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Monotone and oscillatory solutions of a rational difference equation
containing quadratic terms

M. Dehghana, C.M. Kentb, R. Mazrooei-Sebdania, N.L. Ortizb and H. Sedaghata*

aDepartment of Mathematics, Virginia Commonwealth University, Richmond, VA, USA;
bDepartment of Applied Mathematics, Amirkabir University of Technology, Tehran, Iran

(Received 2 October 2007; final version received 20 February 2008 )

Dedicated to Gerry Ladas on the occasion of his 70th birthday

We show that the second order rational difference equation

xnþ1 ¼
Ax2n þ Bxnxn21 þ Cx2n21

axn þ bxn21

has several qualitatively different types of positive solutions. Depending on the non-negative
parameter values A,B,C,a,b, all solutions may converge to 0, or they may all be unbounded.
For some parameter values both cases can occur, or coexist depending on the initial values.
We find converging solutions of both monotonic and oscillatory types, as well as periodic
solutions with period two. A semiconjugate relation facilitates derivations of these results by
providing a link to a rational first order equation.

Keywords: rational; quadratic; monotonic; non-monotonic; period two; semiconjugate

AMS Subject Classification: 39A10; 39A11

1. Introduction

The second order difference equation

xnþ1 ¼
Ax2n þ Bxnxn21 þ Cx2n21

axn þ bxn21

ð1Þ

is an example of rational equation with a quadratic numerator and a linear denominator, or a

QLR equation for short. Rational difference equations having both a linear numerator and a

linear denominator have been studied extensively by Gerry Ladas and colleagues; see e.g. [8–11]

which include extensive lists of references. This substantial research makes a strong case for

studying the behaviour of rational difference equations as well as providing a great deal of

information about the behaviour of rational equations with linear terms. By comparison, rational

equations containing quadratic or higher power terms in their numerators or denominators have

not yet been systematically studied; a few references that contain detailed studies of such

equations of order 2 are [1–5,7].

Applications of rational difference equations containing quadratic and cubic terms to

biological models have been discussed in Refs. [2,3] via systems of first order rational equations
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using monotone methods. In Ref [4] we considered QLR difference equations in some detail

and found that they exhibit a typically broader range of behaviours than equations having only

linear terms. Therefore, understanding the nature of solutions of QLR equations should add

significantly to our general understanding of the remarkable class of rational difference

equations and their applications.

In this paper, we study the positive solutions of (1). Clearly, if the parameters (or coefficients)

satisfy the conditions

a . 0;A;B;C;b $ 0 with A þ B þ C . 0 ð2Þ

then each solution {xn} of (1) with initial values

x0; x21 [ ð0;1Þ ð3Þ

is a positive solution. Although the weaker inequalities a þ b .0 and B . 22
ffiffiffiffiffiffiffi
AC

p
are

sufficient for positive solutions, we do not consider such cases in this paper and assume that (2)

and (3) both hold without further explicit mention.

Equation (1), subject to (2) and (3), is essentially different from the QLR equations

considered in Ref [4] or in most other studies because (1) has no isolated fixed points. Therefore,

typical methods of analysis that utilise fixed points (e.g., linearization, semi-cycle analysis)

cannot be used. By way of comparison, the linear fractional (linear–over-linear) analogue of (1),

i.e., the constants-free equation

xnþ1 ¼
Axn þ Bxn21

axn þ bxn21

; A;B;a;b $ 0; A þ B;aþ b . 0: ð4Þ

has a unique, isolated, positive fixed point �x ¼ ðA þ BÞ=ðaþ bÞ. Thus (4), is fully amenable to

linearization and semi-cycle analysis; see Ref. [11] for a detailed study of the solutions of (4)

using these methods.

For equation (1), we observe that it is homogeneous of degree 1 (see Ref. [14]) and thus has a

semiconjugate factorization that ties it to a first order rational equation. This feature enables us to

show the existence of several qualitatively different types of positive solutions for (1). We

establish the occurrence of monotonic convergence, oscillatory convergence and periodic

solutions with period 2. In particular, for the special case C ¼ 0, we solve the Open Problem

6.10.1(b) in Ref. [11] when the coefficients are non-negative.

2. The ratio mapping

For background concepts used in this and subsequent sections we refer to the texts [6,9,12]. We

may write equation (1) as

xnþ1

xn

¼
Ax2n þ Bxnxn21 þ Cx2n21

ax2n þ bxnxn21

¼
Aðxn=xn21Þ

2 þ Bðxn=xn21Þ þ C

aðxn=xn21Þ
2 þ bðxn=xn21Þ

:

Now, if we define the ratios rn ¼ xn/xn21 for n $ 0 then the following first order, rational

difference equation is satisfied by the sequence of ratios:

rnþ1 ¼
Ar2n þ Brn þ C

ar2n þ brn

: ð5Þ
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Under conditions (2) {rn} is a positive solution of (5) if r0 ¼ x0 /x21 . 0; this is guaranteed

by (3). For such {rn}, we note that

xn ¼ rnxn21 ¼ rnrn21xn22 ¼ · · · ¼ rnrn21· · ·r1x0: ð6Þ

Hence, each positive solution of (1) can be obtained from a given positive solution of (5) in

the form (6). Equations (1) and (5) are semiconjugates; see Ref. [13]. Also see Ref. [14] for a

generalization of the ratios idea to homogeneous difference equations on groups.

An important difference between (5) and (1) is the fact that (5) has an isolated fixed point

in (0,1).

Lemma 1. Let B þ C . 0 or A . b.

(a) Equation (5) has a unique fixed point r̄ [ (0,1).

(b) �r ¼ 1 if and only if A þ B þ C ¼ a þ b.

(c) For �r – 1, ð�r 2 1ÞðA þ B þ C 2 a2 bÞ . 0; i.e., �r , 1 (respectively, �r . 1) if and only if

A þ B þ C , a þ b (respectively, A þ B þ C . a þ b).

Proof. (a) Fixed points of (5) in (0,1) are positive solutions of the equation

Ar 2 þ Br þ C

ar 2 þ br
¼ r:

This equation is equivalent to the polynomial equation

fðrÞ82ar 3 þ ðA 2 bÞr 2 þ Br þ C ¼ 0:

First, assume that C . 0. Since a . 0 and f(0) ¼ C . 0, it is clear that f has at least

one positive root �r: Further, there is precisely one sign change in f regardless of the sign of

A 2 b, so by the Descartes rule of signs [15] f has at most one positive root. It follows that �r is

unique.

Next, if C ¼ 0 but B . 0 then the non-zero roots of f are the same as the roots of the

quadratic equation ar 2 2 (A 2 b)r 2 B ¼ 0, i.e.,

A 2 b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA 2 bÞ2 þ 4aB

p
2a

, 0 ,
A 2 bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA 2 bÞ2 þ 4aB

p
2a

:

Thus, once again there is a unique positive root. Finally, if B . C ¼ 0 then by hypothesis

A 2 b and the only non-zero root of f is (A 2 b)/a, which is positive and unique as such.

(b) f(1) ¼ A þ B þ C 2 a 2 b ¼ 0 so �r ¼ 1:
(c) To show that �r 2 1 has the same sign as A þ B þ C 2 a 2 b, from the equation

fð�rÞ ¼ 0; we obtain

A 2 b

a
þ

B

a�r
þ

C

a�r2
¼ �r: ð7Þ

Journal of Difference Equations and Applications 1047



Suppose first that �r , 1: Then (7) gives

0 . �r 2 1 $
A 2 b

a
þ

B

a
þ

C

a
2 1 ¼

A þ B þ C 2 a2 b

a
:

This chain of inequalities is valid if and only if A þ B þ C , a þ b. Similarly, if �r . 1 then

from (7) it follows that

0 , �r 2 1 #
A 2 b

a
þ

B

a
þ

C

a
2 1 ¼

A þ B þ C 2 a2 b

a
;

which holds if and only if A þ B þ C . a þ b. The proof is now complete.

It is convenient in what follows to define the ratio mapping

gðrÞ ¼
Ar 2 þ Br þ C

ar 2 þ br

so that equation (5) can be stated as rnþ1 ¼ g(rn). Thus, Lemma 1 shows that the continuous map

g:(0,1) ! (0,1) has a unique fixed point �r: It is an interesting fact that although the precise

value of �r is not generally easy to calculate, its position relative to one is easily determined from

Lemma 1. This fact is important in the study of solutions of (1).

Remark. (The invariant ray) Suppose that the hypotheses of Lemma 1 hold. Then the ray

{ðx; �rxÞ : x [ ð0;1Þ}, or �rx for short, is an invariant set of (1) in the state space (0,1)2 since if

(x21,x0) is a point on this ray so that x0 ¼ �rx21 then r0 ¼ �r and thus x1 ¼ �rx0; i.e. (x0,x1) is on �rx.

By induction, the state-space orbit (xn21,xn) is on the invariant ray for all n. Now if �r , 1; then
every orbit of (1) starting on �rx will converge monotonically to zero on �rx since by equation (6)

xn ¼ �rð Þnx0: ð8Þ

This inequality also shows that if �r . 1 then every orbit in �rx goes to infinity monotonically

and if �r ¼ 1 then every orbit in �rx is stationary (a point).

The invariant ray �rx is analogous to a fixed point for (1), in the sense that by taking the

quotient of (0,1)2 modulo �rx, equation (1) is transformed into a topological conjugate of (5), and

the ray �rx into the point �r; on the space of rays through the origin (see Ref. [13]).

Monotonic behaviour on the invariant ray may or may not be the representative of other

solutions. In most cases in Section 3, the behaviour on the invariant ray is in fact representative

of all solutions but in Section 4 this is not the case.

3. Monotone solutions

Let {xn} be a positive solution of (1). We say that {xn} converges to 0 eventually monotonically

if {xn} is a decreasing sequence for all n greater than some positive integer k and has limit 0. We

also say that {xn} converges to 1 eventually monotonically if {1/xn} converges to 0 eventually

monotonically. The next result is essential for determining when all solutions of (1) are

eventually monotonic. Its proof also provides information that we use in Section 4 on periodic

and other non-monotonic solutions.

M. Dehghan et al.1048



Lemma 2. (a) Let B þ C . 0. The fixed point �r of g is globally asymptotically stable on (0,1) if

and only if

aC # ðbþ AÞB þ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðbþ AÞ

p
: ð9Þ

with the inequality strict if A ¼ 0.

(b) If B ¼ C ¼ 0 and A . b then the positive fixed point �r ¼ ðA 2 bÞ=a is globally

asymptotically stable on (0,1).

Proof. (a) We show that the sign of the function g 2(r) 2 r ¼ (g(r)) 2 r is opposite to r 2 �r for

r . 0, r – �r (Theorem 2.1.2 in Ref. [10]).

g2ðrÞ2 r ¼

A
Ar 2 þ Br þ C

ar 2 þ br

� �2

þB
Ar 2 þ Br þ C

ar 2 þ br

� �
þ C

a
Ar 2 þ Br þ C

ar 2 þ br

� �2

þb
Ar 2 þ Br þ C

ar 2 þ br

� � 2 r

¼
A Ar 2 þ Br þ C
� �2

þB Ar 2 þ Br þ C
� �

ar 2 þ br
� �

þ C ar 2 þ br
� �2

a Ar 2 þ Br þ C
� �2

þb Ar 2 þ Br þ C
� �

ar 2 þ br
� �

2
r a Ar 2 þ Br þ C
� �2

þb Ar 2 þ Br þ C
� �

ar 2 þ br
� �h i

a Ar 2 þ Br þ C
� �2

þb Ar 2 þ Br þ C
� �

ar 2 þ br
� � :

Combining the fractions and simplifying the numerator gives:

g2ðrÞ2 r ¼
h
2 aA A þ b

� �
r 5 þ A3 þ Ca2 2 ABa2 Ab2 2 Bab

� �
r 4

þ 2A2B þ ABbþ Cab2 2ACa2 Bb2
� �

r 3

þ 2A2C þ AB2 þ B2b2 BCa
� �

r 2 þ 2ABC þ BCb2 C 2a
� �

r þ AC
i

4
h
a Ar 2 þ Br þ C
� �2

þb Ar 2 þ Br þ C
� �

ar 2 þ br
� �i

:

Let P(r) be the quintic polynomial in the numerator of g 2(r) 2 r. Since, the denominator of

g 2(r) 2 r is positive for r . 0, the sign of P(r) is the same as the sign of g 2(r) 2 r for r . 0.

Next, we divide P(r) by the cubic polynomial f(r) that determines the fixed points of g in

Lemma 1. The polynomials are divisible and the quotient is the quadratic polynomial

cðrÞ ¼ A þ b
� �

Ar 2 2 aC 2 AB 2 bB
� �

r þ AC: ð10Þ

Observe that if c(r) . 0 for r . 0 then g 2(r) 2 r has the same sign as f(r) on (0,1). Under

the given hypotheses Lemma 1 implies that f(r) has a unique positive root at �r. So f(0) $ 0;

also f(r) ! 2 1 as r ! 1, so that the sign of f(r) is opposite of the sign of r 2 �r on (0,1).

Thus, to complete the proof, we find conditions implying c(r) . 0.

We consider two cases: first, if A ¼ 0, then c(r) . 0 for r . 0 if and only if

aC , ðA þ bÞB ¼ bB: ð11Þ

Journal of Difference Equations and Applications 1049



Since A ¼ 0 implies that B þ C . 0, equation (9) is valid with strict inequality and reduces

to (11). Now assume that A . 0. Then, the roots of c can be found explicitly as

r^ ¼
aC 2 AB 2 bB ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaC 2 AB 2 bBÞ2 4ðA þ bÞA2C

p
2ðA þ bÞA

: ð12Þ

Note that c(r) . 0 for r . 0 if and only if c has no real and positive roots, i.e., if and only if

r^ are either complex or they are real and non-positive. First, r^ are complex if and only if

jaC 2 ðA þ bÞBj , 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðA þ bÞ

p
:

or equivalently,

ðbþ AÞB 2 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðbþ AÞ

p
, aC , ðbþ AÞB þ 2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðbþ AÞ

p
: ð13Þ

Also, since B þ C . 0 it follows that r^ are real and non-positive if and only if

jaC 2 ðA þ bÞBj $ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðA þ bÞ

p
and aC , ðA þ bÞB

or equivalently,

aC # ðbþ AÞB 2 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðbþ AÞ

p
ð14Þ

Inequalities of (13) and (14) together, i.e., one or the other holding, are equivalent to (9) with

the strict inequality. Finally, to account for possible equality, if

jaC 2 ðA þ bÞBj ¼ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðA þ bÞ

p
and aC . ðA þ bÞB

we obtain

aC 2 ðA þ bÞB ¼ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðA þ bÞ

p
ð15Þ

and

r2 ¼ rþ ¼
aC 2 ðA þ bÞB

2ðA þ bÞA
¼

2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðA þ bÞ

p

2ðA þ bÞA
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C

A þ b

s
. 0:

Notice that

f

ffiffiffiffiffiffiffiffiffiffiffiffi
C

A þ b

s !
¼

2aC

A þ b

ffiffiffiffiffiffiffiffiffiffiffiffi
C

A þ b

s
þ

ðA 2 bÞC

A þ b
þ B

ffiffiffiffiffiffiffiffiffiffiffiffi
C

A þ b

s
þ C

¼
2aC þ ðA þ bÞB

A þ b

ffiffiffiffiffiffiffiffiffiffiffiffi
C

A þ b

s
þ

2AC

A þ b
¼ 0;

where the value 0 is obtained by using (15) again. Therefore, the unique positive root of c is the

same as the unique root of f i.e. the fixed point �r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ðA þ bÞ

p
. Since c is a quadratic

polynomial this value of �r gives its minimum value of 0, so c(r) . 0 if r – �r. Hence once again

the sign of f determines the sign of g 2(r) 2 r and since (15) is the same as (9) with equality, the

proof of (a) is complete.
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(b) In this case, c(r) ¼ (A þ b)Ar 2 . 0 for r . 0. So the conclusion follows easily from the

arguments in the proof of (a).

Theorem 1. (a) Assume that either B þ C . 0 and (9) holds, or B ¼ C ¼ 0 and A . b.

(i) If A þ B þ C , a þ b. Then, every positive solution of (1) converges to 0 eventually

monotonically.

(ii) If A þ B þ C . a þ b. Then, every positive solution of (1) converges to 1 eventually

monotonically.

(b) Let B ¼ C ¼ 0 and A # b. Then, every positive solution of (1) converges to 0 eventually

monotonically.

Proof. (a), (i): By Lemma 1 there is a fixed point �r [ ð0; 1Þ for g which is globally attracting by

Lemma 2. Hence, there is k $ 1 such that rn , 1 for all n . k and (6) implies that xn is

decreasing to zero if n . k.

(a), (ii): The argument is similar to that for (a), (i) except that now �r . 1 so that rn . 1 for all

sufficiently large n.

(b): In this case, f(r) ¼ 2 ar 3 2 (b 2 A)r 2 , 0 for r . 0 so that g(r) , r (in particular, g

has no positive fixed points). Thus, rn ! 0 as n ! 1 and (6) implies that xn is (eventually)

decreasing to zero.

Setting C ¼ 0 in Theorem 1 gives the next result concerning Open Problem 6.10.1 in the

reference [11]; also see Corollaries 3 and 5 below.

Corollary 1. Let A þ b, A þ B . 0 in the following difference equation:

xnþ1 ¼ xn

Axn þ Bxn21

axn þ bxn21

� �
; x21; x0 . 0: ð16Þ

(a) Every positive solution of (16) converges to 0 eventually monotonically if either of the

following conditions holds:

(i) A þ B , a þ b with A . b if B ¼ 0;

(ii) B ¼ 0 and A # b.

(b) Every positive solution of (16) converges to 1 eventually monotonically if A þ B . a þ b.

Setting A ¼ 0 in Theorem 1 gives the next result.

Corollary 2. Let bB . aC in the following difference equation:

xnþ1 ¼ xn21

Bxn þ Cxn21

axn þ bxn21

� �
; x21; x0 . 0: ð17Þ

(a) Every positive solution of (17) converges to 0 eventually monotonically if B þ C , a þ b.

(b) Every positive solution of (17) converges to 1 eventually monotonically if B þ C . a þ b.
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Example. By considering a special case, we show that if the reverse of the inequality in Corollary

2 holds then (17) has solutions that are not eventually monotonic. Consider

xnþ1 ¼
x2n21

xn

; ð18Þ

which is a special case of (17) with B ¼ b ¼ 0 and C ¼ a. The ratios equation for (18) is

rnþ1 ¼ r22
n whose explicit solution is obtained inductively as rn ¼ rð22Þn

0 : This solution and (6)

give the explicit solution of (18) as

xn ¼ r22þð22Þ2þ· · ·þð22Þn21

0 x0 ¼ x0r
2½ð22Þn21�=3
0 :

It is clear from this that for all x0, x21 . 0, one of x2n21 and x2n converges to 0 and the other

to1 as n ! 1; i.e. {xn} is unbounded but does not converge to1. This example also exhibits a

type of extreme behaviour for the solutions of (1) that is different from the types of behaviour

that we discuss in this article.

4. Non-monotonic and periodic solutions

In this section, we discuss bounded solutions, periodic solutions and solutions that converge to 0

or1 in a non-monotonic way depending on how A þ B þ C compares to a þ b. We recall that

under the hypotheses of Lemma 1, the behaviour on the invariant ray is still monotonic; thus

monotonic solutions coexist with non-monotonic ones.

We start by discussing the special case A þ B þ C ¼ a þ b. Under the conditions of

Lemma 1, this equality implies the existence of a fixed point �r ¼ 1 for g. When this fixed point is

globally attracting, it is generally difficult to reach any conclusions about the asymptotic

behaviour of solutions of (1) by using relation of (6). So we use a standard contraction result

instead, which we state as a lemma without proof.

Lemma 3. Let yn be a given sequence of real numbers. If there exists a sequence {Pn} of positive

real numbers such that

jynþ1 2 ynj # pnjyn 2 yn21j; n ¼ 0; 1; . . . ð19Þ

and lim n!1pn ¼ p , 1; then yn converges to a finite limit.

Lemma 4. Let A þ B þ C ¼ a þ b with B þ C . 0. Then, the following conditions are

equivalent:

(i) C , A þ b;

(ii) a , 2A þ B;

(iii) aC , ðbþ AÞB þ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ AÞC

p
:

Proof. (i) , (ii):

C , A þ b , A þ B þ C , 2A þ B þ b , a , 2A þ B:

(ii) ) (iii): If C . 0 then

a , B þ 2A ) aC , BC þ 2A
ffiffiffiffi
C

p� �2
, BðA þ bÞ þ 2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA þ bÞC

p
:
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If C ¼ 0 then B . 0 so that

aC ¼ 0 , BðA þ bÞ ¼ BðA þ bÞ þ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA þ bÞC

p
:

(iii) ) (ii): We show that the negation of (ii) implies the negation of (iii). Since the negation

of (ii), i.e. 2A þ B # a has already been shown equivalent to the negation of (i), i.e. A þ b # C,

we have

BðA þ bÞ þ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA þ bÞC

p
# BC þ 2AC ¼ ð2A þ BÞC # aC

which is the negation of (iii), as required.

Theorem 2. Let A þ B þ C ¼ a þ b and B þ C . 0. If a , 2A þ B, then every positive

solution of (1) converges to a finite limit.

Proof. Lemma 1 implies that g has a fixed point at 1. By Lemma 4, (9) holds and thus 1 is

globally attracting by Lemma 2(a). Next, use the hypotheses to write

xnþ1 2 xn ¼
ðA 2 aÞx2n þ ðB 2 bÞxnxn21 þ Cx2n21

axn þ bxn21

¼
½ða2 AÞxn þ Cxn21�ðxn21 2 xnÞ

axn þ bxn21

:

Therefore,

jxnþ1 2 xnj #
ja2 Ajxn þ Cxn21

axn þ bxn21

jxn 2 xn21j:

Since 1 is globally attracting. we have limn!1ðxn=xn21Þ ¼ 1: Therefore,

lim
n!1

ja2 Ajxn þ Cxn21

axn þ bxn21

¼ lim
n!1

ja2 Aj xn

xn21

� �
þ C

a xn

xn21

� �
þ b

¼
ja2 Aj þ C

aþ b
:

Now,

ja2 Aj þ C

aþ b
, 1 , ja2 Aj , aþ b2 C ¼ A þ B , 2B , a , 2A þ B;

which is true by hypothesis. Thus, by Lemma 3, xn converges to a finite limit and the proof is

complete.

Corollary 3. (a) In equation (16) assume that A þ B ¼ a þ b, B . 0 and a , 2A þ B. Then,

every positive solution of (16) converges to a finite limit.

(b) In equation (17) assume that B þ C ¼ a þ b and a , B. Then, every positive solution of

(17) converges to a finite limit.

So far we have not considered whether the positive solutions of (1) under the conditions of

Theorem 2 are monotone or not. If the mapping g is decreasing at the fixed point 1, i.e., if

g0(1) , 0, then the attracting nature of 1 means that the ratios sequence rn oscillates about 1.

Thus, the sequence xn cannot be eventually monotonic.
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Lemma 5. The mapping g is decreasing on (0,1) if bA # aB and C . 0 or if bA , aB and

C $ 0.

Proof. The derivative of g is

g
0

ðrÞ ¼
ð2Ar þ BÞðar 2 þ brÞ2 ð2ar þ bÞðAr 2 þ Br þ CÞ

ðar 2 þ brÞ2
:

So g0(r) , 0 when the numerator is negative. Multiplying terms in the numerator and

rearranging them gives the requirement

ðbA 2 aBÞr 2 2 2aCr 2 bC , 0: ð20Þ

This last inequality is clearly true for r . 0 under the stated hypotheses and the proof is

complete.

Remark. (Non-monotonicity) In Theorem 2 or Corollary 3, solutions may or may not be

monotonic. For instance, in Corollary 3(b), the conditions of Lemma 5 are satisfied so solutions

are not eventually monotonic; they approach their limits in an oscillatory fashion (unless, of

course, x0 ¼ x21). However, in Corollary 3(a) if bA . aB then it is clear that the left hand side

of (20) is positive (given that C ¼ 0 so that g is increasing for r . 0; thus the converging

solutions are eventually monotonic in this case. For more details see Theorem 3 below; also see

Corollary 4 which can be compared with Theorem 2.

Lemma 6. Assume that C . 0. Then:

(a) g has a unique pair of distinct, positive, period-2 points, namely, r^ in (12), if and only if

aC . ðbþ AÞB þ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðbþ AÞ

p
: ð21Þ

(b) r2 , 1 , rþ if and only if

aC . ðbþ AÞB þ ðA þ C þ bÞA ¼ AC þ ðA þ bÞðA þ BÞ: ð22Þ

(c) The product of the period-2 points is given by

r2rþ ¼
C

A þ b
: ð23Þ

Proof. (a) The positive roots of the mapping c in (10) are the non-fixed point roots of g 2(r);

hence, these roots of c are the periodic points of g. As seen in the proof of Lemma 2, distinct real

roots of c, i.e. the numbers r^, exist and are positive if and only if (21) holds.
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(b) From (12) we find that

r2 , 1 ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaC 2 AB 2 bBÞ2 2 4ðA þ bÞA2 C

q
. aC 2 ð2A þ BÞðA þ bÞ

rþ . 1 ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaC 2 AB 2 bBÞ2 2 4ðA þ bÞA2 C

q
. 2½aC 2 ð2A þ BÞðA þ bÞ�:

Therefore, r2 , 1 , rþ if and only if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aC 2 AB 2 bB
� �2

24 A þ b
� �

A2 C

q
. aC 2 ð2A þ BÞðA þ bÞj j

½aC 2 ðA þ bÞB�2 2 4 A þ b
� �

A2 C . {½aC 2 ðA þ bÞB�2 2AðA þ bÞ}2

2 AC . 2aC þ ðA þ bÞB þ ðA þ bÞA:

The last expression is equivalent to (22). As might be expected from a comparison of (21)

and (22), it is easy to verify that indeed

ðA þ C þ bÞA $ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðbþ AÞ

p
with equality holding if and only if A þ B ¼ C.

(c) The relation of (23) may be verified by direct multiplication or more quickly, by writing

cðrÞ ¼ ðA þ bÞAðr 2 r2Þðr 2 rþÞ

to see, using of (10), that (A þ b)Ar2rþ ¼ AC.

Lemma 7. Assume that A,C . 0, bA # aB and (21) holds. Then, the two-cycle {r2,rþ} attracts

all orbits of g in (0,1) except for �r:

Proof. Note that g 2 ¼ g o g 2 is increasing on (0,1) since by Lemma 5 g is decreasing there.

Thus, every orbit of g 2 either converges to a fixed point or is unbounded [12]. Lemma 6 implies

that {r2rþ} is the unique and positive two-cycle of g and Lemmas 1 and 2 imply that g has a

unique positive fixed point �r that is unstable. It follows that every orbit of g 2 converges to r2
or rþ and the proof is completed.

Before presenting the next result, a few definitions and observations are needed. We say that

a solution {xn} of (1) converges to 0 in an oscillatory fashion if {xn} converges to 0 but not

eventually monotonically; i.e., lim n!1xn ¼ 0 but {xn} is not an eventually decreasing sequence.

We also say that {xn} converges to 0 in an oscillatory fashion if {1/xn} converges to 0 in an

oscillatory fashion; thus lim n!1xn ¼ 1 but {xn} is not an eventually increasing sequence.

If {r1,r2, . . . ,rk} is one cycle of a positive periodic solution of (5) with period k, then

defining x1 ¼ r1x0 gives

x2 ¼ r2x1 ¼ r2r1x0; · · ·; xk ¼ rk· · ·r2r1x0:

Thus, if the product rk . . . r2r1 þ 1 then xk ¼ x0, xkþ1 ¼ x1, . . . , x2k ¼ xk; i.e., {x1, . . . ,xk} is

one cycle of a solution of (1) with period k. Conversely, if {x1, . . . ,xk} is one cycle of a positive
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periodic solution of (1) with period k then with ri ¼ xi/xi21 for i ¼ 1, . . . ,k we get

rkþ1 ¼
xkþ1

xk

¼
x1

x0
¼ r1; rkrk21· · ·r1 ¼

xk

xk21

xk21

xk22

· · ·
x1

x0
¼

xk

x0
¼ 1:

Theorem 3. Let A,C . 0, bA # aB and assume that (22) holds.

(a) Let A þ B þ C , a þ b;

(i) If C ¼ A þ b then every solution of (1) not on the invariant ray �rx converges to a

periodic solution with period 2.

(ii) If C . A þ b then every solution of (1) not on the invariant ray �rx converges to 1 in

an oscillatory fashion.

(iii) If C þ A þ b and (A þ B þ C)(A þ b) , (a þ b)C then every solution of (1) not

on the invariant ray �rx converges to 0 in an oscillatory fashion.

(iv) Solutions on the invariant ray �rx(i.e., x0 ¼ �rx21) converge to 0 monotonically.

(b) Let A þ B þ C $ a þ b;

Every solution of (1) not on the invariant ray �rxconverges to 1 in an oscillatory fashion.

If A þ B þ C ¼ a þ b then solutions on the invariant ray �rx are stationary or constant

solutions. If A þ B þ C . a þ b then solutions on the invariant ray �rx converge to 1

eventually monotonically.

Proof. (a), (i): By Lemmas 6 and 7, g has a globally attracting, positive two-cycle {r2,rþ} with

r2rþ ¼ 1. Thus, by (6) and the remarks preceding this theorem, solutions of (1) with x0=x21 – �r

converge to a period-two solution (the two limit points depend on the initial values).

(a), (ii): As in (a), (i) g has a globally attracting, positive two-cycle {r2,rþ} with r2rþ . 1.

For sufficiently large n $ 1, each of r2n and r2n21 is arbitrarily close to one of r2,rþ. Without

loss of generality assume that r2n21 ! r2 and r2n ! rþ. Then, there is k $ 1 and

1 , g , r2rþ such that

r2n21 , 1 , r2n and r2n21r2n $ g . 1 for all n $ k.

Thus x2n ¼ r2nx2n21 . x2n21 and x2nþ1 ¼ r2nþ1x2n , x2n for n $ k i.e., {xn} is an eventually

oscillatory solution of (1). Further, for n . k

x2n ¼ x2k21

Yn

i¼k

ðr2ir2i21Þ . x2k21g
n2k and x2nþ1 ¼ x2k

Yn

i¼k

ðr2iþ1r2iÞ . x2kg
n2k:

Therefore, both x2n,x2nþ1 ! 1 as n ! 1 as required.

(a), (iii): We first need to consider a consequence of inequality in (22); i.e.

A þ B þ C ,
aC 2 AC

A þ b
þ C ¼

ðaþ bÞC

A þ b
¼ ðaþ bÞr2rþ:

This inequality is stronger than the hypothesis A þ B þ C , a þ b if r2rþ , 1. If this

stronger inequality holds, then by modifying the argument used to prove (a), (ii) appropriately

(e.g. reversing the obvious inequalities and using r2rþ , d , 1 instead of g) shows that our

claim is true.

(a), (iv): This is clear by our earlier observations about the invariant ray.
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(b): As in the proof of (a), (iii) from (22) we obtain in this case

aþ b # A þ B þ C ,
ðaþ bÞC

A þ b
) C . A þ b:

Thus r2rþ . 1. The rest of the argument goes as in the proofs of (a), (ii) and (iv), thus

completing the proof.

The next result shows, what happens when the inequality in Theorem 2 is reversed.

Corollary 4. Assume that A,C . 0, bA # aB and A þ B þ C ¼ a þ b. If a . 2A þ B then

every solution of (1) not on the diagonal (i.e., x0 – x21) converges to 1 in an oscillatory

fashion.

Proof. From Lemma 4 it follows that C . A þ b, since a ¼ 2A þ B implies C ¼ A þ b. Also

multiplying the inequality by C gives

aC . 2AC þ BC ¼ AC þ ðA þ BÞC . AC þ ðA þ BÞðA þ bÞ:

Thus (22), holds and we apply Theorem 3(b) to complete the proof.

We note that the hypotheses of Theorem 3 are not satisfied if C ¼ 0. The next result shows

that this is not a deficiency of Theorem 3.

Corollary 5. Under the hypotheses of Corollary 1, equation (16) has no positive periodic

solutions.

Proof. Note that the function c in (10) takes the form

c ðrÞ ¼ A þ b
� �

Ar 2 þ A þ b
� �

Br;

which has no positive roots; in fact, c (r) . 0 for r . 0. Hence, the only zeros of g 2(r) 2 r are

the fixed points of g and there are no points of period 2. Now, if (16) has a periodic solution then

by the remarks preceding Theorem 3, g must also have periodic points. Therefore, since g is

continuous, by the Sharkovski ordering (see, e.g., Ref. [13]) g has to have points of period 2,

which is a contradiction.
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