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ABSTRACT

We study the dynamics of the positive solutions of the exponential
difference equation

xn+1 = xn−1e
an−xn−1−xn

where the sequence {an} is periodic. We find that qualitatively
different dynamics occurs depending on whether the period p of {an}
is odd or even. If p is odd then periodic and non-periodic solutions
coexist (with different initial values) if the amplitudes of the terms an
are allowed to vary over a sufficiently large range. But if p is even then
all solutions converge to an asymptotically stable limit cycle of period
p if either all the odd-indexed or all the even-indexed terms of {an}
are less than 2, and the sum of the even terms of {an} does not equal
the sum of its odd terms. The key idea in our analysis that explains this
behavioural dichotomy is a semiconjugate factorization of the above
equation into a triangular system of two first-order equations.
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1. Introduction

We study the behaviour of solutions of the second-order difference equation

xn+1 = xn−1ean−xn−1−xn (1)

where the parameter {an} is a periodic sequence of real numbers. This equation is a special
case of a stage-structured population model with a Ricker-type recruitment function; see
[3]. For more information and additional Ricker-type models see, e.g. [5–7,11].

Equation (1) has a rich variety of periodic and non-periodic solutions. It exhibits
coexisting periodic solutions if the range of variation, or amplitude of an is limited. We
also show that an expanded range or greater amplitudes for an leads to the occurrence
of coexisting non-periodic solutions (including chaotic solutions). The period p of the
sequence {an} is the natural parameter to consider in this study.

In addition, there is an unexpected dichotomy between the behaviour of solutions when
the period p of {an} is odd and when p is even. When p is odd different periodic and non-
periodic stable solutions are generated from different pairs of initial values. But if p is even

CONTACT H. Sedaghat hsedagha@vcu.edu
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D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
C

om
m

on
w

ea
lth

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
8:

44
 0

1 
Ju

ne
 2

01
6 

http://www.tandfonline.com


2 N. LAZARYAN AND H. SEDAGHAT

and the amplitude of an is less than 2 then asymptotically stable p-cycles occur in a generic
fashion, i.e. independently of initial values.

Such differences in behaviour among the solutions of (1) are readily explained by a
semiconjugate factorization of (1) into a triangular system of two first-order difference
equations. The latter pair of equations determine the full structure of (1) and allow us to
explain the aforementioned dichotomy as follows: One of the two first-order equations has
periodic, hence bounded solutions when p is odd; however, if p is even then the solutions
of the same first-order equation are unbounded (except for a boundary case). Thus the
corresponding bounded solutions of (1) ‘forget’ the initial values and approach a single
asymptotically stable solution.

In the next section we list the main results with some elaboration. The proofs of these
results and the supporting material are provided in the following section. We finally
conclude with a summary and some possible future directions.

2. Themain results

The solutions of (1) exhibit qualitatively different behaviour depending on whether the
period of the parameter sequence {an} is odd or even. Accordingly, this section is divided
into two subsections where we list the main results for each case. The proofs and other
relevant material are presented in the next section.

2.1. The odd period case

There are two main results for the case where the sequence {an} has an odd minimal (or
prime) period. The first shows that if each an is bounded by 2 then we can expect solutions
of (1) to converge to solutions of period 2p or, in exceptional cases, period p. The second
main result of this section shows that if an > 2 for some n then (1) has periodic solutions
of periods other than p or 2p and if the range of variation of an is large enough then
nonperiodic and chaotic solutions also exist.

The following result on the existence of periodic solutions is a consequence of
Theorem 12 below.
Theorem 1: Let {an} be periodic with minimal odd period p and assume that 0 < ai < 2
for i = 0, . . . , p − 1.

(a) Each solution of (1) converges to a cycle with length 2p that depends on the initial
values x−1, x0 > 0;

(b) If x0 = x−1e−σ/2−x−1 where

σ = −a0 + a1 − a2 + . . . − ap−1 (2)

then the solutions of (1) converge to a cycle of length p.

It is important to note that the periodic solutions in Theorem 1 may be distinct if the
initial values are distinct, so these cycles are not locally stable (i.e. they are not ordinary limit
cycles). Thus we see that (1) exhibits multistability in this case. Figures 1 and 2 illustrate
this situation for period p = 3 with

a0 = 1, a1 = 1.9, a2 = 0.8
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 3

Figure 1. Coexisting period 6 solutions with parameter period p = 3.

Figure 2. Coexisting period 6 and period 3 (exceptional) solutions, p = 3.

This multistable behaviour resembles neutral stability seen in nonhyperbolic systems
although it is clearly not neutral stability due to the fact that each periodic solution attracts
a certain number of solutions and is thus a limit cycle of some type.

A similar situation exists when an exceeds 2 and is discussed in the next result where
the range of {an} is not restricted.
Theorem 2: Suppose that {an} is periodic with minimal odd period p ≥ 1 and let f be the
interval map in Lemma 13 below and assume that t0 > 0 is a fixed real number.

(a) If s is a periodic point of f with period ω then all solutions of (1) with initial values
x−1 = s and x0 = t0se−s have period 2pω.

(b) If t0 = e−σ/2 and s is a periodic point of f with period ω, then all solutions of (1) with
initial values x−1 = s and x0 = se−σ/2−s have period pω.

(c) If the map f has a non-periodic point, then (1) has a non-periodic solution.
(d) If f has a period-three point then (1) has periodic solutions of period 2pn for all

positive integers n as well as chaotic solutions in the sense of Li–Yorke ([1,4]).

In the case p = 1, i.e. when (1) is autonomouswith an = a for all n, the conditions stated
in Theorem 2 were examined in [3] where it was also verified that if a ≥ 3.13 then (1)
has chaotic solutions from certain initial conditions. Themultistable nature of solutions of
(1) was also discussed in detail to distinguish them from both locally stable and neutrally
stable solutions.

For odd p ≥ 3 the associated interval map f is a composition of 2p functions and there-
fore, analytically less tractable than the autonomous case.We use numerical simulations to
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4 N. LAZARYAN AND H. SEDAGHAT

Figure 3. (a) Graph of f ; (b) Corresponding 6-cycle.

highlight the rich variety of coexisting solutions that Theorem 2 indicates. As noted above,
and explained in greater detail in [3], these solutions are attracting (though not locally
stable) so they are observable and may be recorded numerically.

In the next four figures, p = 3 with

a0 = 1, a1 = 2, a2 = 4.

The initial values that generate the 6-cycle in Figure 3 are x−1 = 1 and x0 = 0.8. Panel
(a) shows the map f (a composition of six exponential maps) together with a single stable
positive fixed point that corresponds to the solution of (1) shown in Panel (b).

In Figure 4 the initial values are x−1 = x0 = 1. In Panel (a) the graphs of f and f 2

are shown that indicate the presence of a stable 2-cycle (the fixed point of f is unstable in
this case). Panel (b) shows the corresponding 12-cycle for (1), as required by Theorem 2
with ω = 2. We emphasize that this solution coexists stably, in the sense of [3], with the
6-cycle in Figure 3. We further note that 12-cycles do not exist under the hypotheses of
Theorem 1 which imply the stability of the fixed point of f .

In Figure 5 the initial values are x−1 = 1 and x0 = 3.8. In Panel (a) the graphs of f and
f 3 are shown where a stable 3-cycle is indicated that corresponds to the solution of (1) that
is shown in Panel (b). As stated in Theorem 2 this is an 18-cycle since now ω = 3. This
solution coexists stably, in the sense of [3], with the 6-cycle and the 12-cycle above.

Finally, in Figure 6 the initial values are x−1 = 1 and x0 = 6. Panel (a) shows the
graphs of f and f 3 where we can identify a pair of unstable 3-cycles where the graph of
f 3 crosses the identity line (in addition to the unstable fixed point of f ). The map f then
exhibits Li–Yorke type chaos. A portion of the plot of the corresponding solution of (1) is
shown in Panel (b). This nonperiodic solution coexists stably, in the sense of [3], with the
periodic solutions mentioned above. However, nonperiodic solutions do not exist under
the hypotheses of Theorem 1.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 5

Figure 4. (a) Graphs of f and f 2; (b) Corresponding 12-cycle.

Figure 5. (a) Graphs of f and f 3; (b) Corresponding 18-cycle.

2.2. The even period case

The solutions of (1) behave quite differently when the parameter sequence {an} has an even
minimal period (the reason for this difference is a change in the dynamics of an associated
first-order equation introduced in the next section). The main theorem of this section is
the following, which is the even-period analog of Theorem 1. Note that multistability is
replaced by ordinary stability, in the sense that solutions converge to just one limit cycle
that is independent of the initial values.
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6 N. LAZARYAN AND H. SEDAGHAT

Figure 6. (a) Graphs of f and f 3; (b) Corresponding nonperiodic solution.

Theorem 3: Let {an} be periodic with minimal even period p ≥ 2 and let σ be the
characteristic sum defined in (2).

(a) If σ > 0 and 0 < a2k−1 < 2 for k = 1, 2, . . . p/2 then solutions of (1) converge,
regardless of the initial values x−1, x0, to a solution {x̄n} with period p such that
x̄2n−1 = 0 and x̄2n is a sequence of period p/2 satisfying the equality

p/2∑
i=1

x̄2i−2 =
p/2∑
i=1

a2i−1.

(b) If σ < 0 and 0 < a2k−2 < 2 for k = 1, 2, . . . p/2 then solutions of (1) converge,
regardless of the initial values x−1, x0, to a solution {x̄n} with period p such that
x̄2n = 0 and x̄2n−1 is a sequence of period p/2 satisfying the equality

p/2∑
i=1

x̄2i−1 =
p/2∑
i=1

a2i−2.

Figure 7 illustrates Theorem 3 with p = 4 and

a0 = 1.4, a1 = 1.8, a2 = 1.6, a3 = 0.3

Theorem 3 leaves out the boundary case σ = 0. In this special casemultistability returns
and the dynamics of (1) resembles that of the odd period case (an associated first-order
equation has periodic solutions in this case, just as in the odd period case; see the next
section for details). The next result is analogous to Theorem 2 and is proved using the
same lemmas. Figures 3–6 also provide an illustration of the behaviour of solutions in this
case, although of course, now periods do not double.
Theorem 4: Suppose that {an} is periodic with minimal even period p and σ = 0. Let f be
the interval map in Lemma 13 and t0 > 0 is a fixed real number.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 7

Figure 7. Solutions converging to a single 4-cycle with parameter period p = 4.

(a) If s is a periodic point of f with period ω then all solutions of (1) with initial values
x−1 = s and x0 = t0se−s have period pω.

(b) If the map f has a non-periodic point, then (1) has a non-periodic solution.
(c) If f has a period-three point then (1) has periodic solutions of period pn for all positive

integers n as well as chaotic solutions in the sense of Li–Yorke [4].

Theorem 4 shows that much (though not all) of the types of behaviour seen when {an}
has odd period is also seen when it has even period with characteristic sum σ = 0. This
suggests another possible classification of solutions based only on the even period case,
distinguishing between the cases σ = 0 and σ �= 0. In the particular case p = 2 the
condition σ = 0 in Theorem 4 does yield a minimal odd period since a0 = a1 and the
sequence {an} is constant, i.e. it has minimal period 1 (which is odd). Thus we expect to
see multistable behaviour and indeed, the dynamics described in Theorem 4 is that which
is observed with a constant parameter; see [3] for more information on the nature of the
stability of the solutions mentioned above.

For even p ≥ 4 the condition σ = 0 does not imply that {an} has odd period. For
instance, if p = 4 then σ = 0 requires only that a0 + a2 = a1 + a3. The parameter
sequence

{1, 1/2, 1, 3/2, 1, 1/2, 1, 3/2 . . .}
has even period 4 with σ = 0 so in this case, Theorem 4 applies rather than Theorem 3.
On the other hand, the parameter sequence

{1, 1, 1/2, 3/2, 1, 1, 1/2, 3/2 . . .}

yields σ = 1 so the dynamics of (1) is determined by Theorem 3 in this case. Thus if the
period of the parameter sequence is even then multistable behaviour is a borderline case
that, while not prevalent, must be considered to complete the dynamics picture.

Finally, we note that compared with Theorem 3 the range of variation (or amplitude)
of an is unrestricted in Theorem 4. We expect that Theorem 3 can be extended in future
studies to possibly include asymptotically stable periodic solutions whose period is greater
than p and even asymptotically stable nonperiodic solutions.
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8 N. LAZARYAN AND H. SEDAGHAT

3. Explanation of themain results

This section contains not only the proofs of the main results but also explanation of why
there is such a marked difference in the qualitative behaviour of solutions of (1).

We begin with the observation that if the initial values x−1, x0 are positive then xn > 0
for all n ≥ 1 and

xn+1 < xn−1ean−xn−1 ≤ ean
1
e

= ean−1

Thus the following result is obvious.
Lemma 5: Let {an} be a sequence of real numbers that is bounded from above with
supn an = a. If x−1, x0 > 0 then the corresponding solution {xn} of (1) is bounded and
for all n

0 < xn < ea−1. (3)

3.1. Order reduction

The first step in understanding the dichotomy between the odd and even period cases is
to obtain and examine the semiconjugate factorization of Equation (1). Following [9], we
define

tn = xn
xn−1e−xn−1

for each n ≥ 1 and note that

tn+1tn = xn+1

xne−xn

xn
xn−1e−xn−1

= xn+1

xn−1e−xn−1−xn
= ean

or equivalently,

tn+1 = ean

tn
. (4)

Now

xn+1 = eanxn−1e−xn−1e−xn = ean
xn
tn
e−xn = ean

tn
xne−xn = tn+1xne−xn (5)

The pair of Equations (4) and (5) constitute the semiconjugate factorization of (1):

tn+1 = ean

tn
, t0 = x0

x−1e−x−1
(6)

xn+1 = tn+1xne−xn (7)

Every solution {xn} of (1) is generated by a solution of the system (6)–(7). Using the
initial values x−1, x0 we obtain a solution {tn} of the first-order Equation (6), called the
factor equation. This solution is then used to obtain a solution of the cofactor Equation
(7) and thus also of (1). The system (6)–(7) is said to be triangular basically because one
equation (i.e. the factor equation) is independent of the other; see [10] formore information
on triangular systems.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 9

For an arbitrary sequence {an} and a given t0 �= 0 by iterating (6) we obtain

t1 = ea0

t0
, t2 = ea1

t1
= t0e−a0+a1 , t3 = ea2

t2
= 1

t0
ea0−a1+a2 ,

t4 = ea3

t3
= t0e−a0+a1−a2+a3 , . . .

This pattern of development implies the following result.
Lemma 6: Let {an} be an arbitrary sequence of real numbers and t0 �= 0.

(a) The general solution of (6) is given by

tn = t(−1)n
0 e(−1)nsn , n = 1, 2, . . . (8)

where

sn =
n∑

j=1

( − 1)jaj−1 (9)

(b) For all n,

xn ≤ 1
e
tn.

Proof: (a) For n = 1, (8) yields

t1 = t−1
0 e−s1 = 1

t0
e−(−a0) = ea0

t0

which is true. Suppose that (8) is true for n ≤ k. Then by (8) and (9)

t(−1)k+1

0 e(−1)k+1sk+1 = 1

t(−1)k
0 e(−1)ksk

e(−1)2k+2ak = eak

tk
= tk+1

which is again true and the proof is now complete by induction.
(b) This is an immediate consequence of (7) and the fact that xe−x ≤ 1/e.

�
In the sequel, whenever the sequence {an} has period p the following quantity plays an

essential role:

σ = sp =
p∑

j=1

( − 1)jaj−1 = −a0 + a1 − a2 + · · · − ap−1 (10)

The following special-case result will be useful later on.
Lemma 7: Assume that {an} is periodic with minimal period p. If σ = 0 and t0 = 1, then
{tn} is periodic with period p.
Proof: If σ = 0, then by (8) and (9) in Lemma 6 we have:

tp = t(−1)p
0 e(−1)psp = e(−1)pσ = 1 = t0
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10 N. LAZARYAN AND H. SEDAGHAT

and
tn+p = t(−1)n+p

0 e(−1)n+psn+p = e(−1)n+psn+p .

Now since σ = 0,

sn+p =
n+p∑
j=1

( − 1)jaj−1 =
p∑

j=1

( − 1)jaj−1 +
p+n∑

j=p+1

( − 1)jaj−1 =
p+n∑

j=p+1

( − 1)jaj−1

If p is even, then

p+n∑
j=p+1

(−1)jaj−1 = −ap+ap+1+· · ·+(−1)n+pan+p−1 = −a0+a1+· · ·+(−1)nan−1 = sn

so
tn+p = e(−1)n+psn+p = e(−1)nsn = tn.

If p is odd, then

p+n∑
j=p+1

(−1)jaj−1 = ap−ap+1+· · ·+(−1)n+pan+p−1 = a0−a1+· · ·−(−1)nan−1 = −sn

so
tn+p = e(−1)n+psn+p = e−(−1)n(−sn) = e(−1)nsn = tn.

and the proof is complete. �
Note that the solution {tn} of (6) in Lemma 6 need not be bounded even if {an} is a

bounded sequence. The next result expresses a useful fact for this case.
Lemma 8: Assume that {an} is bounded from above and x0, x−1 > 0. If the sequence {tn}
from t0 given in (6) is unbounded then some subsequence of the corresponding solution {xn}
of (1) converges to 0.
Proof: By the hypotheses, supn an = a < ∞ and there is a subsequence {tnk} such that
limk→∞ tnk = ∞. By (6) and Lemma 6(b)

xnk+1 ≤ 1
e
tnk+1 ≤ ea−1

tnk

Therefore,

lim
k→∞

xnk+1 = lim
k→∞

ea−1

tnk
= 0.

�

3.2. The odd period case

The dynamics of (1) depends critically on whether the period of the parameter sequence
{an} is odd or even. In this section we consider the odd case and the nature of solutions of
(4) in this case. An important result in this section is Theorem 12, from which Theorem 1
readily follows.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 11

Lemma 9: Suppose that {an} is sequence of real numbers with minimal odd period p ≥ 1
and let {tn} be a solution of (4).

(a) {tn} has period 2p with a complete cycle {t0, t1, . . . , t2p−1}where tk is given by (8)with

sk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k∑
j=1

( − 1)jaj−1, if 1 ≤ k ≤ p

2p−1∑
j=k

( − 1)jaj−p, if p + 1 ≤ k ≤ 2p − 1
(11)

(b) If t0 = e−σ/2 then {tn} is periodic with period p.
Proof: (a) Let {a0, a1, . . . , ap−1} be a full cycle of an and define σ as in (10), i.e.

σ = −a0 + a1 − a2 + . . . − ap−1.

Since a full cycle of an has an odd number of terms, expanding sn in (9) yields a sequence
with alternating signs in terms of σ

sn = σ − σ + · · · + ( − 1)m−1σ + ( − 1)m
i∑

j=1

( − 1)jaj−1

for integers i,m such that n = pm + i, m ≥ 0 and 1 ≤ i ≤ p. If m is even then for
i = 1, 2, . . . , p

sn =
i∑

j=1

( − 1)jaj−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−a0 n = pm + 1 (odd)
−a0 + a1 n = pm + 2 (even)
...

...

−a0 + a1 . . . − ap−1 n = pm + p (odd)

Similarly, ifm is odd then for i = 1, 2, . . . , p

sn = σ −
i∑

j=0

( − 1)jaj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ + a0 n = pm + 1 (even)
σ + a0 − a1 n = pm + 2 (odd)
...

...

σ + a0 − a1 + . . . − ap−1 n = pm + p (even)

The above list repeats for every consecutive pair of values of m and yields a complete
cycle for {sn}. In particular, form = 0 we obtain for i = 1, 2, . . . , p

sn =
i∑

j=1

( − 1)jaj−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−a0 n = 1
−a0 + a1 n = 2
...

...

−a0 + a1 . . . − ap−1 n = p
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12 N. LAZARYAN AND H. SEDAGHAT

and form = 1 we obtain for i = 1, 2, . . . , p − 1

sn = σ −
i∑

j=0

( − 1)jaj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 − a2 + . . . − ap−1 n = p + 1
−a2 + . . . − ap−1 n = p + 2
...

...

−ap−1 n = 2p − 1

=
2p−1∑
j=p+1

( − 1)jaj−p

This proves the validity of (11) and shows that the sequence {sn} has period 2p. Now (8)
implies that {tn} also has period 2p as claimed.

(b) If σ = 0 then the statement follows immediately from Lemma 7. If σ �= 0 and p is
odd then

tp = t(−1)p
0 e(−1)psp = eσ/2−σ = e−σ/2 = t0

In the proof of Lemma 7 it was shown that sn+p = σ − sn. Thus

tn+p = t(−1)n+p

0 e(−1)n+psn+p

= e(−1)nσ/2e−(−1)n(σ−sn)

= e−(−1)nσ/2+(−1)nsn = t(−1)n
0 e(−1)nsn = tn

and the proof is complete. �
For p = 1, Lemma 9 implies that {tn} is the two-cycle

{
t0,

ea

t0

}

where a is the constant value of the sequence {an}. For p = 3, {tn} is the six-cycle
{
t0,

ea0

t0
, t0ea1−a0 ,

ea2−a1+a0

t0
, t0ea1−a2 ,

ea2

t0

}
.

From the cofactor Equation (7) we obtain

x2n+2 = t2n+2x2n+1e−x2n+1 = t2n+2t2n+1x2n exp ( − x2n − t2n+1x2ne−x2n)

x2n+1 = t2n+1x2ne−x2n = t2n+1t2nx2n−1 exp
(−x2n−1 − t2nx2n−1e−x2n−1

)

For every solution {tn} of (6), tn+1tn = ean for all n, so the even terms of the sequence
{xn} satisfy

x2n+2 = x2n exp
(
a2n+1 − x2n − t2n+1x2ne−x2n

)
(12)

and the odd terms satisfy

x2n+1 = x2n−1 exp
(
a2n − x2n−1 − t2nx2n−1e−x2n−1

)
(13)
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 13

To reduce the notational clutter, let

yn = x2n ρn = a2n+1 μn = t2n+1 (14)

for n ≥ 0 and also
zn = x2n−1 ζn = a2n ηn = t2n. (15)

Then we can write (12) and (13) as

yn+1 = yneρn−yn−μnyne−yn (16)

zn+1 = zneζn−zn−ηnzne−zn (17)

The next result establishes the existence of an attracting, invariant interval for (12) and
(13), or equivalently, (16) and (17).
Lemma 10: Let {an} be a bounded sequence where infn≥0 an ∈ (0, 2). Let x0, x−1 > 0 and
t0 be given as in (6). Assume that the sequence {t2n+1} (respectively, {t2n}) is bounded and
let {xn} be the corresponding solution of (1).

(a) There exists an interval [α,β] with α > 0 such that if x−1, x0 ∈ [α,β] then x2n ∈
[α,β] (respectively, x2n+1 ∈ [α,β]) for n ≥ 1.

(b) For all x0, x−1 > 0 there exists an integer N > 0 such that x2n ∈ [α,β] (respectively,
x2n+1 ∈ [α,β]) for all n ≥ N.

Proof: (a) First, note that if x0, x−1 > 0 then xn > 0 for all n and by Lemma 5 xn ≤ ea−1

for n ≥ 1 where
a = sup

n≥0
an.

Thus if
β = ea−1

then xn ≤ β for all n. Next, let
ρ = inf

n≥0
an ∈ (0, 2)

and consider the map
f (x) = xeρ−x−γ xe−x

where γ > 0 is fixed. Now x∗ is a fixed point of f if and only if

x∗ = f (x∗) = x∗eρ−x∗−γ x∗e−x∗

which is true if and only if ρ − x∗ − γ x∗e−x∗ = h(x∗) = 0. Since h(0) = ρ > 0 and
h(ρ) = −γρe−ρ < 0, there is x∗ ∈ (0, ρ) such that h(x∗) = 0. Thus f has a fixed point
x∗ ∈ (0, ρ). Further f (x) > x for x ∈ (0, x∗) and f (x) < x for x ∈ (x∗,β). If

α = min{x∗, f (β), f (1)}.

then we now show that [α,β] is invariant under f , i.e. f (x) ∈ [α,β] for all x ∈ [α,β].
There are two possible cases:

Case 1: γ ≤ e. In this case, f (x) has one critical point at x = 1 and it is increasing in (0, 1)
anddecreasingon (1,∞). Thus f (1) is a globalmaximumand thusα �= f (1). First, consider
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14 N. LAZARYAN AND H. SEDAGHAT

the case where x∗ < f (β) < β and let x ∈ [x∗,β]. If x < 1, then f (x) > f (x∗) = x∗ ≥ α

because f is increasing on (0, 1). If x > 1, then f (x) > f (β) > x∗ ≥ α, because f is
decreasing on (1,β). In either case f (x) ∈ [α,β].

Next, consider the case where f (β) < x∗ < β and let x ∈ [f (β),β]. Then f (x) > x >
f (β) = α for f (β) < x < x∗. On the other hand, if x∗ < x < 1, then f (x) > f (x∗) > f (β) =
α and if x∗ < 1 < x < β , then f (x) > f (β) = α. It follows that f (x) ∈ [α,β] if γ ≤ e.

Case 2: γ > e. In this case, f (x) has three critical points x′, 1 and x′′ with x′ < 1 <
x′′, where local maxima occur at x′ and x′′and a local minimum at 1. There are three
possibilities:

(i) α = x∗. In this case, for x∗ ≤ x ≤ x′, f (x) ≥ f (x∗) = x∗ = α, since f is increasing
on (0, x′). If x ∈ (x′, x′′), then f (x) ≥ f (1) ≥ α. If β ≥ x′′ and x′′ ≤ x ≤ β then
f (x) ≥ f (β) ≥ α, since f is decreasing on (x′′,∞).

(ii) α = f (β). In this case, for x ∈ [f (β), x∗), f (x) > x ≥ f (β) = α. If x∗ ≤ x′ and
x ∈ [x∗, x′] then f (x) ≥ f (x∗) = x∗ ≥ α since f is increasing. If x ∈ (x′, x′′) then
f (x) ≥ f (1) ≥ α. If β ≥ x′′ and x′′ ≤ x ≤ β then f (x) ≥ f (β) = α since f is
decreasing.

(iii) α = f (1). In this case, if x ∈ [f (1), x∗) then f (x) > x > f (1) = α. If x∗ < x′ and
x ∈ [x∗, 1] then f (x) ≥ f (x∗) = x∗ ≥ α for x ∈ [x∗, x′) and f (x) ≥ f (1) = α for
x ∈ [x′, 1]. On the other hand, if x∗ ≥ x′ then f (x) ≥ f (1) = α for x ∈ [x∗, 1].
Finally, if β > 1 and x ∈ (1,β] then f (x) > f (1) = α for x ∈ (1, x′′) since f is
increasing on (1, x′′), and f (x) ≥ f (β) ≥ α for x ∈ (x′′,β] if β > x′′.

The above three cases exhaust all possibilities so f (x) ∈ [α,β] if γ > e.
Next, assume that {t2n+1} is bounded and let {yn} be as defined by (16). If

γ = sup{t2n+1} + 1 < ∞

and yn ∈ [α,β] then

yn+1 = ynea2n+1−yn−t2n+1yne−yn > yneρ−yn−γ yne−yn = f (yn) ≥ α

Similarly, if {t2n} is bounded and γ = sup{t2n} + 1 then

zn+1 = znea2n+2−zn−t2n+2zne−zn > zneρ−zn−γ zne−zn = f (zn) ≥ α

which proves (a).
(b) It suffices to consider the case where zn, yn < α. We will do this for zn, since the case

for yn can be done similarly. Let

τ = sup{t2n} + 1
2

= γ − 1
2
> 0

so for x < x∗ and n ≥ 0

ea2n−x−t2nxe−x
> eρ−x−τxe−x

> eρ−x∗−τx∗e−x∗
> eρ−x∗−γ x∗e−x∗ = 1

Define
k = eρ−x∗−τx∗e−x∗

> 1.
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 15

If zn < α ≤ x∗, then

zn+1 = znea2n+2−zn−t2n+2zne−zn > zneρ−x∗−τx∗e−x∗ = kzn

If zn+1 > α then we’re done; otherwise,

zn+2 = zn+1ea2n+4−zn+1−t2n+4zn+1e−zn+1 > zn+1eρ−x∗−tx∗e−x∗ = kzn+1 = k2zn

and we continue in this way inductively. Since k > 1 it follows that zn+N > znkN > α for
sufficiently large N . �
Lemma 11: Let {an} be periodic of period p and 0 < an < 2. If as noted above, {yn}
and {zn} are the even and odd indexed terms of the solution {xn} of (1) with initial values
x0, x−1 ∈ [α,β] then there are constants K > 0 and δ ∈ (0, 1) such that

∣∣∣∣∣
n−1∏
i=0

(1 − yi)(1 − zi)

∣∣∣∣∣ ≤ Kδn (18)

Proof: Recall that if g is a continuous function on the compact interval [α,β]with |g(x)| <
1 for all x ∈ [α,β] then by the extreme value theorem there is a point x̃ ∈ [α,β] such
that |g(x)| ≤ |g(x̃)| < 1 for x ∈ [α,β]. Thus if δ = |g(x̃)| ∈ (0, 1) then |g(x)| ≤ δ for all
x ∈ [α,β].

Now we establish the inequality in (18). First, if a = max0≤i≤p−1{ai} < 1 + ln 2 then
β = ea−1 < 2. Thus if ui denotes either yi or zi then ui ∈ (0, 2) ⊃ [α,β], i.e. |1 − ui| < 1
and there exists δ1 ∈ (0, 1) so that |1 − ui| < δ1 for ui ∈ [α,β].

Next, suppose that a ≥ 1 + ln 2 and let

2 ≤ ui ≤ e.

Consider the preimage ui−1 of ui. There are two possible cases: Either ui−1 ≤ 1 or
ui−1 ≥ 1.

Case 1: If ui−1 ≤ 1 then

|1 − ui−1||1 − ui| = (1 − ui−1)(ui − 1)

≤ (1 − ui−1)(ui−1ea−ui−1−τi−1ui−1e−ui−1 − 1)
< (1 − ui−1)(ui−1e2−ui−1 − 1)

where τi = μi or ηi depending on the case (yn or zn respectively). Note that

(1 − x)(xe2−x − 1) < 1 (19)

for x ∈ (0, 1] because (19) can be written as x(1 − x) < (2 − x)ex−2 and this inequality is
true since its left hand side has a maximum of 1/4 on (0,1] whereas its right hand side has
a minimum of 2e−2 > 1/4 on (0,1]. In particular, (19) holds for x ∈ [α, 1] so there exists
δ2 ∈ (0, 1) such that

|1 − ui−1||1 − ui| < δ2.
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16 N. LAZARYAN AND H. SEDAGHAT

Case 2: If ui−1 ≥ 1 then

|1 − ui−1||1 − ui| = (ui−1 − 1)(ui − 1)

≤ (ui−1 − 1)(ui−1ea−ui−1−τi−1ui−1e−ui−1 − 1)
< (ui−1 − 1)(ui−1ea−ui−1 − 1).

If φ(x) = (x − 1)(xe2−x − 1) then

φ′(x) = [x − (x − 1)2]e2−x − 1, φ′′(x) = (x − 1)(x − 4)e2−x.

Since φ is smooth with φ′(2) = 0 and φ′′(x) < 0 for x ∈ (1, 4) it follows that φ is
maximized on [1,4] at 2 and φ(2) = 1. In particular, for ui−1 ∈ [1,β] ⊂ [1, 4],

(ui−1 − 1)(ui−1ea−ui−1 − 1) < φ(ui−1) ≤ 1

and it follows that there is δ3 ∈ (0, 1) such that

|1 − ui−1||1 − ui| < δ3.

Finally, there are at most m pairings |1 − ui−1||1 − ui| where m = [n/2] (i.e. m
is n/2 rounded down to the nearest integer). If n is even, then m = n/2, if n is odd,
m = (n − 1)/2 and we have one last unpaired term left, namely, |1 − u0| < (e − 1).
Choosing δ = max{δ1, δ2, δ3}, we get

∣∣∣∣∣
n−1∏
i=0

(1 − ui)

∣∣∣∣∣ < (e − 1)δm.

Therefore, ∣∣∣∣∣
n−1∏
i=0

(1 − yi)(1 − zi)

∣∣∣∣∣ < (e − 1)2δ2m ≤ β

α
Kδnm

where K = (e − 1)2/δ and the proof is complete. �
The next result generalizes similar results in [2] and [3].

Theorem 12: Let {an} be a periodic sequencewith 0 < an < 2, x0, x−1 > 0 and the sequence
{tn}with t0 = x0/x−1ex−1 be periodic with period q. Then each solution of (1) from the initial
values x0, x−1 converges to a periodic solution (dependent on the choice of initial values) with
period q.
Proof: Let q be the period of the sequence {tn} from initial value t0 = x0/x−1ex−1 . For
each i = 1, 2, . . . , q, define the map

gi(x) = tixe−x

and let
φ = gq ◦ gq−1 ◦ · · · ◦ g1

Then by the cofactor Equation (6), φ generates the orbit of (1) from initial values x0, x−1.
Also note thatφ is an autonomous intervalmap, and by Lemma10, there exist real numbers
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 17

α,β > 0 and a positive integer N so that φ : [α,β] → [α,β] and φn(x) ∈ [α,β] for all
n ≥ N . Hence, by Brouwer’s fixed point theorem, there exists a x∗ ∈ [α,β] so that
φ(x∗) = x∗. Now, let x0 ∈ [α,β] be given.

Since
g ′
i (x) = tie−x(1 − x) = gi(x)

x
(1 − x)

then

φ′(x0) =
q∏

i=1

g ′
i (xi−1) =

q∏
i=1

gi(xi−1)

xi−1
(1 − xi−1)

= g1(x0)
x0

g2(x1)
x1

. . .
gq(xq−1)

xq−1

q∏
i=1

(1 − xi−1)

Noting that gi(xi−1) = xi, we get

φ′(x0) = xq
x0

q∏
i=1

(1 − xi−1)

Similarly,

(φ2)′(x0) = (φ ◦ φ)′(x0) = x2q
x0

2q∏
i=1

(1 − xi−1)

and in general,

(φn)′(x0) = xnq
x0

nq∏
i=1

(1 − xi−1)

Now, letm = [nq/2]. If nq is even, thenm = nq/2 and by Lemma (11)
∣∣∣∣∣
nq∏
i=1

(1 − xi−1)

∣∣∣∣∣ =
∣∣∣∣∣
m−1∏
i=0

(1 − yi)(1 − zi)

∣∣∣∣∣ ≤ Kδm

for some K > 0, δ ∈ (0, 1), where yi and zi are the even and odd indexed terms of the {xn}
as noted above. If nq is odd, thenm = (nq − 1)/2, so

∣∣∣∣∣
nq∏
i=1

(1 − xi−1)

∣∣∣∣∣ =
∣∣∣∣∣(1 − xnq)

m−1∏
i=0

(1 − yi)(1 − zi)

∣∣∣∣∣ ≤ (e − 1)Kδm

hence, ∣∣(φn)′(x0)
∣∣ ≤ α

β
(e − 1)Kδ(nq−1)/2.

Finally,

|φn(x0) − x∗| = |φn(x0) − φn(x∗)| = | (φn)′
(w)||x0 − x∗|

≤ β

α
K(e − 1)δ(nq−1)/2|x0 − x∗| → 0

as n → ∞ and the proof is complete. �
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18 N. LAZARYAN AND H. SEDAGHAT

Theorem 1 is now an immediate consequence of the preceding result.
Proof: (of Theorem 1)

(a) By Lemma 9, {tn} is periodic with period 2p, so {an} and {tn} have a common period
2p. The rest follows from Theorem 12.

(b) If x0 = x−1e−σ/2−x−1 , i.e. t0 = e−σ/2, then by Lemma 9 tn is periodic with period p.
Therefore, {an} and {tn} have a commonperiod p and the rest follows fromTheorem
12.

�
Next, we consider a wider range of values for an and the existence of non-periodic

solutions for (1). The next two results are needed for proving Theorem 2.
Lemma 13: Let {xn} be a solution of (1) with initial values x−1, x0 > 0 and assume that
{an} is periodic with minimal period p ≥ 1 and {tn} is periodic with period q ≥ 1. Define

gk(x) = tkxe−x , k = 0, 1, . . . , q − 1

where t0 = x0/(x−1e−x−1) and tk is given by (8) and (9). Also define

hk = gk ◦ gk−1 ◦ · · · ◦ g0, k = 0, 1, . . . , q − 1
f = hq−1 = gq−1 ◦ gq−2 ◦ · · · ◦ g1 ◦ g0

Then {xn} is determined by the q sequences

xqm+k = hk ◦ f m(x−1), k = 0, 1, . . . , q − 1 (20)

that are obtained by iterations of one-dimensional maps of the interval (0,∞), with f 0 being
the identity map.
Proof: Given the initial values x−1, x0 > 0 the definition of t0 and (7) imply that

x0 = t0x−1e−x−1 = g0(x−1) = h0(x−1)

x1 = t1x0e−x0 = g1(x0) = g1 ◦ g0(x−1) = h1(x−1)

and so on:
xk = hk(x−1), k = 0, 1, . . . , q − 2

Thus (20) holds for m = 0. Further, xq−1 = hq−1(x−1) = f (x−1). Inductively, we
suppose that (20) holds for somem ≥ 0 and note that for k = 0, 1, . . . , q − 2

hk+1 = gk+1 ◦ gk ◦ · · · ◦ g0 = gk+1 ◦ hk

Now by (7)

xq(m+1)−1 = tqm+q−1xqm+q−2e−xqm+q−2

= tq−1hq−2 ◦ f m(x−1)e−hq−2◦f m(x−1)

= gq−1 ◦ hq−2 ◦ f m(x−1)

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
C

om
m

on
w

ea
lth

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
8:

44
 0

1 
Ju

ne
 2

01
6 



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 19

= hq−1 ◦ f m(x−1)

= f m+1(x−1)

So (20) holds for k = q − 1 by induction. Further, again by (7) and the preceding
equality

xq(m+1) = tqm+qxqm+q−1q−xqm+q−1

= t0f m+1(x−1)e−f m+1(x−1)

= g0 ◦ f m+1(x−1)

= h0 ◦ f m+1(x−1)

Similarly,

xq(m+1)+1 = tq(m+1)+1xq(m+1)e−xq(m+1)

= t1h0 ◦ f m+1(x−1)e−h0◦f m+1(x−1)

= g1 ◦ h0 ◦ f m+1(x−1)

= h1 ◦ f m+1(x−1)

Repeating this calculation q− 2 times establishes (20) and completes the induction step
and the proof. �
Lemma 14: Suppose that {an} and {tn} are periodic and {tn} has minimal period q ≥ 1.

(a) If the map f in Lemma 13 has a (positive) periodic point of minimal period ω then
there is a solution of (1) with period ωq.

(b) If the map f in Lemma 13 has a non-periodic point then (1) has a non-periodic
solution.

Proof: (a) By hypothesis, there is a number s ∈ (0,∞) such that f n+ω(s) = f n(s) for all
n ≥ 0. Let x−1 = s and define x0 = h0(s). By Lemma 13 the solution xn corresponding to
these initial values follows the track shown below:

x−1 = s → x0 = h0(s) → · · · → xq−2 = hq−2(s) →
→ xq−1 = hq−1(s) = f (s) → xq = h0(f (s)) → · · · → x2q−2 = hq−2(f (s)) →

→ x2q−1 = hq−1(f (s)) = f 2(s) → x2q = h0(f 2(s)) → · · · → x3q−2 = h3q−2(f 2(s)) →
...

...
...

...

xωq−1 = hq−1(f ω−1(s)) = f ω(s) = s → xqω = h0(s) → · · · → x(ω+1)q−2 = hq−2(s) → · · ·

The pattern in this list evidently repeats after ωq entries. So xωq+n = xn for n ≥ 0 and
it follows that the solution {xn} of (1) has period ωq.

(b) Suppose that
{
f n(x−1)

}
is a non-periodic sequence for some x−1 > 0. Then by

Lemma 13 the solution {xn} of (1) with initial values x−1 and x0 = g0(x−1) has the non-
periodic subsequence

xqn−1 = f n(x−1)

It follows that {xn} is non-periodic. �
Now Theorem 2 readily follows.
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20 N. LAZARYAN AND H. SEDAGHAT

Proof: (of Theorem 2)
Parts (a) and (c) are immediate consequences of Lemma 14 with q = 2p because of

Lemma 9(a). Part (b) is true by Lemma 9(b).
(d) As is well-known from [4], if f has a period three point then f has periodic points

of every period n ≥ 1, as well as aperiodic, chaotic solutions in the sense of Li and Yorke.
Therefore, by parts (a) and (b), (1) also has periodic solutions of period 2pn, as well as
chaotic solutions. �

3.3. The even period case

When {an} is periodic with minimal even period p the next result shows that the sequence
{tn} is not periodic with the exception of a boundary case. This causes a fundamental
change in the dynamics of (1). Once again, the quantity σ is defined by (10), i.e.

σ = −a0 + a1 − a2 + . . . + ap−1.

Lemma 15: Suppose that {an} is a sequence of real numbers with minimal even period
p ≥ 2 and let {tn} be a solution of (4). Then

tn =
(
t0ednσ+γn

)(−1)n
(21)

where the integer divisor dn = [n − n(mod p)]/p is uniquely defined by each n and

γn =

⎧⎪⎨
⎪⎩

n(mod p)∑
j=1

( − 1)jaj−1 if n(mod p) �= 0

0 if n(mod p) = 0
(22)

The sequence {tn} is periodic with period p iff σ = 0, i.e.

a0 + a2 + · · · ap−2 = a1 + a3 + · · · + ap−1. (23)

Proof: Let {a0, a1, . . . , ap−1} be a full cycle of an with an even number of terms. Since
n = pdn + n(mod p) for n ≥ 1, expand sn in (9) to obtain

sn = dnσ +
n(mod p)∑

j=1

( − 1)jaj−1

if n(mod p) �= 0. If p divides n so that n(mod p) = 0 then we assume that the sum is 0
and sn = dnσ. Thus sn = dnσ + γn where γn is as defined in (22).

The σ terms have uniform signs in this case since there are an even number of terms in
each full cycle of an. Now (8) yields

tn = t(−1)n
0 e(−1)nsn = t(−1)n

0 e(−1)n(dnσ+γn)

which is the same as (21).
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 21

Next, if σ �= 0 then dnσ is unbounded as n increases without bound so {tn} is not
periodic. But if σ = 0 then (21) reduces to

tn = (
t0eγn

)(−1)n (24)

Since the sequence γn has period p, the expression on the right hand side of (24) has
period p with a full cycle

t1 = ea0

t0
, t2 = t0e−a0+a1 , t3 = ea0−a1+a2

t0
, . . . , tp = t0e−a0+a1+···+(−1)pap−1 = t0.

�
By the preceding result,

t2m = t0eγ2med2mσ if n = 2m is even

t2m+1 = 1
t0
e−γ2m+1e−d2m+1σ if n = 2m + 1 is odd

Suppose that σ �= 0. If σ > 0 then since limn→∞ dn = ∞ it follows that t2m is
unbounded but t2m+1 converges to 0, and the reverse is true if σ < 0. Therefore,

lim
m→∞ t2m = ∞, lim

m→∞ t2m+1 = 0, if σ > 0, (25)

lim
m→∞ t2m = 0, lim

m→∞ t2m+1 = ∞, if σ < 0. (26)

Lemma 16: Suppose that {an} is a sequence of real numbers with minimal even period p ≥
2 and let {xn} be a solution of (1) with initial values x−1, x0 > 0. Then limn→∞ x2n+1 = 0
if σ > 0 and limn→∞ x2n = 0 if σ < 0.
Proof: Assume first that σ > 0. Then by (25) limn→∞ t2n = ∞ so as in the proof
of Lemma 8 limn→∞ x2n+1 = 0. If σ < 0 then a similar argument using (26) yields
limn→∞ x2n = 0 to complete the proof. �

Lemma 16 indicates that half of the terms of every solution {xn} of (1) converge to 0 in
the even period case if σ �= 0. We now consider what happens to the other half.
Lemma 17: Let {un} be the solution of

un+1 = unea2n+1−un (27)

and {wn} be the solution of
wn+1 = wnea2n+2−wn . (28)

(a) The sequence {xn} with x2n = un and x2n+1 = 0 is a solution of (1).
(b) The sequence {xn} with x2n = 0 and x2n+1 = wn is a solution of (1).

Proof: (a) Let {un} be a solution to (27) from initial value u0 > 0. If x0 = u0 and x1 = 0,
then

x2 = x0ea1−x0−x1 = u0ea1−u0 = u1
and

x3 = x1ea2−x2−x1 = 0
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22 N. LAZARYAN AND H. SEDAGHAT

Inductively, if x2k = uk and x2k+1 = 0 for some k ≥ 1 then

x2k+2 = x2kea2k+1−x2k−x2k+1 = ukea2k+1−uk = uk+1

and
x2k+3 = x2k+1ea2k+2−x2k+1−a2k+2 = 0

which proves (a).
(b) Let {wn} be a solution to (28) from initial value w0 > 0. If x0 = 0 and x1 = w0, then

x2 = x0ea1−x0−x1 = 0

and
x3 = x1ea2−x2−x1 = w0ea2−w0 = w1

Inductively, if x2k = 0 and x2k+1 = wk for some k ≥ 1 then

x2k+2 = x2kea2k+1−x2k−x2k+1 = 0

and
x2k+3 = x2k+1ea2k+2−x2k+1−a2k+2 = wkea2k+2−wk = wk+1

which proves (b). �
The next result is proved in [8].

Lemma 18: Consider the first-order difference equation

yn+1 = yneαn−yn (29)

where αn is a sequence of real numbers with period q. If 0 < αn < 2 then (29) has a globally
asymptotically stable solution {y∗

n} with period q such that
q∑

i=1

y∗
i =

q∑
i=1

αi.

We now prove Theorem 3.
Proof: (of Theorem 3)

We prove part (a) and part (b) is demonstrated similarly. By Lemma 18 the equation in
(27) has a periodic solution of period p/2 given by {u∗

i } with 0 ≤ i ≤ p/2 − 1. By Lemma
17, the sequence {u∗

0, 0, u
∗
1, 0, . . . , u

∗
p/2−1, 0} is a p periodic solution of (1) This means that

x̄2n−1 = 0 and x̄2n = u∗
i with

p/2∑
i=1

x̄2i−2 =
p/2∑
i=1

u∗
i =

p/2∑
i=1

a2i−1.

Let the even indexed terms of the solution {xn} be defined as in (16) and for each n ≥ 0,
define

Fn(x) = xeρn−x−μnxe−x
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JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 23

Then Fn(u∗
n) = u∗

n+1. Now observe that with ξn = Fn ◦ Fn−1 ◦ · · · ◦ F0

Fn(yn) = Fn(Fn−1(yn−1)) = Fn(Fn−1( · · · F0(y0)) · · · ) = ξn(y0)

Also note that

|ξ ′
n(y0)| =

∣∣∣∣∣
n∏

i=0

eρi−yi−μiyie−yi
(1 − μiyie−yi)(1 − yi)

∣∣∣∣∣
Since μn → 0, for sufficiently large N , 0 < (1 − μnyne−yn) ≤ 1 for n ≥ N . Then there

exists a constantM > 0 so that
∣∣∣∣∣
n∏

i=0

(1 − μiyie−yi)

∣∣∣∣∣ ≤
∣∣∣∣∣
N∏
i=0

(1 − zi+1)

∣∣∣∣∣ ≤ M

Proceeding now as in the proof of Lemma 11, if we letm = [n/2], we can find constants
K > 0 and δ ∈ (0, 1) so that ∣∣∣∣∣

n∏
i=0

(1 − yi)

∣∣∣∣∣ ≤ Kδm

Therefore,

|ξ ′
n(y0)| = yn+1

y0

∣∣∣∣∣
n∏

i=0

(1 − μiyie−yi)(1 − yi)

∣∣∣∣∣ ≤ β

α
KMδm

Finally,

|yn+1 − u∗
n+1| = |Fn(yn) − Fn(u∗

n)| = |ξn(y0) − ξn(u∗
0)| = |ξ ′(w)||y0 − u∗

0|
≤ b

α
KMδm|y0 − u∗

0| → 0

as n → ∞ which completes the proof. �
Remark 19:

(1) In Theorem 3(a) the even-indexed terms a2k are not restricted to (0,2) as long as
σ > 0, i.e.

a1 + a3 + · · · + ap−1 > a0 + a2 + · · · + ap−2

This imposes an upper bound a2k < 2(p/2) = p for each k but clearly some a2k may
exceed 2. Similarly, in (b) the odd-indexed terms are not restricted to (0,2) as long
as σ < 0.

(2) Note that 2p is not a minimal period for {x̄n}. For example, if p = 4 with a1 = a3
and 2a1 > a0 + a2 (so that σ > 0) then x̄2n−1 satisfies (29) with constant ρn. In this
case, Lemma 18 yields a globally asymptotically stable fixed point for (29), and thus
a globally attracting period two solution for (1).

In the boundary special case σ = 0, the solutions of (1) have entirely different dynamics
that resemble the odd period case, as stated in Theorem 4, which follows readily from
Lemma 14
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24 N. LAZARYAN AND H. SEDAGHAT

Proof: (of Theorem 4)
By Lemma 15 {tn} has period p so the application of Lemma 14 completes the proof. �

4. Summary and future directions

We used a semiconjugate factorization of (1) to investigate its dynamics. Semiconjugate
factorizations for difference equations of exponential type are not generally known (unlike
linear equations) but fortunately we have one for (1). As we see above, the decomposition
of (1) into the triangular system (6)–(7) of first-order equations makes it clear why the
solutions of (1) behave differently in a fundamental way depending on whether the period
of {an} is odd or even: in the former case the sequence {tn} is periodic, hence bounded
while in the latter case {tn} is unbounded when σ �= 0.

The main results of this paper are Theorems 1 and 2 for when the period p of the
parameter sequence {an} is odd, and Theorems 3 and 4 for when p is even. Theorems 1,
2 and 4 show that (1) has multistable coexisting solutions, including non-periodic and
chaotic solutions if the amplitude of the parameter sequence an is unrestricted. Theorem 3
indicates a completely different dynamics where globally stable limit cycles occur when an
is restricted to the interval (0, 2). Another of our main results is Theorem 12 that extends
previous special cases in [2] and [3]. Further, Theorem 1 is an immediate consequence of
Theorem 12.

An extension of Theorem 3 that includes non-periodic solutions when an exceeds 2
for some indices n is expected and may be of future interest. Such an extension may also
yield asymptotically stable non-periodic solutions, including chaotic solutions for (1) when
σ �= 0.

A natural extension of the above results is not obvious for higher order versions of (1)
such as

xn+1 = xn−1ean−xn−xn−k (30)

For instance, (30) may have unbounded solutions if k ≥ 2 and thus different dynamics
than (1) are exhibited. Further, known semiconjugate factorizations for (30) yield a factor
equation with order at least 2 if k ≥ 2; see [9]. Such an equation is less tractable than the
first-order case studied above. A detailed study of difference equations such as (30) and
similar with periodic {an} may yield interesting and possibly unexpected results.
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