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Open Problems and Conjectures

Edited by Gerry Ladas

In this section, we present some open problems and conjectures about some interesting

types of difference equations. Please submit your problems and conjectures with all

relevant information to G. Ladas

On third-order rational difference equations with quadratic terms

H. Sedaghat*

Department of Mathematics, Virginia Commonwealth University, Richmond, VA, USA

(Received 10 March 2008; final version received 13 March 2008 )

Rational difference equations are natural extensions of linear ones that present us with

deep new insights into dynamics of non-linear equations. Rational equations not only

exhibit a rich variety of dynamic behaviours, they also present us with interesting

challenges through a large number of conjectures and open problems. In this note, we

consider third-order rational difference equations of type

xnþ1 ¼ xn2k

axn þ bxn21 þ gxn22

Axn þ Bxn21 þ Cxn22

� �
; ð1Þ

where

k [ {0; 1; 2} and ð2aÞ

a;b; g;A;B;C $ 0; with aþ bþ g; Aþ Bþ C . 0: ð2bÞ

The seven parameters in equation (1) result in 192 separate difference equations if the

three values of k in (2a) are counted along with the 26 possible cases in which the six

coefficients in (2b) can be zeros. For easy reference, ordered 7-tuples can be used to denote

various cases of (1); thus, e.g. ð2;a; 0; 0;A;B; 0Þ represents the following special case of

(1): xnþ1 ¼ axnxn22=ðAxn þ Bxn21Þ. As a space-saving measure, we drop zeros as well

(except k ¼ 0) so the preceding example can be represented as ð2;a;A;BÞ. In this notation,
it is assumed that a;A;B – 0.

Some of these cases are quite simple while others present significant challenges.

Without intending to give an exhaustive list here, we indicate what is known about some

non-trivial special cases of (1) and state some open problems and conjectures about this

equation. Our choice of non-negative coefficients helps keep the number of special cases

limited, but certainly an unstated open problem here would be the extensions of all of our
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results to real coefficients. Such extensions give us a larger collection of qualitatively

different behaviours and further improve our understanding of rational equations.

Equation (1) is a natural extension of the third-order rational equation

xnþ1 ¼
axn þ bxn21 þ gxn22

Axn þ Bxn21 þ Cxn22

; ð3Þ

that has been studied in Ref. [3]. The term xn2k that is missing in equation (3) has an

important consequence for equations of type (1). With that term (1) is a homogeneous

equation of degree 1 (or HD1); see Refs. [9,10]. Although, we do not deal with the HD1

property explicitly in this note, the following facts are worth mentioning: The HD1

property implies that (1) has no isolated fixed points, so standard methods such as

linearization or semicycle analysis do not apply directly. On the other hand, the

homogeneous property lets us reduce (1) to a second-order rational equation via the

substitution

rn ¼
xn

xn21

: ð4Þ

In addition to having a lower order than the original equation, the factor equation often

possesses isolated fixed points and is amenable to standard analytical methods. Equation

(4) can be written as

xn ¼ rnxn21: ð5Þ

Using this linear non-autonomous equation, we can obtain information about (1) from

a solution {rn} of the rational factor equation. Note that the explicit solution of (5) is

xn ¼ x0r1r2 . . . rn: ð6Þ

1. Second-order cases

With k [ {0; 1} and g ¼ C ¼ 0, equation (1) reduces to one of the following second-order

equations:

ðaÞ xnþ1 ¼ xn
axn þ bxn21

Axn þ Bxn21

� �
; ðbÞ xnþ1 ¼ xn21

axn þ bxn21

Axn þ Bxn21

� �
: ð7Þ

The positive solutions of equation (7) are studied in Ref. [5]. For a detailed study of

related equations of type

xnþ1 ¼
axn þ bxn21

Axn þ Bxn21

;

we refer to Ref. [7] and references therein. The following propositions summarize the

known results from Ref. [5] for equation (7).

Proposition 1. Let aþ B;aþ b; A . 0 in equation (a) in (7). Then, the following are

true:

(a) Equation (7a) has no positive periodic solutions.

H. Sedaghat890
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(b) Every positive solution of (7a) converges to 0 eventually monotonically if either of the

following conditions holds:

(i) aþ b , Aþ B with a . B if b ¼ 0;

(ii) b ¼ 0 and a # B.

(c) Every positive solution of (7a) converges to 1 eventually monotonically if

Aþ B , aþ b.

(d) Every positive solution of (7a) converges to a finite limit if Aþ B ¼ aþ b, b . 0 and

A , 2aþ b.

The results in Proposition 1 also address Open Problem 6.10.1(b) in Ref. [7] for

non-negative coefficients.

Proposition 2. Let A . 0 and aB . bA in equation (b) in (7). Then, the following are

true:

(a) Every positive solution of (7b) converges to 0 eventually monotonically if

Aþ B . aþ b.

(b) Every positive solution of (7b) converges to 1 eventually monotonically if

Aþ B , aþ b.

(c) Every positive solution of (7b) converges to a finite limit if Aþ B ¼ aþ b and

a . A.

The solutions of equation (7b) exhibit a greater variety of qualitatively different

behaviours if the inequality in Proposition 2 is reversed. In particular, we state the

following conjectures:

Conjectures 1–3.

1. Let a , A and b . B in equation (b) in (7). Then for each positive solution {xn} of

(7b) one of the subsequences {x2n}, {x2n21} converges to zero and the other to infinity.

(this excludes trivial or constant solutions starting from equal initial values when

a and b add up to A þ B).

2. Let a ¼ A and b . B in equation (b) in (7). Then for each positive solution {xn} of

(7b) one of the subsequences {x2n}, {x2n21} converges to infinity and the other to a

positive number that can be arbitrarily large depending on initial values.

3. Let a , A and b ¼ B in equation (b) in (7). Then for each positive solution {xn} of

(7b) one of the subsequences {x2n}, {x2n21} converges to zero and the other to a non-

negative number.

In Conjecture 3 note that each positive solution converges to a 2-cycle

{ . . . ; 0;c; 0;c; . . . }, where c $ 0. The next conjecture suggests that the value c ¼ 0 is

possible with the existence of monotonically decreasing solutions, a situation that is

similar to what occurs for the equation xnþ1 ¼ xn21=ð1 þ xnÞ; see Ref. [1]. Thus, initial

values play a role in determining the asymptotic behaviour in this case as well as for

Conjecture 2.

Conjectures 4 and 5.

4. If a , A and b ¼ B in equation (b) in (7) then there are positive initial values for

which the corresponding solution {xn} decreases monotonically to zero.

5. If a ¼ A and b . B in equation (b) in (7) then there are positive initial values for

which the corresponding solution {xn} increases monotonically to infinity.

Journal of Difference Equations and Applications 891
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If considering all solutions, i.e. x21; x0 [ R then we must determine the forbidden sets

(see Ref. [7]) of each equation in (7), i.e. the sets of singular initial points ðx0; x21Þ that

after a finite number of iterations lead to division by zero and thus an undefinable value for

xnþ1. A first observation about the forbidden or singularity sets of both equations in (7) is

that these sets do not contain any points from the first or the third quadrants of the plane.

This is self-evident for the first quadrant; for the third, we observe that for each positive

solution {xn} of equation (7a) or (b), {2 xn} is also a solution and conversely.

The forbidden set of equation (7a) is relatively easy to find, at least recursively.

Clearly, if n is the least non-negative integer such that

Axn þ Bxn21 ¼ 0; ð8Þ

then clearly xnþ1 is undefined. Also if n is the least non-negative integer such that

axn þ bxn21 ¼ 0; ð9Þ

then xnþ1 ¼ 0. Therefore, xnþ2 ¼ 0 which leads to a singularity in (7a) for xnþ3. Let us

assume that A;B;a;b – 0. Then, using the notation in (4) with xn21 – 0, the equalities (8)

and (9) are equivalent to the two equalities

rn ¼ 2
B

A
; rn ¼ 2

b

a
:

The substitution (4) transforms equation (7a) into a first-order equation as follows:

rnþ1 ¼
xnþ1

xn
¼

ðaxn=xn21Þ þ b

ðAxn=xn21Þ þ B
¼

arn þ b

Arn þ B
: ð10Þ

The mapping gðrÞ ¼ ðar þ bÞ=ðAr þ BÞ is invertible and its inverse is easily

calculated as

g21ðtÞ ¼ 2
Bt2 b

At2 a
:

Now, if t0 ¼ 2B=A and we define tnþ1 ¼ g21ðtnÞ then the sequence {tn} is a backward

orbit of (10) starting from its forbidden. Similarly, we can generate a backward orbit from

t0 ¼ 2b=a. These observations lead to the following conclusion, which also resolves

Open Problem 6.10.1(a) in Ref. [7] for non-negative coefficients.

Proposition 3. Assume that A;B;a;b . 0 and let {dn} and {nn} be orbits of the equation

tnþ1 ¼ g21ðtnÞ with initial values of d0 ¼ 2B=A and n0 ¼ 2b=a, respectively. Then, the
forbidden set of (7a) consists of the sequence of lines through the origin given by

[1
n¼0

{u; vÞ : u ¼ dnv}<
[1
n¼0

{u; vÞ : u ¼ nnv}< {u; vÞ : u ¼ 0}:

These lines are contained in the second and fourth quadrants of the plane, and if
�t2 denotes the unique negative fixed point of g21 then �t2 attracts all negative orbits of g21

so that

lim
n!1

dn ¼ lim
n!1

nn ¼ �t2 ¼
a2 B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 BÞ2 þ 4bA

p
2A

:

H. Sedaghat892
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We can use a similar procedure for equation (7b). In this case, the analogue of (10) is

calculated as follows:

rnþ1rn ¼
xnþ1

xn

xn

xn21

¼
ðaxn=xn21Þ þ b

ðAxn=xn21Þ þ B
;

so that

rnþ1 ¼
arn þ b

rnðArn þ BÞ
: ð11Þ

Unlike the function g of (10), the mapping on the right-hand side of (11) is not

invertible so a little more complication is expected in calculating the forbidden set of

equation (7b). On the other hand, we have a slight simplification because the observation

involving the numerator quantity in (9) does not apply to (7b); this equation does have

nontrivial solutions that are zeros every other term if precisely one of the initial values is 0.

In fact, if x0x21 ¼ 0 with s ¼ x0 þ x21 – 0 then these alternating solutions are

{ . . . 0; ðb=BÞns; 0; ðb=BÞnþ1s . . . }:

We close this section with two open problems concerning equation (7b).

Open Problem 1. Determine the forbidden set of equation (7b) and extend Proposition 2 to

all solutions of equation (7b).

Open Problem 2. Give a complete characterization of the behaviours of the solutions of

equation (7b) if aB , bA.

2. Third-order cases

In this section, we examine a few nontrivial special cases of (1) that have order 3.

Cases. ð0;b;A;CÞ and ð1;a;A;CÞ.
Either of these cases yields the third-order rational equation

xnþ1 ¼
xnxn21

axn þ bxn22

; a ¼
A

m
. 0; b ¼

C

m
. 0; ð12Þ

where m ¼ a or g depending on the specific case. The forbidden (or singularity) set and all

real solutions of (12) have been studied in Ref. [11]. Using the substitution (4), equation

(12) is transformed into a second-order rational equation as follows

rnþ1 ¼
xnþ1

xn
¼

xn21=xn22

aðxn=xn21Þðxn21=xn22Þ þ b
¼

rn21

arnrn21 þ b
: ð13Þ

The forbidden sets and the behaviour of all real solutions of this second-order equation

have been studied in Ref. [11]; the non-negative solutions of this equation have also been

Journal of Difference Equations and Applications 893
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discussed in Ref. [2]. Equation (13) can be transformed into a linear first-order equation

via the transformation

rnrn21 ¼
1

tn
:

This fact makes a detailed study of (13) possible and the results of this study then yield

substantial information about (12). In particular, we have the following result.

Proposition 4.

(a) The forbidden set S of (12) is a sequence of planes containing the origin in R3 as

follows:

S ¼
[1
n¼0

{ðu; v;wÞ : u ¼ 2gnw}< {ðu; v;wÞ : u ¼ 0}< {ðu; v;wÞ : v ¼ 0};

where for n ¼ 0; 1; 2; . . . ;

gn ¼

ða2bÞ

ða=bÞnþ121
; if a – b >

b
nþ1

; if a ¼ b

8<
: :

(b) Let {xn} be a solution of (12) with initial point ðx0; x21; x22Þ � S.

(i) If aþ b . 1 then limn!1 xn ¼ 0.

(ii) If aþ b ¼ 1 then {xn} converges to a cycle {z0; z1} of period 2 (not necessarily

prime) where z1 ¼ j1z0 with

z0 ¼ x0
Y1
n¼1

1

1þ uð1þ ða=bÞÞ2n ;

where u is a real number depending on parameters and initial values. The quantity j1
depends on the properties of (13); in particular, if j1 ¼ 1 then {xn} converges to the

single number z0.

(iii) If aþ b , 1 then each of the sequences {x2n} and {x2nþ1} is unbounded.

Open Problem 3. Discuss the occurrence of monotone and oscillatory behaviours for the

solutions of (12) and (13) similarly to Propositions 1 and 2.

Cases. ð0;b;B;CÞ and ð1;a;B;CÞ.

These cases are similar to the preceding cases above. Either of these cases yields the

third-order rational equation

xnþ1 ¼
xnxn21

axn21 þ bxn22

; a ¼
B

m
. 0; b ¼

C

m
. 0; ð14Þ

H. Sedaghat894
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where m ¼ b or a depending on the specific case. Using the substitution (4), equation (14)

is transformed into a second-order rational equation as follows

rnþ1 ¼
xnþ1

xn
¼

xn21=xn22

ðaxn21=xn22Þ þ b
¼

rn21

arn21 þ b
: ð15Þ

Equation (15), which is easier to deal with than (13), can be used to work out the

following open problem in a manner similar to the preceding case.

Open Problem 4. Determine the forbidden sets and the behaviours of all solutions of

equation (14).

Cases. ð0; g;A;CÞ and ð2;a;A;CÞ.
These cases yield the third-order rational equation

xnþ1 ¼
xnxn22

axn þ bxn22

; a ¼
A

m
. 0; b ¼

C

m
. 0; ð16Þ

where m ¼ a or g depending on the specific case. Equation (16) can be transformed via the

reciprocal transformation

yn ¼
1

xn
; ð17Þ

into a linear third-order difference equation:

ynþ1 ¼ byn þ ayn22: ð18Þ

Cases. ð1; g;B;CÞ and ð2;b;B;CÞ.
These cases yield the third-order rational equation

xnþ1 ¼
xn21xn22

axn21 þ bxn22

; a ¼
B

m
. 0; b ¼

C

m
. 0; ð19Þ

where m ¼ g or b depending on the specific case. Equation (19) can be transformed via

(17) into the linear third-order equation

ynþ1 ¼ byn21 þ ayn22: ð20Þ

We note that equations (18) and (20) are distinct from the (less interesting) linear third-

order equations that arise directly from equation (1) in the following cases: ð0;a;b; g;AÞ,
ð1;a;b; g;BÞ and ð2;a;b; g;CÞ.

One way of studying the properties of rational equations (16) and (19) is through the

analysis of the linear equations (18) and (20). In particular, note that after the calculation

of the eigenvalues of the linear equations, one can use their explicit solutions to determine

explicit formulas for the solutions of (16) and (19) via the substitution (17). Likewise,

forbidden sets of the rational equations can be calculated using the explicit solutions.

Related to the preceding cases are transformations of equations (16) and (19) into

second-order rational equations via (4). Specifically, (16) is transformed as

rnþ1 ¼
xnþ1

xn
¼

1

aðxn=xn21Þðxn21=xn22Þ þ b
¼

1

arnrn21 þ b
; ð21Þ

Journal of Difference Equations and Applications 895
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and (19) is transformed as

rnþ1rn ¼
xnþ1

xn

xn

xn21

¼
1

ðaxn21Þ=ðxn22Þ þ b
¼

1

arn21 þ b
;

i.e.

rnþ1 ¼
1

rnðarn21 þ bÞ
: ð22Þ

Clearly, information about the solutions of linear equations (18) and (20), can be used

to obtain information about the forbidden sets and the solutions of rational equations (21)

and (22). This leads to the obvious problem to work out:

Open Problem 5. Determine the forbidden sets and the behaviours of all solutions of the

four related equations (16), (19), (21) and (22).

With a; b . 0 it is easily verified that each of (21) and (22) has a unique positive fixed

point. We claim that these fixed points attract all positive solutions of each equation.

Conjecture 6. All positive solutions of each of (21) and (22) converge to the unique

positive fixed point for each equation.

The case. ð0;a;b; g;B;CÞ.

This is the final case, that we discuss in this note. These parameter values give the

third-order difference equation

xnþ1 ¼ xn
axn þ bxn21 þ gxn22

Bxn21 þ Cxn22

� �
: ð23Þ

Once again, this equation is transformed to a second-order rational equation using (4)

as follows:

rnþ1 ¼
xnþ1

xn
¼

aðxn=xn21Þðxn21=xn22Þ þ ðbxn21=xn22Þ þ g

Bxn21=xn22 þ C

¼
arnrn21 þ brn21 þ g

Brn21 þ C
: ð24Þ

The second-order equation (24) is of the type studied in Ref. [4] from which we extract

the following after relabeling coefficients.

Proposition 5.

(a) Let a , B, b $ C and Bg # Cb: Then equation (24) has a unique positive fixed point

�r ¼
b2 C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2 CÞ2 þ 4gðB2 aÞ

p
2ðB2 aÞ

;

that attracts all positive solutions of (24).

(b) Let g ¼ 0, a # B and b , C: Then the origin is the unique non-negative fixed point of
(24) that attracts all positive solutions.

H. Sedaghat896
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A quick calculation shows that �r , 1 (or �r . 1) if and only if g , B2 a (respectively,

g . B2 a). Thus, from Proposition 5 and equality (6), we obtain the following corollary.

Proposition 6.

(a) Let a , B, b $ C, Bg # Cb and g . B2 a then every positive solution of equation

(23) is eventually increasing to infinity.

(b) If either (i) a , B, b $ C, Bg # Cb and g , B2 a, or (ii) g ¼ 0, a # B and

b , C, then every positive solution of equation (23) is eventually decreasing to zero.

When some of the conditions in Propositions 5 and 6 do not hold, the solutions of

equations (23) and (24) can be more varied and complex. For instance, the special case

ð0;a;B;CÞ, i.e. the third-order equation

xnþ1 ¼
x2n

axn21 þ bxn22

a ¼
B

a
; b ¼

C

a
: ð25Þ

is transformed to a second-order rational equation using (4) as follows:

rnþ1 ¼
xnþ1

xn
¼

ðxn=xn21Þðxn21=xn22Þ

ðaxn21=xn22Þ þ b
¼

rnrn21

arn21 þ b
: ð26Þ

Using the reciprocal transformation tn ¼ 1=rn, equation (26) takes the form

tnþ1 ¼ tnðaþ btn21Þ: ð27Þ

Equation (27) is also known as the ‘extended logistic equation’ and if a, b are real

numbers with b , 0 , a then complex behaviour is possible for (27); see Refs. [6,8].

We close with the following open problem regarding (25):

Open Problem 6. Determine the forbidden sets and the behaviours of all solutions of

equation (25) for a;B;C . 0.
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