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Open Problems and Conjectures

Edited by Gerry Ladas

In this section we present some open problems and conjectures

about some interesting types of difference equations. Please submit

your problems and conjectures with all relevant information to G.

Ladas.

Regarding the Equation xnþ1 ¼ cxn þ
f ðxn 2 xn21Þ
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The second order difference equation

xnþ1 ¼ cxn þ f ðxn 2 xn21Þ; c [ ½0; 1� ð1Þ

has a long history in macroeconomics that dates back to well over half a
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century. See [1–6] and [8]. Here, we present some of the few facts that are

known about Eq. (1), and state a few of the many conjectures that remain

unsolved.

BOUNDEDNESS AND ABSORBING INTERVALS

In the early economic literature, the “investment function” f [ C 0ðRÞ was

assumed to be monotonically increasing, though not necessarily smooth.

The following is established in Ref. [5]:

Theorem 1 If c , 1 and:

(a) f is nondecreasing and bounded below on R;

(b) there is t0 . 0 and a [ ð0; 1Þ such that f ðtÞ # at for all t $ t0;then

for every solution {xn} of Eq. (1), there are real numbers L,M such that

xn [ ½L;M� for all n exceeding some positive integer n0. In particular,

every solution of Eq. (1) is bounded.

The interval [L,M ] in Theorem 1 is an absorbing interval. Note that L,M

do not depend on the initial conditions, although the integer n0 does. The

proof of Theorem 1 utilizes properties of solutions of the first order

equation

tnþ1 ¼ f ðtnÞ; t0
_¼x0 2 x21: ð2Þ

A straightforward modification shows that certain types of decreasing f

that are bounded above also satisfy the conclusion of Theorem 1. On the

other hand, if c ¼ 1; then Eq. (1) can be written as

Dxn ¼ f ðDxn21Þ

so each solution {xn} of Eq. (1) is a sequence of partial sums of the

corresponding solution {tn} of Eq. (2); i.e.

xn ¼ x0 þ
Xn

k¼1

tk:

It follows that if f ð0Þ ¼ 0 and if {tn} converges at a sufficiently fast rate

to zero (e.g. if j f ðtÞj # ajtj for some a [ ð0; 1ÞÞ then {xn} converges to a

real number (namely, the sum of the series x0 þ
P1

n¼0tnÞwhich is finite but
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depends on initial conditions. Therefore, though every solution is bounded

in this case, there are no absorbing intervals.

Conjecture 1 The conclusion of Theorem 1 holds if:

(a) c , 1 and f is nondecreasing;

(b) there is r . 0 and a [ ð0; 1Þ such that j f ðtÞj # ajtj for all t such that

jtj $ r:

Conjecture 1 is true for the linear case f ðtÞ ¼ at where a [ ð0; 1Þ. Thus

the hypothesis “boundedness from below” in Theorem 1 is not necessary.

On the other hand, if a , 0; then the eigenvalues of the linearization of Eq.

(1) are both real and the negative eigenvalue exceeds 1 in magnitude

provided that a , 2ð1þ cÞ=2: It follows that Conjecture 1 is false in the

linear case if f is decreasing. Similarly, the case of linear f shows

Conjecture 1 to be false if a . 1:

STABILITY OF THE ORIGIN

Assume that f ð0Þ ¼ 0 in Eq. (1), so that the origin is the unique fixed point

of Eq. (1). Define Fðu; vÞ _¼cuþ f ðu 2 vÞ: If j f ðtÞj # ajtjfor some a . 0;

then

jFðu; vÞj # cjuj þ aju 2 vj # ðcþ aÞjuj þ ajvj # ðcþ 2aÞmax{juj; jvj}:

It follows that if cþ 2a [ ð0; 1Þ; then the origin is globally

asymptotically stable (see Ref. [7]). Note that this conclusion is valid

regardless of whether f is monotonic. However, if f ðtÞ ¼ at is linear, then

for any a [ ð0; 1Þ; the origin is globally asymptotically stable. Numerical

simulations for nonlinear f tend to support this conclusion more generally;

hence we propose:

Conjecture 2 If c , 1; f is nondecreasing and there is a [ ð0; 1Þ such

that j f ðtÞj # ajtj for all real t, then the origin is globally asymptotically

stable.
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OSCILLATIONS

The following is proved in Ref. [6].

Theorem 2 Suppose that g [ C 1ðRÞ; gð0Þ ¼ 0 and g
0

ð0Þ . 1; and define

f ðtÞ ¼ gðtÞ þ b where b . 0: If f satisfies the hypotheses of Theorem 1 and

b is large enough that f ðtÞ $ 0 for all t, then every nontrivial solution of

Eq. (1) oscillates persistently (i.e. it has two or more limit points).

Conjecture 3 The conclusion of Theorem 2 holds if f ðtÞ ¼ gðtÞ þ b

only satisfies the hypotheses of Conjecture 1.

Numerical simulations indicate that oscillations resulting from the

conditions of Theorem 2 are always of the almost periodic type, and in

certain cases, eventually periodic. This appears to be a consequence of the

increasing nature of f. This naturally leads to an interesting problem.

OPEN PROBLEM. For c , 1; determine some sufficient conditions on f

for all solutions of Eq. (1) to be eventually periodic or approach a periodic

solution with period 2 or greater.

If f is not differentiable at 0, then solutions of Eq. (1) may exhibit

complex or strange behavior. In Ref. [8] it is shown that if

(a) f ðtÞ ¼ 0 for t # 0;

(b) there is r . 0 such that f ðtÞ ¼ bt for 0 , t , r; and for b .

ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1 2 c
p

Þ2;

(c) there is t0 . r and a [ ð0; 1Þ such that f ðtÞ # at for all t $ t0;

then the origin is globally attracting yet unstable for all c [ ½0; 1Þ: The

same conclusion seems to hold if we only assume that f ðtÞ $ bt in (b). The

lower bound for b in statement (b) ensures that the linear segment of Eq. (1)

with f ðtÞ ¼ bt generates monotonically divergent solutions (until the

interval (0,r ) is exited) regardless of the value of c.

If f is not monotonic, oscillatory behavior occurs in a peculiar manner.

Numerical simulations indicate that the following is possibly true:

Conjecture 4 Let f be bounded and f ð0Þ ¼ 0: Assume that f
0

(t ) exists

and is continuous, and that f
0

ðtÞ . 0 for t . 0 and f
0

ðtÞ , 0 for t , 0: If the

right and left derivatives of f at 0 satisfy

f
0

ð0þÞ; j f
0

ð02Þj . ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1 2 c
p

Þ2; c [ ½0; 1Þ
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then every solution {xn} of Eq. (1) satisfies the following:

0 #
n!1

lim infxn ,
n!1

lim supxn , 1:

Note that under the hypotheses of Conjecture 4, the origin is both the

unique minimum of f and the unique fixed point of Eq. (1). Thus solutions

of Eq. (1) appear to be oscillating above, not about the equilibrium point of

Eq. (1).

Hypotheses like f ð0Þ ¼ 0; smoothness or boundedness are not essential;

they make it easier to state the conjecture. Further, with them it is easy to

show that the limit infimum is non-negative and the limit supremum is

finite. A simple example of f that satisfies all of the hypotheses of

Conjecture 4 is f ðtÞ ¼ arctanjbtj with b . ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1 2 c
p

Þ2:
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