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Reductions of order in difference equations defined as products of
exponential and power functions

H. Sedaghat*

Department of Mathematics, Virginia Commonwealth University, Richmond, Virginia 23284-2014,
USA

(Received 9 August 2009; final version received 20 March 2010)

Using the method of semiconjugate factorization we obtain reductions in orders for
difference equations that are defined as products of complex exponential and power
functions. As an application of this type of reduction in order, we explain the
behaviours of positive solutions in special cases of such equations with real parameters.

Keywords: order reduction; semiconjugate; factorization; power functions;
exponential functions

1. Introduction

Consider the following nonlinear difference equation of order k þ 1

xnþ1 ¼ xa0n x
a1
n21· · ·x

ak
n2ke

an2b0xn2· · ·2bkxn2k ; ð1Þ

where the parameters aj; bj are complex numbers for j ¼ 0; 1; . . . ; k and {an} is a given

sequence of complex numbers. A solution of (1) is a sequence {xn} of complex numbers

that satisfies (1) for all n $ 1 if a set of initial values x0; x21; . . . ; x2k is specified.

Equation (1) may also be written in the equivalent, more stylized form as a product of

power and exponential functions:

xnþ1 ¼ gnx
a0
n x

a1
n21· · ·x

ak
n2kb

xn
0 b

xn21

1 · · ·bxn2k

k ;

with constants bj ¼ e2bj , j ¼ 0; 1; . . . ; k and gn ¼ ean for all n $ 0. We may refer to

equation (1) as an expow difference equation for short.

Special cases of (1) with real parameters appear in the literature. For example, the

following expow difference equation of order two is derived from a discrete time

population model in [3]:

xnþ1 ¼ xn21e
a2xn2xn21 ; ð2Þ

with a a fixed real number. In particular, it is shown in [3] that if 0 , a # 1 then every

positive solution of (2) converges to a solution with period two. Numerical simulations

indicate that this statement is not true for a . 1. In this case, it is shown in [6] (also see

Example 12 below) that equation (2) exhibits a large variety of stable solutions depending

on the choice of (positive) initial values x0; x21. These positive solutions include periodic
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solutions of all possible even periods as well as bounded, non-periodic solutions. The

approach in [6] is based on reducing equation (2) to an equation of order one whose

properties are known:

ynþ1 ¼ tnþ1yne
2yn ð3Þ

where,

tnþ1 ¼
ea

tn
:

We note that the second equation above for tn is independent of the equation (3) and an

explicit formula for its 2-periodic solution is easy to calculate. With this in mind, (3)

may be considered a reduction of order of equation (2) from two to one.

Equation (3) together with its associated equation (for the parameter tnþ1) constitute a

semiconjugate factorization of (2) over ð0;1Þ. The method of semiconjugate factorization

is discussed in detail in [6]. This method applies to any algebraic group so its potential

applicability extends to areas where discrete modelling naturally occurs (e.g. dynamics on

networks; see for instance, [4]).

In this paper, we use the concept of semiconjugacy to obtain reductions of order for

equation (1) over the set of complex numbers C. We first generalize a result stated in [6]

from the multiplicative group ð0;1Þ of all positive real numbers to all multiplicative

subgroups of C. Then we use this extended result (Lemma 1 below) to obtain our main

results in this paper on the reduction of order of equation (1). The proofs given here are

technically self-contained and do not require the PDE-based approach in [6]. However,

since the results in this paper belong to the category of semiconjugate factorization a brief

review of [6] offers additional insights into the nature of our results here.

As applications of our results we study the positive solutions of some special cases of

(1) with real parameters. These special cases are the ones seen in scientific models. The

exponential and power functions are then single-valued and one to one. Positive solutions

are guaranteed to exist uniquely for a given set of initial values x0; x21; . . . ; x2k, if

aj; bj;an [ R for all 0 # j # k; n $ 0; x0; x21; . . . ; x2k . 0: ð4Þ

2. Semiconjugacy and reduction of order

Let C be the set of all complex numbers. The non-autonomous difference equation (1) of

order k þ 1 unfolds to a sequence of self maps of Ckþ1 as

Fnðz0; z1; . . . ; zkÞ ¼ ðza00 z
a1
1 . . . zakk e

an2b0z02· · ·2bkzk ; z0; . . . ; zk21Þ;

for every point ðz0; z1; . . . ; zkÞ [ Ckþ1 at which the expression on the right is defined.

The unfolding functions Fn are also referred to as the associated vector maps of equation

(1); see, e.g. [5]. It follows that if {xn} is a solution of (1) then for all n,

Fnðxn; . . . ; xn2kÞ ¼ ðxa0n . . . xakn2ke
an2b0xn2· · ·2bkxn2k ; xn; xn21; . . . ; xn2kþ1Þ

¼ ðxnþ1; xn; xn21; . . . ; xn2kþ1Þ:

Let C0 ¼ Cn{0}, a group under the ordinary multiplication of complex numbers. Our

primary purpose is to use the ideas in [6] to obtain a sequence of self maps fn : C0 ! C0

H. Sedaghat1752



and a map H : Ckþ1
0 ! C0 such that

H+Fn ¼ fn+H for all n $ 0: ð5Þ

If (5) holds then we say that the difference equation (1) is semiconjugate to the first

order difference equation

tnþ1 ¼ fnðtnÞ; ð6Þ

on C0. Equation (6) is the factor equation and the function Hðz0; z1; . . . ; zkÞ defines a form
symmetry. In the autonomous case (no explicit dependence on the independent variable n)

this is the same type of semiconjugacy as that introduced in [5] for maps of RN

(where maps are not limited to unfoldings of higher order equations).

In [6] a form symmetry is obtained for the following equation that generalizes (1)

xnþ1 ¼ bnc0ðxnÞc1ðxn21Þ · · ·ckðxn2kÞ; ð7Þ

where bn . 0 for all n and each cj is a self map of the subgroup ð0;1Þ of C0. The method

in [6] is based on the fact that equation (7) can be transformed into additive form using

exponential and logarithmic functions. Since the latter functions are homeomorphisms for

real numbers and functions, the solutions of (7) can be easily related to those of its additive

version.

The following basic lemma uses a new proof to extend the result in [6] to arbitrary

subgroups of C0 without using the complex exponential and logarithmic functions. This

lemma is essential for the derivation of our results on the expow equations. For a deeper

understanding of the origins of this result we refer to [6].

Lemma 1. Let G be a non-trivial subgroup ofC0 under ordinary multiplication and assume

that

bn; x2j [ G; cj : G! G; j ¼ 0; . . . k; n $ 1:

If there is c [ C0 such that the following equality holds for all z [ G,

c0ðzÞ
c k

c1ðzÞ
c k21

. . . ;ckðzÞ ¼ zc
kþ1

; ð8Þ

then (5) holds and equation (7) has a form symmetry

Hðz0; z1; . . . ; zkÞ ¼ z0h1ðz1Þ · · · hkðzkÞ; z0; z1; . . . ; zk [ G; ð9Þ

with the functions hj : G! C0 defined as

hjðzÞ ¼ zc
j

c0ðzÞ
2c j21

· · ·cj21ðzÞ
21; j ¼ 1; . . . k: ð10Þ

With the form symmetry defined by (9) and (10), the following pair of lower order

equations (called a semiconjugate factorization) is equivalent to (7):

tnþ1 ¼ bnt
c
n; t0 ¼ x0h1ðx21Þ · · · hkðx2kÞ: ð11Þ

ynþ1 ¼
tnþ1

h1ðynÞ . . . hkðyn2kþ1Þ
; y2j ¼ x2j; j ¼ 0; 1; . . . ; k2 1 ð12Þ

.
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Proof. The unfoldings or associated vector functions Fn of equation (7) are

Fnðz0; z1; . . . ; zkÞ ¼ ðbnc0ðz0Þc1ðz1Þ . . .ckðzkÞ; z0; z1; . . . ; zk21Þ:

where ðz0; z1; . . . ; zkÞ [ Gkþ1. Therefore, if H is defined by (9) and (10) then

HðFnðz0; z1; · · · ; zkÞÞ ¼ bnc0ðz0Þ · · ·ckðzkÞh1ðz0Þh2ðz1Þ · · · hkðzk21Þ

¼ bnc0ðz0Þc1ðz1Þ · · ·ck21ðzk21ÞckðzkÞ z
c
0c0ðz0Þ

21
� �

zc
2

1 c0ðz1Þ
2cc1ðz1Þ

21
h i

· · · zc
k

k21c0ðzk21Þ
2c k21

· · ·ck21ðzk21Þ
21

h i
¼ bnckðzkÞz

c
0z

c 2

1 c0ðz1Þ
2c · · · zc

k

k21c0ðzk21Þ
2c k21

· · ·ck21ðzk21Þ
2c:

On the other hand, if we define fnðzÞ ¼ bnz
c as in (11) for all z [ G and all integers

n $ 0 then

fnðHðz0; z1; · · · ; zkÞÞ ¼ bn½z0h1ðz1Þh2ðz2Þ · · ·hkðzkÞ�
c

¼ bnz
c
0 zc1c0ðz1Þ

21
� �c

· · · zc
k21

k21c0ðzk21Þ
2c k22

· · ·ck21ðzk21Þ
21

h ic
½hkðzkÞ�

c

¼ bnz
c
0z

c 2

1 c0ðz1Þ
2c · · · zc

k

k21c0ðzk21Þ
2c k21

· · ·ck21ðzk21Þ
2cckðzkÞ;

where the last equality follows by (8) because

½hkðzkÞ�
c ¼ zc

kþ1

k c0ðzkÞ
2c k

· · ·ck21ðzkÞ
2c ¼ zc

kþ1

k z2c kþ1

k ckðzkÞ ¼ ckðzkÞ:

Hence equality (5) holds for each n.

To establish the equivalence of (7) to the system of equations (11) and (12) we show

that every solution {xn} of (7) corresponds uniquely to a solution {ðtn; ynÞ} of the system

and vice versa. First, let {xn} be the unique solution of (7) generated by a given set of

initial values x0; x21; . . . ; x2k in G and define the sequence

tn ¼ Hðxn; . . . ; xn2kÞ:

Then the semiconjugate relation (5) implies that

tnþ1 ¼ Hðxnþ1; xn; . . . ; xn2kþ1Þ

¼ Hðbnc0ðxnÞ . . .ckðxn2kÞ; xn; xn21; . . . ; xn2kþ1Þ

¼ HðFnðxn; . . . ; xn2kÞÞ

¼ fnðHðxn; . . . ; xn2kÞÞ

¼ fnðtnÞ:

Therefore, {tn} is the solution of equation (11) that is uniquely defined by the

initial value

t0 ¼ x0h1ðx21Þ · · · hkðx2kÞ:

Further, notice that

xnþ1h1ðxnÞ · · · hkðxn2kþ1Þ ¼ Hðxnþ1; xn; · · · ; xn2kþ1Þ ¼ tnþ1;

so that (12) holds with yn ¼ xn for all n $ 2k.

H. Sedaghat1754



Conversely, let {ðtn; ynÞ} be the unique solution of the system of equations (11) and

(12) with a given set of initial values

t0; y21; y22; . . . ; y2k [ G: ð13Þ

We note that t0 generates the sequence {tn} which satisfies (11) independently of

equation (12). These values tn then contribute to the calculation of the sequence {yn}

which satisfies (12). By the latter equation,

tnþ1 ¼ ynþ1h1ðynÞ · · · hkðyn2kþ1Þ ¼ Hðynþ1; · · · ; yn2kþ1Þ:

It follows that for all n $ 0, tn ¼ Hðyn; . . . ; yn2kÞ. Now by equations (5), (11), (12) and the

definition of H,

ynþ1 ¼
fnðtnÞ

h1ðynÞ · · · hkðyn2kþ1Þ

¼
fnðHðyn; . . . ; yn2kÞÞ

h1ðynÞ · · · hkðyn2kþ1Þ

¼
HðFnðyn; . . . ; yn2kÞÞ

h1ðynÞ · · · hkðyn2kþ1Þ

¼
Hðbnc0ðynÞ · · ·ckðyn2kÞ; yn; yn21; . . . ; yn2kþ1Þ

h1ðynÞ · · · hkðyn2kþ1Þ

¼ bnc0ðynÞ · · ·ckðyn2kÞ:

It follows that {yn} is a solution of (7) with initial values (13). A

Remark. (Triangular systems). We refer to equation (12) in Lemma 1 as the cofactor

equation for (7). The pair of equations (11) and (12) form a triangular system that is

uncoupled in the sense that equation (11) is independent of the variable yn. Triangular

systems have general properties that simplify studying their solutions; for instance,

the general structure of the periodic solutions of triangular systems is determined in [1].

Also see [7] for some background on these systems.

3. Reductions of order in expow equations

The difference equation (12) has order k, one less than (7) and its solutions {yn} subject to

the conditions of Lemma 1 are identical with the solutions {xn} of (7). In this sense,

equation (12) represents a reduction of order for (7). The variable coefficient tnþ1 is

calculated independently from the first order equation (11) by induction as stated in the

next lemma whose straightforward proof is omitted.

Lemma 2. The general solution of equation (11) is

tnþ1 ¼ tc
nþ1

0

Yn
j¼0

bc j

n2j: ð14Þ

Journal of Difference Equations and Applications 1755



If bn ¼ b is constant for all n (i.e. (7) is an autonomous equation) then

tnþ1 ¼
rðt0=rÞ

c nþ1

with r ¼ b1=ð12cÞ; if c – 1;

t0b
nþ1; if c ¼ 1:

8<
:

To find sufficient conditions on the parameters aj; bj that allow a reduction of order of

(1) via Lemmas 1 and 2, we require that the functions

cjðzÞ ¼ zaj e2bjz; j ¼ 0; 1; . . . ; k;

satisfy identity (8), i.e. for some c [ C0 the following must hold for all z [ G

za0c
k

e2b0c
kzz a1c

k21

e2b1c
k21z . . . zake2bkz ¼ zc

kþ1

: ð15Þ

After some rearranging of terms, we see that identity (15) holds for all z if both of the

following equations hold:

ckþ1 2 a0c
k 2 a1c

k21 2 · · · 2 ak21c2 ak ¼ 0;

b0c
k þ b1c

k21 þ · · · þ bk21cþ bk ¼ 0:

For c [ C0 satisfying both of the above polynomial equations the form symmetry and

semiconjugate factorization are determined using the functions

hjðzÞ ¼ zc
j

c0ðzÞ
2c j21

· · ·cj21ðzÞ
21 ¼ zc

j2a0c
j212 · · ·2aj21eðb0c

j21þb1c
j22þ · · ·þbj21Þz; ð16Þ

as shown in the following result.

Theorem 3. Assume that the following polynomials

P0ðzÞ ¼ zkþ1 2 a0z
k 2 a1z

k21 2 · · · 2 ak21z2 ak;

Q0ðzÞ ¼ b0z
k þ b1z

k21 þ · · · þ bk21zþ bk;

have a common root c0 [ C0. Then the following statements are true:

(a) Equation (1) has a reduction of order to the expow equation

ynþ1 ¼ tnþ1y
2p0;0
n y

2p0;1
n21 . . . y

2p0;k21

n2kþ1 e
2q0;0yn2q0;1yn212 · · ·2q0;k21yn2kþ1 ; ð17Þ

where for j ¼ 0; 1; . . . ; k2 1,

p0; j ¼ c
jþ1
0 2 a0c

j
0 2 a1c

j21
0 2 · · · 2 aj21c0 2 aj; ð18Þ

q0; j ¼ b0c
j
0 þ b1c

j21
0 þ · · · þ bj21c0 þ bj; ð19Þ
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and

tnþ1 ¼ t
cnþ1
0

0 esn ; sn ¼
Xn
j¼0

an2jc
j
0; t0 ¼ x0h1ðx21Þ · · · hkðx2kÞ:

(b) Let c1 [ C0 be also a common root of both P0 and Q0. Then c1 is a root of both of

the following polynomials

P1ðzÞ ¼ zk þ p0;0z
k21 þ p0;1z

k22 þ · · · þ p0;k21;

Q1ðzÞ ¼ q0;0z
k21 þ q0;1z

k22 þ · · · þ q0;k21;

so by Part (a) the expow equation (17) has a reduction of order to

znþ1 ¼ rnþ1z
2p1;0
n z

2p1;1
n21 . . . z

2p1;k22

n2kþ2 e
2q1;0zn2q1;1zn212 · · ·2q1;k22zn2kþ2 ; ð20Þ

where for i ¼ 0; 1; . . . ; k2 2,

p1;i ¼ ciþ1
1 þ p0;0c

i
1 þ p0;1c

i21
1 þ · · · þ p0;i21c1 þ p0;i;

q1;i ¼ q0;0c
i
1 þ q0;1c

i21
1 þ · · · þ q0;i21c1 þ q0;i;

and

rnþ1 ¼ r
cnþ1
1

0

Yn
j¼0

t
c
j

1

nþ12j:

Proof. (a) By Lemma 1 the cofactor equation is

ynþ1 ¼ tnþ1h1ðynÞ
21 · · · hkðyn2kþ1Þ

21:

The proof of this part can now be concluded by induction using (16) and combining

various exponents then using Lemma 2 (with bn ¼ ean Þ for the numbers tnþ1.

(b) By assumption,

P0ðc1Þ ¼ Q0ðc1Þ ¼ 0: ð21Þ

Now

ðz2 c0ÞP1ðzÞ ¼ ðz2 c0Þ zk þ
Xk21

j¼0

p0; jz
k2j21

 !

¼ zkþ1 þ
Xk21

j¼0

½p0; j 2 c0p0; j21�z
k2j 2 c0p0;k21:

where we define p0;21 ¼ 1. From (18) for each j ¼ 0; 1; . . . ; k2 1 we obtain

p0; j 2 c0p0; j21 ¼ 2aj;
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and further, since P0ðc0Þ ¼ 0,

c0p0;k21 ¼ c0 ck0 2 a0c
k21
0 2 · · · 2 ak21

� �
¼ P0ðc0Þ þ ak

¼ ak:

Thus

ðz2 c0ÞP1ðzÞ ¼ P0ðzÞ;

and if c1 – c0 then P1ðc1Þ ¼ 0 by (21). If c1 ¼ c0 then c0 is a double root of both P0 andQ0

so that their derivatives are zeros, i.e.,

P0
0ðc0Þ ¼ Q0

0ðc0Þ ¼ 0: ð22Þ

In this case, using (18) we obtain

P1ðc0Þ ¼ ck0 þ
Xk21

j¼0

ðc
jþ1
0 2 a0c

j
0 2 · · · 2 aj21c0 2 ajÞc

k2j21
0

¼ ðk þ 1Þck0 2
Xk21

j¼0

ðk2 jÞajc
k2j21
0 ¼ P0

0ðc0Þ:

Therefore, if c1 ¼ c0 then P1ðc1Þ ¼ 0 by (22). Similar calculations show that

Q1ðc1Þ ¼ 0; thus by Part (a) equation (17) has a semiconjugate factorization.

The factorization is obtained as in Part (a). For equation (20) we need only to change aj
to 2p0; j and bj to q0; j in our hypotheses for each j ¼ 0; 1; . . . ; k2 1 to obtain the new

numbers p1;i and q1;i for (20) as stated in the statement of the theorem. A

The next result applies Theorem 3 to second order expow equations.

Corollary 4. Let a0; a1; b0; b1;an [ C for n $ 1 such that

b21 þ a0b0b1 2 a1b
2
0 ¼ 0; b1 – 0: ð23Þ

Then the second order expow equation

xnþ1 ¼ xa0n x
a1
n21e

an2b0xn2b1xn21 ; ð24Þ

has a reduction of order to the first order equation

ynþ1 ¼ tc
nþ1

0 ya02c
n esn2b0yn ; c ¼ 2b1=b0; y0 ¼ x0;

sn ¼
Xn
j¼0

an2jc
j; t0 ¼ x0x

c2a0
21 eb0x21 :

ð25Þ

In particular, if a0; a1; b0; b1;an [ R for n $ 1 then c [ R and reduction of order is

defined on R. A
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Proof. First we note that conditions (23) imply that b0 and at least one of a0; a1 are

nonzero. Now c ¼ 2b1=b0 is the unique nonzero root of Q0 and by the equality in (23),

c2 2 a0c2 a1 ¼
b21
b20

þ a0
b1

b0
2 a1 ¼ 0:

So the above value of c is also a root of P0. Now the proof is completed by applying

Theorem 3. The last assertion is obvious. A

The next corollary gives reduction of order for a generalization of equation (2)

that includes an arbitrary delay in the exponential term and an arbitrary sequence {an}.

In this case, like Corollary 4, the reductions of order are defined over the real numbers

if the parameters are real.

Corollary 5. Let k $ 1, b0; bk [ C with bk – 0 and an [ C for n $ 0. Consider the

expow delay equation:

xnþ1 ¼ xn21e
an2b0xn2bkxn2k : ð26Þ

(a) Equation (26) has two possible reductions of order: (i) If bk ¼ 2b0 then

ynþ1 ¼
t0

yn
esn2b0yn2b0yn212 · · ·2b0yn2kþ1 ;

sn ¼
Xn
j¼0

aj; t0 ¼ x0x21e
b0ðx21þx22þ · · ·þx2kþ1Þ:

ð27Þ

(ii) If k is odd and bk ¼ b0 then

ynþ1 ¼ tnþ1yne
2b0ynþb0yn212 · · ·þð21Þk21b0yn2kþ1 ;

tnþ1 ¼ tð21Þnþ1

0 esn ; sn ¼
Xn
j¼0

ð21Þ jan2j; t0 ¼
x0

x21

eb0ðx212x22þ · · ·þð21Þk21x2kþ1Þ:
ð28Þ

(b) If k is even then the expow equation (27) has a further reduction of order to

znþ1 ¼ rnþ1e
2b0znþb0zn222b0zn24þ · · ·þð21Þk21b0zn2kþ2 ;

rnþ1 ¼ rð21Þnþ1

0

Yn
j¼0

tð21Þj

nþ12j; r0 ¼ x0e
b0ðx02x22þ · · ·þð21Þkx2kþ2Þ:

(c) If b0; bk [ R with bk – 0 and an [ R for all n then the reductions of order in Parts

(a) and (b) are defined on R.

Proof. (a) Since a1 ¼ 1 and aj ¼ 0 for j – 1, we have

P0ðcÞ ¼ ckþ1 2 ck21 ¼ 0 ) ck21ðc2 2 1Þ ¼ 0 ) c ¼ ^1:

If c ¼ 1 then Q0ðcÞ ¼ b0 þ bk ¼ 0 or bk ¼ 2b0. Applying Theorem 3 with c ¼ 1

yields the claimed reduction of order. The other order reduction for odd k is obtained

similarly with c ¼ 21.
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(b) In equation (27) which has order k the new parameter values are a0 ¼ 21

and aj ¼ 0 for j . 0. Now P0ðcÞ ¼ ck þ ck21 ¼ 0 yields a nonzero value c ¼ 21. This

must also be a root of Q0; since the new values of the parameters bj are bj ¼ b0 for

j ¼ 0; . . . ; k2 1 we must have

ð21Þk21b0 þ ð21Þk22b0 þ · · · þ ð21Þb0 þ b0 ¼ 0: ð29Þ

With b0 – 0 (29) holds if and only if k is even, in which case applying Theorem 3 with

c ¼ 21 yields the stated reduction of order for (27).

(c) This is clear, since c ¼ ^1 is real in Parts (a) and (b). A

The following result involves a more general delay pattern than that in Part (a)(i) of

Corollary 5, i.e., when the parameters b0; bk have equal magnitudes but opposite signs.

Corollary 6. For k;m $ 1, b [ C0 and an [ C for n $ 0 the expow delay equation

xnþ1 ¼ xn2me
anþbxn2bxn2k ; ð30Þ

has a reduction of order to

ynþ1 ¼
t0e

sn2bðynþyn21þ · · ·þyn2kþ1Þ

ynyn21 · · · yn2mþ1

; where :

sn ¼
Xn
j¼0

aj; t0 ¼ x0x21 · · · x2mþ1e
bðx21þx22þ · · ·þx2kþ1Þ:

For m ¼ 0 equation (30) has a reduction of order to

ynþ1 ¼ t0e
sn2bðynþyn21þ · · ·þyn2kþ1Þ:

Proof. First assume that k $ m $ 1. Then

P0ðcÞ ¼ ckþ1 2 amc
k2m ¼ ck2mðcmþ1 2 1Þ; Q0ðcÞ ¼ 2bck þ b:

Clearly c ¼ 1 is a common nonzero root of P0 and Q0 so Theorem 3 can be applied to

obtain the order reduction by calculating

p0; j ¼
c jþ1 ¼ 1; if j , m

cjþ1 2 amc
j2m ¼ 0 if j $ m;

(

and

q0; j ¼
b0c

j ¼ 2b; if j , k

b0c
j þ bk ¼ 2bþ b ¼ 0; if j ¼ k:

(

Next, if m . k $ 1 then

P0ðcÞ ¼ cmþ1 2 am ¼ cmþ1 2 1; Q0ðcÞ ¼ 2bcm þ bcm2k ¼ 2bcm2kðck 2 1Þ:
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Again c ¼ 1 is a common nonzero root of P0 and Q0, so Theorem 3 can be applied

similarly to the preceding case.

In the case m ¼ 0 we have

P0ðcÞ ¼ ckþ1 2 a0c
k ¼ ckðc2 1Þ; Q0ðcÞ ¼ 2bck þ b:

Thus c ¼ 1 is a common nonzero root and the proof is completed by applying

Theorem 3. A

We note that equation (30) is not a generalization of equation (2). The following result

generalizes the delay pattern in both equation (2) and in Part (a)(ii) of Corollary 5,

i.e., when the parameters b0; bk are equal. The proof follows the same argument as in

the preceding corollary by showing that c ¼ 21 is a common root of P0 and Q0 We omit

the details of this proof.

Corollary 7. For k; m $ 1, b [ C0 and an [ C for n $ 0 the expow delay equation

xnþ1 ¼ xn22mþ1e
an2bxn2bxn22kþ1 ; ð31Þ

has a reduction of order to

ynþ1 ¼
tð21Þnþ1

0 ynyn22 · · · yn22mþ2

yn21yn23 · · · yn22mþ3

esn2b½yn2yn21þ · · ·2yn22kþ2�; where :

sn ¼
Xn
j¼0

ð21Þ jan2j; t0 ¼
x0x22 · · · x22mþ2

x21x23 · · · x22mþ3

ebðx212x22þ · · ·þx22kþ1Þ:

Example 12 below uses the order reduction in Corollary 7 to study the positive

solutions of a special case of equation (31).

4. Repeated reductions of order

It is of interest that equation (17) in Theorem 3 is again an expow equation similar to (1).

This suggests that the methods of the preceding section can be applied to (17). Indeed,

under the conditions in Part (b) of Theorem 3 a further reductions of order was obtained by

repeating the semiconjugate factorization process. A similar situation was encountered in

Part (b) of Corollary 5.

The main impediment to repeatedly using Theorem 3 in this way is the requirement

that the polynomials P0 and Q0 have common nonzero roots. The next result illustrates a

special case in which P0 and Q0 reduce to a single polynomial and thus, the factorization

process continues until a triangular system of first order equations is obtained. In this way

the original equation of order k þ 1 is reduced to an equation of order one.

Corollary 8. The expow equation

xnþ1 ¼ xa0n xa1n21; . . . ; x
ak21

n2kþ1e
anþbxn2a0bxn212 · · ·2ak21bxn2k : ð32Þ
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where for j ¼ 0; 1; . . . ; k2 1 and all n $ 0,

aj;an; b [ C; ak21 – 0:

has a complete semiconjugate factorization into a triangular system of first order

equations over C0.

Proof. First assume that b – 0. For equation (23) setting P0ðcÞ ¼ Q0ðcÞ ¼ 0 gives

ckþ1 2 a0c
k 2 a1c

k21 2 · · · 2 ak21c ¼ 0; bck 2 ba0c
k21 2 · · · 2 bak21 ¼ 0: ð33Þ

Since ak21 – 0 the nonzero roots of the above polynomials are identical to the zeros of

the following polynomial

PðcÞ ¼ ck 2 a0c
k21 2 · · · 2 ak21:

Note that every root of P(c) is nonzero and a root of both P0 and Q0. Therefore, by

Theorem 3, not only equation (32) has a semiconjugate factorization, but also if k . 1

then the factorization process continues until the order of the cofactor equation is reduced

to one.

Finally, if b ¼ 0 (no exponential functions) then equation (33) reduces to a trivial

identity so once again only one polynomial PðcÞ remains.

We point out that by denoting ean ¼ gn and e2b ¼ b, equation (32) can be written in

the following more symmetric form

xnþ1 ¼ gnx
a0
n x

a1
n21 · · · x

ak21

n2kþ1b
2xnba0xn21 · · ·bak21xn2k :

A

Example 9. For each positive integer k, the expow delay equation

xnþ1 ¼ xan2kþ1e
anþbxn2abxn2k ; a; b;an [ R; a; b – 0; ð34Þ

is clearly of type (32), so by Corollary 8 it has a complete semiconjugate factorization into

a triangular system of first order equations. The polynomial PðcÞ ¼ ck 2 a in this case so

the common nonzero roots of P0 and Q0 are just the k-th roots of a.

In particular, if k ¼ 2 then the polynomial PðcÞ ¼ c2 2 a has roots ^
ffiffiffi
a

p
. Using

Theorem 3 we obtain the following system of first order equations

tnþ1 ¼ ean t
ffiffi
a

p

n ; rnþ1 ¼ tnþ1r
2
ffiffi
a

p

n ; ynþ1 ¼ rnþ1e
byn :

Note that if a , 0 then the above system is defined over the complex numbers even

though all parameters in equation (34) are real. This situation is analogous to the case of a

linear difference equation having complex eigenvalues; see [6] for full semiconjugate

factorizations of linear equations into triangular systems of first order equations.

5. Positive solutions

This section applies some of the results obtained in previous sections to study the positive

solutions of certain expow equations subject to conditions (4). We discuss the asymptotic

behaviours of solutions in two examples below, where direct analysis (without order

reduction) seems to be more difficult.
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The first example examines a slightly modified version of equation (2) that

nevertheless shows a markedly different behaviour. The semiconjugate factorization

makes transparent the root causes of this substantial change in behaviour that might be

difficult to explain otherwise.

Example 10. By way of comparison with equation (2) consider the following expow

equation

xnþ1 ¼ xn21e
aþbxn2bxn21 ; a [ R; b . 0; ð35Þ

which is similar to (2) except for a sign change in the exponent. By Corollary 5, equation

(35) reduces to the first order equation:

ynþ1 ¼
t0

yn
eðnþ1Þaþbyn ; t0 ¼ x0x21e

2bx21 : ð36Þ

Since t0 and y0 ¼ x0 are positive, if a . 0 then evidently each solution of (36) is

unbounded. If a ¼ 0 then because the function ebu=u is unimodal with a single minimum,

the equation

ynþ1 ¼
t0

yn
ebyn ¼

x0x21e
byn2bx21

yn
; ð37Þ

has two, one or no fixed points depending on how large the initial value t0 is; in particular,

for sufficiently small values of t0 there are two fixed points.

This bifurcation is not so transparent in a direct examination of the second order

equation (35) but it has a significant effect on the asymptotic behaviours of the solutions of

that equation because the appearance of the fixed point in (37) yields bounded solutions for

equation (35) when a ¼ 0. In this case, using straightforward analysis it is possible to

determine the regions of initial points ðx21; x0Þ in the Euclidean plane that imply the

occurrence of a particular asymptotic behaviour. In all cases, solutions are either

unbounded or they converge to a positive fixed point. Finally, if a , 0 then we may in

addition have convergence to zero. In no case are the complex behaviours exhibited by the

solutions of equation (2) observed.

Next we consider a more general, non-autonomous version of (2) with a replaced by a

periodic sequence an. We first present a lemma to facilitate the discussion of the non-

autonomous equation below.

Lemma 11. Let {sn} be a periodic sequence of positive numbers with minimal period

p $ 1 and let {tn} be a solution of the difference equation

tnþ1 ¼
sn

tn
; ð38Þ

for a given initial value t0 . 0. Then the following are true:

(a) If p is odd then {tn} is periodic with period 2p (not necessarily minimal).

(b) If p is even and

s0s2 . . .sp22 ¼ s1s3 . . .sp21; ð39Þ
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then {tn} is periodic with period p.

(c) If p is even but (39) does not hold then {tn} has a subsequence that decreases to zero

and another subsequence that increases to infinity.

Proof. (a) Using straightforward induction we find that

tn ¼
t0s1s3 · · ·sn23sn21

s0s2 · · ·sn24sn22

; if n is even and; ð40Þ

tn ¼
s0s2 · · ·sn23sn21

t0s1s3 · · ·sn24sn22

; if n is odd: ð41Þ

If p ¼ 2qþ 1 is odd then

s2qþ1þj ¼ sj for j ¼ 0; 1; . . . ; 2q: ð42Þ

Further, t2p ¼ t4qþ2 has even index so by (40)

t2p ¼
t0s1s3 · · ·s2q23s2q21s2qþ1s2qþ3 · · ·s4q21s4qþ1

s0s2 · · ·s2q22s2qs2qþ2s2qþ4 · · ·s4q22s4q

¼ t0
s1s3 · · ·s2q23s2q21

s2qþ2s2qþ4 · · ·s4q22s4q

� �
s2qþ1s2qþ3 · · ·s4q21s4qþ1

s0s2 · · ·s2q22s2q

� �
¼ t0; ð43Þ

where the last equality holds because each of the two ratios in (43) equals 1 by (42).

It follows that {tn} has period 2p. This may not be a prime period; for example, if sj ¼ s

for j ¼ 0; 1; . . . ; p2 2 where s . 0 and s – 1 and if also sp21 ¼ t0 ¼ 1 then by (41)

tp ¼
s0s2 · · ·sp23sp21

t0s1s3 · · ·sp24sp22

¼
s ðp21Þ=2

s ðp21Þ=2
¼ 1 ¼ t0;

i.e., {tn} has period p.

(b) Suppose that p is even. Then again by (40)

tp ¼ t0
s1s3 · · ·sp23sp21

s0s2 · · ·sp24sp22

¼ t0;

where the last equality is true by (39).

(c) If p is even then as in Part (b)

tp ¼ t0
s1s3 · · ·sp23sp21

s0s2 · · ·sp24sp22

: ð44Þ

Since s has even period p, by (40)

t2p ¼ t0
s1s3 · · ·sp23sp21

s0s2 · · ·sp24sp22

� �
spþ1spþ3 . . .s2p23s2p21

spspþ2 . . .s2p24s2p22

� �
¼ t0

s1s3 · · ·sp23sp21

s0s2 · · ·sp24sp22

� �2

:
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Inductively, we see that

tmp ¼ t0
s1s3 · · ·sp23sp21

s0s2 · · ·sp24sp22

� �m

: ð45Þ

If (39) does not hold then the ratio inside the parentheses in (45) is either greater than

one or less than one. If greater than one then tmp !1 monotonically as m!1 and

tmpþ1 ¼
smp

tmp
¼

s0

tmp
! 0:

Similarly, if the ratio in (45) is less than one then tmp ! 0 and tmpþ1 !1

monotonically as m!1. Thus the proof of (c) is complete. A

Example 12. Consider the expow equation

xnþ1 ¼ xn21e
an2bxn2bxn21 ; x0; x21; b . 0; ð46Þ

where an is a periodic sequence of real numbers with minimal or prime period p $ 1.

By Corollary 7 with k ¼ m ¼ 1 this equation reduces in order to

ynþ1 ¼ tnþ1yne
2byn ; where tnþ1 ¼

ean

tn
:

If p is either odd or it is even and satisfies (39) then by Lemma 11 the solution {tn} of the

factor equation above is periodic with period p or 2p. A full cycle of {tn} consists of q distinct

points where q # 2p. It follows that each orbit of (46) is confined to q distinct curves of type

jiðuÞ ¼ tiue
2bu;

in the plane where the ti are the distinct values of tn. For sufficiently large values of an some

of the mappings ji are chaotic (due to their having a period 3 solution or a snap-back repeller;

see e.g. [2,6]). Thus the collection of points ðyn21; ynÞ on each curve ji tends to be densely

distributed on a segment of ji. These dense patches are visibly highlighted in a numerically

generated plot of the orbit of (46) in its state space (or ‘phase plane’). Figure 1 depicts this

situation for (46) with b ¼ 1 and

an ¼ 5þ 0:6 sin
pn

3
;

which has period 6. Thus ean also has period 6 and further, it satisfies (39) with

ea1ea3ea5 ¼ ea2ea4ea6 ¼ 3269017:37:

The sequence {tn} has only 4 distinct points per cycle:

n 1 2 3 4 5 6

tn 8:16 30:6 8:16 18:2 4:85 18:2

so that we observe patches on only four distinct curves in Figure 1. We note that these

patches are not continuous curves, but made of 20, 000 tightly packed points. Clearly this
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is not a periodic orbit for equation (46). For smaller values of an for which the mappings ji
have periodic points, numerical simulations show that the solutions of (46) are also

periodic; these periods must be integer multiples of p by the preceding argument.

If p is even but (39) is not satisfied then the unbounded subsequences of {tn} cause a

spread of points in the orbit of (46) because now there are an infinite number of curves like

the ji above. Figure 2 shows a numerically generated orbit of this type where the sequence

an ¼ ln 120þ 20 sin
pn

4

� 	
;

has period 8 with

ea1ea3ea5ea7 ¼ 201640000; ea2ea4ea6ea8 ¼ 201600000:

The planar orbit in Figure 2 is a plot of 60000 points (b ¼ 1). As more points are

generated numerically and plotted, the peak of the cone will rise without bound since the

sequence {tn} is unbounded.

10

5

0
0 2 4 6 8 10

Xn–1

Xn

Figure 1. A non-periodic phase plane orbit of equation (46) with periodic an.
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6

4

2

0
0 2 4 6 8

Xn–1

Xn

Figure 2. A phase plane orbit of equation (46) with an still periodic.
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6. Conclusion and future directions

Our study of expow equations above points to a large variety of equations with

semiconjugate factorizations and thus, reducible in order. We have also shown that such

equations are capable of generating rich dynamic behaviours. Further, the behaviours of

positive solutions in the last two examples above might be difficult to explain without the

reduction of order that results from the semiconjugate factorization. On the other hand, the

interested reader will have noticed that many types of expow equations that are amenable

to analysis using Lemma 1 and Theorem 3 have not been considered in this first study.

Some of those equations and the behaviours of their solutions on various subgroups of C0

(e.g., ð0;1Þ or the circle group T) can provide significant challenges and rewards in the

future studies of expow equations.

Finally, many expow equations do not satisfy identity (8) and, therefore, the above

discussion is not applicable to such equations. Whether the latter types of expow equations

possess form symmetries and semiconjugate factorizations of a different kind remains an

open question.
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