i Yn—k+1)
_ H(Bnlp()(yn) U=k Yy Yn—1s -+ > Yn—k+1)

hi )+ e Yn—k+1)

= ButoVn) - - Y(Vu—r)-

Ynt+1 =

It follows that {y,} is a solution of (7) with initial values (13). O

Remark. (Triangular systems). We refer to equation (12) in Lemma 1 as the cofactor
equation for (7). The pair of equations (11) and (12) form a triangular system that is
uncoupled in the sense that equation (11) is independent of the variable y,. Triangular
systems have general properties that simplify studying their solutions; for instance,
the general structure of the periodic solutions of triangular systems is determined in [1].
Also see [7] for some background on these systems.

3. Reductions of order in expow equations

The difference equation (12) has order k, one less than (7) and its solutions {y,} subject to
the conditions of Lemma 1 are identical with the solutions {x,} of (7). In this sense,
equation (12) represents a reduction of order for (7). The variable coefficient 7, is
calculated independently from the first order equation (11) by induction as stated in the
next lemma whose straightforward proof is omitted.

LEMMA 2. The general solution of equation (11) is

n
ntl j
tap1 = 1§ I | B (14)
Jj=0
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If B, = B is constant for all n (i.e. (7) is an autonomous equation) then

plto/p)""  with p=B11=9 if c#1,

Iny1 = .
W™, if =1

To find sufficient conditions on the parameters a;, b; that allow a reduction of order of
(1) via Lemmas 1 and 2, we require that the functions

Yiz)=2z%e "7 j=0,1,...k,
satisfy identity (8), i.e. for some ¢ € Cy the following must hold for all z € G

ko_p ok k=1 _p k=1, _ k+1
Zaoc e boc zzalc e bic A,”.Zake bz :Zc ] (15)

After some rearranging of terms, we see that identity (15) holds for all z if both of the
following equations hold:

c — aock — alck_l — o —aqg—1c —ap =0,
bock +b1Ck_1 4+ - 4+ b—1c+ b, =0.

For ¢ € C satisfying both of the above polynomial equations the form symmetry and
semiconjugate factorization are determined using the functions

j —cil — J— =l ... —q: j—1 =24 ... b,
hj(Z) — chl,[/()(Z) [ %71(Z) I _ ZC’ apc’ a,—le(boc/ +bic!" "+ '4'171—1)27 (16)

as shown in the following result.

THEOREM 3. Assume that the following polynomials

Po(2) = 2" —apz* — a1 — - — a1z — ags
00(z) = boz" + b1z ' + -+ by_iz+ by,

have a common root ¢y € Cy. Then the following statements are true:
(a) Equation (1) has a reduction of order to the expow equation

— —Poo4, P01 TPOK=T 4 =q0.0Yn = q0,1Yn—1" " TG0 k—1Yn—k+1
Vil = tn1 Y, 00, 01 Y e PO ! !, a7

where forj=0,1, ...,k — 1,

1707j:C{)Jrl _aOC{)_alc{)ﬁl — -+ T aj—-1Co — aj, (18)

qOﬁj:boC{)-FblC{)_l + - +bj71C0+bj, (19)
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and

ontl

n
thiy1 =1y €7, o, = Z ay—jcy, o = Xohi(x—1) - Ip(x—g).
=0

(b) Let ¢y € Cy be also a common root of both Py and Q. Then ¢, is a root of both of
the following polynomials

Pi(2) ="+ pooz* '+ poiF+ - 4 pos-t,
012) = qooz" '+ qoaz" P+ -+ + qox-1,

so by Part (a) the expow equation (17) has a reduction of order to

_ - —P11 “Plrk-2 — Zn— Zn—1—""" —q1 k—2Zn—k+2
Znbl = Tng12, Pl,ozlrl . "ankJrze 41,020 —4q1,12n—1 q1.k—22n k+”7 (20)

where fori =0,1, ...,k — 2,

PLi = Cifrl +P0,0Ci1 '|'Po.1Ci1_l + -+ +poi-1€1 + po,i,
g1 = qooc| + f]o?lclf1 + -+ 4+ qoi-1c1 + qo,,

and

Cr]:+l n C/l
Tnt1 =719 thJrl—j'
J=0

Proof. (a) By Lemma 1 the cofactor equation is

Yn+1 = tn+lhl(yn)7l e 'hk(yn—k+l)71-

The proof of this part can now be concluded by induction using (16) and combining
various exponents then using Lemma 2 (with 3, = e*) for the numbers ¢, .
(b) By assumption,

Po(c1) = Qo(c1) = 0. (2D
Now
(= co)P1(2) = (z = <o) (z" + Zpo,jzk“>
=0
k—1 ‘
=zl 4 Z [po,j — COPO.j*l]Zk_j — CoPOk—1-
Jj=0
where we define py —; = 1. From (18) for each j = 0,1, ...,k — 1 we obtain

Po,j — CoPo,j—1 = —4aj,
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and further, since Py(cg) = 0,

_ k k—1
CoPok—1 = Co(Co — apCy T T ak—l)

= Py(co) + ai

= dy.

Thus

(z = co)P1(2) = Po(2),

and if ¢ # ¢o then Pi(c;) = 0by (21). If ¢; = ¢g then ¢ is a double root of both Py and Q,
so that their derivatives are zeros, i.e.,

Po(co) = Qy(co) = 0. (22)

In this case, using (18) we obtain

k—1
Pi(cy) = CS + Z(Cg‘rl _ Cl()cé) — - —aj1c0 — aj)cg—j—l
Jj=0
k—1 i
= (k+ Deg ~ Z (k = pajcy ™ = Pylco)-
Jj=0

Therefore, if ¢; =co then Pi(c;) =0 by (22). Similar calculations show that
Qi(c1) = 0; thus by Part (a) equation (17) has a semiconjugate factorization.

The factorization is obtained as in Part (a). For equation (20) we need only to change q;
to —po; and b; to go ; in our hypotheses for each j =0,1, ...,k — 1 to obtain the new
numbers p;; and g, ; for (20) as stated in the statement of the theorem. ]

The next result applies Theorem 3 to second order expow equations.

Corollary 4. Let ay, ay, by, by, a, € C for n = 1 such that
b} + aphoby — a\b: =0, by # 0. (23)
Then the second order expow equation

Xpp1 = Zoleilea,ﬁbox,ﬁblxnfl, (24)

has a reduction of order to the first order equation

1 — —b
Yn+1 = té) yzo e Oyna c = _bl/b()v Yo = Xo,
(25)

n
o, = E ¢, ty = xox‘;—laoeb(’x".
Jj=0

In particular, if ay,ay, by, by, a, € R for n = 1 then ¢ € R and reduction of order is
defined on R. O
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Proof. First we note that conditions (23) imply that by and at least one of ag,a; are

nonzero. Now ¢ = —by /by is the unique nonzero root of Qg and by the equality in (23),
2
b
c? — apc — aj :—;—i-ao—l—al =0.
0 bo

So the above value of c is also a root of Py. Now the proof is completed by applying
Theorem 3. The last assertion is obvious. ]

The next corollary gives reduction of order for a generalization of equation (2)
that includes an arbitrary delay in the exponential term and an arbitrary sequence {a,}.
In this case, like Corollary 4, the reductions of order are defined over the real numbers
if the parameters are real.

COROLLARY 3. Let k = 1, by, b, € C with by # 0 and a, € C for n = 0. Consider the
expow delay equation:

_ a, —box, —brx,—
Xpt1 = Xp—1€ o Kk, (26)

(a) Equation (26) has two possible reductions of order: (i) If by = —by then

10 g, —boyn—boyn—1— -+ —boyn_s
Vorl = = e%nboyn=boyn-1 0Vn ket
n
n 27
o, = § @, to= xoxfleb(’(x*‘”*ﬁ'"”*“‘).
J=0
(i) If k is odd and by = by then
— —boyutboya-1= -+ (=D oy
Vptl = but1Vn€ 0Yn+boYn—1 (=1 Doy kel
(28)

n
_ =" g, _ i X0 (v =t (=D Ty
fnp1 = 1 e’ o, = E (_1)]0%7,7 fg=—¢ 0(X-1—X-2 (=1y k1)
=0 -1

(D) If k is even then the expow equation (27) has a further reduction of order to

_ —boznthozu—2—bozn-a+t - H(= 1oz,
Zngl = Fup1€ 20 0Zn-2—boZn—4 (=1 "bo k2

n

_ (= =1y — bo(xo—x—2+ -+ - +(— Dfx_

Fapl =719 iy 0= Xo€ 0(Xo—x-2 (=D p2)
J=0

(¢) If by, by € Rwith by # 0and «,, € R for all n then the reductions of order in Parts
(a) and (b) are defined on R.
Proof. (a) Since a; = 1 and a; = 0 for j # 1, we have
Pyc)=c"' = =02 - ) =0=c= =1

If ¢ =1 then Qy(c) = by + by =0 or by = —by. Applying Theorem 3 with ¢ =1
yields the claimed reduction of order. The other order reduction for odd k is obtained
similarly with ¢ = —1.
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(b) In equation (27) which has order k the new parameter values are ap = —1
and a; = 0 for j > 0. Now Py(c) = ck + ck~1 =0 yields a nonzero value ¢ = —1. This
must also be a root of Qy; since the new values of the parameters b; are b; = by for
j=20,...,k— 1 we must have

(=D by + (=1 by + -+ + (= Dby + by = 0. (29)

With by # 0 (29) holds if and only if k is even, in which case applying Theorem 3 with
¢ = —1 yields the stated reduction of order for (27).
(c) This is clear, since ¢ = =1 is real in Parts (a) and (b). O

The following result involves a more general delay pattern than that in Part (a)(i) of
Corollary 35, i.e., when the parameters by, by have equal magnitudes but opposite signs.

COROLLARY 6. For k,m = 1, B € Cy and a, € C for n = 0 the expow delay equation
X1 = Xy e TR B (30)
has a reduction of order to
foen ROyt Y

Yn+1 = ) where :
Yn¥Yn—1"""Yn—m+1

n
— — T S i
g, = E aj, to—xoxfln-xfmﬂeﬁ( e k),
J=0

For m = 0 equation (30) has a reduction of order to

Vurl = toemfﬁ(yﬁynfﬁ---+yn7k+1).

Proof. First assume that kK = m = 1. Then

Po(c) = 1 = a,c" M =M™ = 1), Qo(e) = —Bet + B.

Clearly ¢ = 1 is a common nonzero root of P, and Q so Theorem 3 can be applied to
obtain the order reduction by calculating

=1, if j<m
Po.j = et —au,c™m =0 if j=m,

and

bocl = —B, if j<k
D=\ bocl + b= —B+B=0, if j=k

Next, if m > k = 1 then

Po(c) =" —a, =c" =1, Qle) = =B + B F = =B Kk - 1.
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Again ¢ = 1 is a common nonzero root of Py and Qp, so Theorem 3 can be applied
similarly to the preceding case.
In the case m = 0 we have

Po(c) = M —aped = e — 1), Qo(c) = —Bc* + B.

Thus ¢ =1 is a common nonzero root and the proof is completed by applying
Theorem 3. ]

We note that equation (30) is not a generalization of equation (2). The following result
generalizes the delay pattern in both equation (2) and in Part (a)(ii) of Corollary 5,
i.e., when the parameters by, by are equal. The proof follows the same argument as in
the preceding corollary by showing that ¢ = —1 is a common root of Py and Oy, We omit
the details of this proof.

COROLLARY 7. Fork,m = 1, B € Cy and o, € C for n = 0 the expow delay equation
Xpt] = Xp—ompp € P P2 (€2))
has a reduction of order to

(_1)n+1 .
lo YnYn=2"""Yn—2m+2 P L e e S
)

Yo+l = where

Yn=1Yn=3 " Yn—2m+3

n
i X0X—2 X —2m42 X=Xt X
o, = § (_1)]an7j7 fo = ePl-17x=2 2%t 1)
=0 X—1X=3 " X=2m+43

Example 12 below uses the order reduction in Corollary 7 to study the positive
solutions of a special case of equation (31).

4. Repeated reductions of order

It is of interest that equation (17) in Theorem 3 is again an expow equation similar to (1).
This suggests that the methods of the preceding section can be applied to (17). Indeed,
under the conditions in Part (b) of Theorem 3 a further reductions of order was obtained by
repeating the semiconjugate factorization process. A similar situation was encountered in
Part (b) of Corollary 5.

The main impediment to repeatedly using Theorem 3 in this way is the requirement
that the polynomials P, and Qg have common nonzero roots. The next result illustrates a
special case in which Py and Q, reduce to a single polynomial and thus, the factorization
process continues until a triangular system of first order equations is obtained. In this way
the original equation of order k 4 1 is reduced to an equation of order one.

COROLLARY 8. The expow equation

Ak—1

__ .ap . ai ‘ a,+bx, —aobx,—1 — -+ —ag—1bx,—
X1 =X, 15 o, X) € 0%n=1 k1 Pnk (32)
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where for j=0,1, ...,k — l and alln = (,
aj, a,,b € C,ap— # 0.

has a complete semiconjugate factorization into a triangular system of first order
equations over Cy.

Proof. First assume that b # 0. For equation (23) setting Py(c) = Qp(c) = 0 gives

N — gk —ai N — o — g e = 0, bck — bagc*™ ' — oo = baj_; = 0. (33)
Since a;—; # 0 the nonzero roots of the above polynomials are identical to the zeros of
the following polynomial

P(c) = ck— aockf1 — e = .

Note that every root of P, is nonzero and a root of both Py and Q. Therefore, by
Theorem 3, not only equation (32) has a semiconjugate factorization, but also if k > 1
then the factorization process continues until the order of the cofactor equation is reduced
to one.

Finally, if » = 0 (no exponential functions) then equation (33) reduces to a trivial
identity so once again only one polynomial P(c) remains.

We point out that by denoting e* = v, and e " = 8, equation (32) can be written in
the following more symmetric form

Xyl = ’)/nXZOXZI_] .. ,ka_—]l(_i_lB—anaoxn—l . Bakflxnfk‘
]
Example 9. For each positive integer k, the expow delay equation
=x! O by = abT— b,a, € R,a,b # 0 34
Xn+1 xn—k-He ’ a, b, oy ,a, ’ ( )

is clearly of type (32), so by Corollary 8 it has a complete semiconjugate factorization into
a triangular system of first order equations. The polynomial P(c) = c¥ — a in this case so
the common nonzero roots of Py and Q, are just the k-th roots of a.

In particular, if k=2 then the polynomial P(c) = c? — a has roots *./a. Using
Theorem 3 we obtain the following system of first order equations

A a _ —\a _ b
Iy =€ "l,{, Tp+l = In1 1, ‘[7 VYngp1 = 1€

Note that if @ < 0 then the above system is defined over the complex numbers even
though all parameters in equation (34) are real. This situation is analogous to the case of a
linear difference equation having complex eigenvalues; see [6] for full semiconjugate
factorizations of linear equations into triangular systems of first order equations.

5. Positive solutions

This section applies some of the results obtained in previous sections to study the positive
solutions of certain expow equations subject to conditions (4). We discuss the asymptotic
behaviours of solutions in two examples below, where direct analysis (without order
reduction) seems to be more difficult.
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The first example examines a slightly modified version of equation (2) that
nevertheless shows a markedly different behaviour. The semiconjugate factorization
makes transparent the root causes of this substantial change in behaviour that might be
difficult to explain otherwise.

Example 10. By way of comparison with equation (2) consider the following expow
equation

Xppl = Xy_jettPnTbuo s e ROb >0, (35)

which is similar to (2) except for a sign change in the exponent. By Corollary 5, equation
(35) reduces to the first order equation:

to _
Yl = _e(n+1)a+by,,7 ) = Xpx—1€ br-r (36)

n

Since t, and yy = xo are positive, if a > 0 then evidently each solution of (36) is
unbounded. If ¢ = 0 then because the function e?* /u is unimodal with a single minimum,
the equation

by, —bx—
to 4 XpX—1€7" !
Ynp1 = —eM = —r (37)
Yn Yn

has two, one or no fixed points depending on how large the initial value f, is; in particular,
for sufficiently small values of 7, there are two fixed points.

This bifurcation is not so transparent in a direct examination of the second order
equation (35) but it has a significant effect on the asymptotic behaviours of the solutions of
that equation because the appearance of the fixed point in (37) yields bounded solutions for
equation (35) when a = 0. In this case, using straightforward analysis it is possible to
determine the regions of initial points (x_;,xp) in the Euclidean plane that imply the
occurrence of a particular asymptotic behaviour. In all cases, solutions are either
unbounded or they converge to a positive fixed point. Finally, if @ < 0 then we may in
addition have convergence to zero. In no case are the complex behaviours exhibited by the
solutions of equation (2) observed.

Next we consider a more general, non-autonomous version of (2) with « replaced by a
periodic sequence «,. We first present a lemma to facilitate the discussion of the non-
autonomous equation below.

LemMA 11. Let {0,} be a periodic sequence of positive numbers with minimal period
p = 1 and let {t,} be a solution of the difference equation

O
thy1 = t_v (38)

n

for a given initial value ty > 0. Then the following are true:

(a) If p is odd then {t,} is periodic with period 2p (not necessarily minimal).
(b) If p is even and

0002 ...0p—2 = 0103 ...0p—1, (39)
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then {t,} is periodic with period p.
(c¢) If p is even but (39) does not hold then {t,} has a subsequence that decreases to zero
and another subsequence that increases to infinity.

Proof. (a) Using straightforward induction we find that

lp0103 -+ 0y—30,—1 . .
t, = T if nis even and; 40)
0002 "+ Op—40p—2

_ 0p02° " 0,-30n—1

= , if n is odd. 41)
100103+ Op—40p—2
If p =2q + 1 is odd then
O2¢+1+j = Oj fOI'j:O,l, ...,26]. (42)

Further, 1, = t444> has even index so by (40)

_ 100103 - 024-3025—102g+102¢+3 * * - Odg—104g+1

[5)
P
0002 * ** 02¢—202¢02¢+202¢+4 * * - O4q—2044

0103+ 024—302¢—1 02¢+102¢+3 * * * O4g—104g+1
=1 = Io, (43)
02¢+202g+4 * ** O4¢g—204q 00072+ 02¢—207

where the last equality holds because each of the two ratios in (43) equals 1 by (42).
It follows that {z,} has period 2p. This may not be a prime period; for example, if 0; = o
forj=0,1,...,p —2 where 0 > 0 and o # 1 and if also 0,,—1 =ty = 1 then by (41)

-1)/2
0002...(TP730-P71 . 0-@ )/

100103 Op—40p—2 oP—1/2

P 1 =1,

i.e., {t,} has period p.
(b) Suppose that p is even. Then again by (40)
103 0p—-30p—1

I, =1 = 1o,
gp02 * - Op—40p—2

where the last equality is true by (39).
(c) If p is even then as in Part (b)

g103 " 0p—-30p—1

1, =1y (44)

gp02 - Op—40p—2

Since o has even period p, by (40)

2
R (0103 e Up—sop—1> (Up+10p+3 - tfzp—wzp—l) _, (0103 o op—sap—l)
2p = to =1 .
0002 " Op—40p—2 OpOp+t2 ... 02p—402p—2 0002+ Op—40p—2
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Inductively, we see that

m
g103 " 0p—-30p—1
tmp =1 ( ) . (45)

gp02 * - Op—40p—2

If (39) does not hold then the ratio inside the parentheses in (45) is either greater than
one or less than one. If greater than one then ¢,,, — o monotonically as m — oo and

Tmp (o)
tups1 = L = =0
tmp tmp

Similarly, if the ratio in (45) is less than one then t,,—0 and ?,,4; — %

monotonically as m — oo. Thus the proof of (c) is complete. (|

Example 12. Consider the expow equation
Xn+1 = xn*lean_bxn_bxnila X0y X—1, b > 0» (46)

where «, is a periodic sequence of real numbers with minimal or prime period p = 1.
By Corollary 7 with k = m = 1 this equation reduces in order to

ap

— —by, _
Va1 = thr1yn€ ", where t,4 =

n

If p is either odd or it is even and satisfies (39) then by Lemma 11 the solution {z,,} of the
factor equation above is periodic with period p or 2p. A full cycle of {#,} consists of ¢ distinct
points where ¢ = 2p. It follows that each orbit of (46) is confined to g distinct curves of type

&) = tue ™,

in the plane where the #; are the distinct values of 7,,. For sufficiently large values of «,, some
of the mappings & are chaotic (due to their having a period 3 solution or a snap-back repeller;
see e.g. [2,6]). Thus the collection of points (y,—1,y,) on each curve & tends to be densely
distributed on a segment of &;. These dense patches are visibly highlighted in a numerically
generated plot of the orbit of (46) in its state space (or ‘phase plane’). Figure 1 depicts this
situation for (46) with b = 1 and

@, =5+0.6 sin?,
which has period 6. Thus e“ also has period 6 and further, it satisfies (39) with
eMe®e® = eMe™e = 3269017.37.

The sequence {f,} has only 4 distinct points per cycle:

n 1 2 3 4 5 6
t, 8.16 306 8.16 182 485 182

so that we observe patches on only four distinct curves in Figure 1. We note that these
patches are not continuous curves, but made of 20, 000 tightly packed points. Clearly this
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A ]

Figure 1. A non-periodic phase plane orbit of equation (46) with periodic «,.

is not a periodic orbit for equation (46). For smaller values of «,, for which the mappings &
have periodic points, numerical simulations show that the solutions of (46) are also
periodic; these periods must be integer multiples of p by the preceding argument.

If p is even but (39) is not satisfied then the unbounded subsequences of {7,} cause a
spread of points in the orbit of (46) because now there are an infinite number of curves like
the &; above. Figure 2 shows a numerically generated orbit of this type where the sequence

@, = ln(120 +20 sin¥),
has period 8 with
eMe®e®e = 201640000, e*e™e*e® = 201600000.
The planar orbit in Figure 2 is a plot of 60000 points (b = 1). As more points are
generated numerically and plotted, the peak of the cone will rise without bound since the

sequence {7,} is unbounded.

12 T T T

Figure 2. A phase plane orbit of equation (46) with «, still periodic.
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6. Conclusion and future directions

Our study of expow equations above points to a large variety of equations with
semiconjugate factorizations and thus, reducible in order. We have also shown that such
equations are capable of generating rich dynamic behaviours. Further, the behaviours of
positive solutions in the last two examples above might be difficult to explain without the
reduction of order that results from the semiconjugate factorization. On the other hand, the
interested reader will have noticed that many types of expow equations that are amenable
to analysis using Lemma 1 and Theorem 3 have not been considered in this first study.
Some of those equations and the behaviours of their solutions on various subgroups of C
(e.g., (0, 00) or the circle group T) can provide significant challenges and rewards in the
future studies of expow equations.

Finally, many expow equations do not satisfy identity (8) and, therefore, the above
discussion is not applicable to such equations. Whether the latter types of expow equations
possess form symmetries and semiconjugate factorizations of a different kind remains an
open question.
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