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with quadratic terms
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For the following rational difference equation with arbitrary delay and quadratic terms:

Axﬁ + Bx,x,—x + Cx,zl,k + Dx, + Ex,— + F
ax, + an—k + Y

we determine sufficient conditions on the parameter values which guarantee that the

unique non-negative fixed point attracts all positive solutions. When the fixed point is

the origin (F = 0), we show that it attracts all non-negative solutions of the more

general equation

Xn+1 = )

X Axf, + anxn*k + Cx%—k + Dlxn + D2xnfl + -+ Dmxnfmﬂ
n+1 — s

ax, + anfk + Y

where m € {1,2, ...}. We also show that altering some of the above conditions on
parameters causes the origin to not be globally attracting.

Keywords: rational; delay; quadratic terms; global stability
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1. Introduction
Consider the rational difference equation

AX> + Bxyxy—k + Cx2_; + Dx, + Ex,— + F

T o, + B, 1+ ’ W

where k € {1,2, ...}, all parameters (coefficients and initial values) are non-negative and
A4+B+C>0, a+pB>0. )

Note that if all initial values xg,x—p, ...,x— are positive, then all solutions of (1) are

positive.

For over a decade rational equations with linear expressions in both the numerator and
the denominator have been studied methodically and extensively; see, for example Refs.
[2,5,9]. However, rational equations with quadratic terms in the numerator or the
denominator have not been studied systematically. These equations exhibit a rich variety
of dynamic behaviours and offer substantial insights into rational difference equations.
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For k = 1, the dynamics of equation (1) were studied in Refs. [3,4]. In this paper, we
first determine sufficient conditions on the parameter values that for arbitrary k imply the
existence of a unique, positive fixed point for (1) that attracts all of its positive solutions.

When the fixed point is the origin, i.e. F = 0, the results in Ref. [7] extend the
conditions in Ref. [3] for the global attractivity of the origin to arbitrary k. In this paper, we
extend the conditions in Ref. [3] in a different direction to the more general equation

Axﬁ + Bx,x,—r + Cxﬁ,k + Dix, + Doxy—1 + - + DypXp—pmta
ax, + an—k + vy

) 3

Xn+1 =

where m € {1,2, ...}, all the parameters are non-negative and (2) holds. We obtain
sufficient conditions on the parameters that imply the origin is the unique non-negative
fixed point of (3) which is globally asymptotically stable relative to [0, )™, Here, we may
assume without loss of generality that m > k in (3) since we may set D; = 0 for various
values of j and any value of m.

For general background and definitions of basic concepts, we refer to texts such as
Refs. [5,8,9,10].

2. Global attractivity of the positive fixed point

First, we need the following coordinate-wise monotonicity result from Ref. [6].

LEMMA 1. Let I be an open interval of real numbers and suppose that f € C(I",R) is
nondecreasing in each coordinate. Let X € I be a fixed point of the difference equation

Xn+1 =f(xn7xn—lv o »xn—m+l)7 (4’)
and assume that the function h(t) = f(¢, ..., t) satisfies the conditions
h(t)y>t ift<x and h()<t if t>Xx t€IL 4

Then I is an invariant interval of (4) and X attracts all solutions with initial values in I.

Withm =k + 1 and I = (0, o), we can apply Lemma 1 to equation (1) as in the next
result. We note that the nontrivial case without quadratic terms, i.e.

A=B=C=0, a+B>0

is included in the hypotheses of this result.

THEOREM 1. Assume that all parameters in (1) are non-negative and satisfy the following
conditions:

aC = BB, BA=aB, oF =vyD, BF=+yE, |BD— aE|= yB, (6)

0<A+B+C<a+p, y=D+E with F>0 ify=D+E. 7

Then (1) has a unique fixed point X > 0 that attracts all positive solutions.
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Proof. We first show that if the inequalities (6) hold then the function

Au% + Bujug4 + CM%Jrl + Duy + Eupq + F

flu, oo ug) = 3

oy + Bugyr +y
is nondecreasing in each of its coordinates uj, ...,u;+; (i.e. f is coordinate-wise
monotonic). Since f in (8) is independent of uy, ...,u; hence nondecreasing in those

coordinates, we need only prove monotonicty in coordinates i = 1,k + 1. For this purpose,
we compute the partial derivatives f; = 9f /ou; and determine when each is non-negative.
For i = 1, direct calculation shows that 1 = 9f /ou; = 0 iff

aAut +2BAutut1 + (BB — aC)ui | +2yAuy + (yB+ BD — aE)uyy1 +yD — aF = 0.

The above inequality holds for u;, u; > 0 if
aC=BB, yB+PBD—aE=0, oF =vyD. )
Similarly, fi+1 = 9f /our+1 = 0 if and only if

,BCu,%Jrl + 2aCujupyy + (aB — BA)u% + 2vyCuj41 + (yB+ aE — BD)u; + yE — BF =0

which is true for all uy, ugy; > 0 if
BA=aB, yB+aE—BD=0, BF=YyE. (10)

The middle inequalities in (9) and (10) combine into the single inequality
|BD — aE| < yB. Therefore, we have shown that conditions (6) are sufficient for f to
be nondecreasing in each of its coordinates.

Next, assume that (7) holds and define

A+B+C b D+ E F 0%
azi, =—, C
a+ a+f3 a+f

Then the function % in (5) takes the form

at®> + bt +c

) =—"4

Now X is a fixed point of (1) if and only if X is a solution of the equation h(f) = ¢, i.e.

(1-—ax’>—b-dx—c=0. (11)

Since by (7) a <1 and d = b with ¢ > 0 if d = b, a unique positive fixed point is
obtained as

b—d++/(b—d)*+4(1—a)c .

2(1—a)

¥ = or multiplying by %ﬁg ;

12)

DA+E—y++/(D+E—y2+4(a+B—A—B—CO)F
2a+tB-A-B—C) :

X =
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Next, we verify that conditions (5) hold. Note that 4 may be written as

at+b+c/t

h(t) = ¢(t)t, where ¢(t) = T+ d

Since

ad —b—(c/H2+d/1)

/ —
¢ = (t + d)>

and by (7) ad — b < d — b =0, it follows that ¢ is decreasing (strictly) for all r € I.
Therefore, with ¢(x) = h(x)/x = 1 we find that

t < X implies h(t) > ¢p(X)t =t,
t > x implies h() < X))t = t.

Now using Lemma 1 completes the proof. (|

Remarks.

1. Periodic solutions. If some of the inequalities in Theorem 1 do not hold then its
conclusion is easily seen to be false. In particular, if

A=D=F=0 and B=a, C=8, E=y, (13)

then the inequalities in (6) hold but those in (7) do not. If (13) holds then equation (1)
reduces to x,+1 = x,,—, in which case every positive solution (non-negative solution if
v > 0) is periodic with period k£ + 1.

2. Inequalities (6) are not necessary for global attractivity. In Ref. [1], a special case of (1)
is discussed where

A=C=D=E=y=0, a=B=B>0, F=0. (14)

In this case, it is shown that every positive solution converges to the unique fixed point
JF. Note that conditions (14) contradict some of the inequalities in (6) if F > 0.

3. Global asymptotic stability of the origin

When F =0 and y > 0 in (1) then the origin is a fixed point of (1) and the class of
solutions can be expanded to include the non-negative solutions. The question arises as to
whether the origin can be globally attracting for the non-negative solutions. In this section,
we study the global attractivity of the origin for the more general equation (3). We need the
following result from Ref. [10] (Theorem 4.3.1) that for convenience we quote as a lemma.
Recall that a fixed point X is asymptotically stable relative to a set S if X is locally stable and
attracts all orbits with their initial points in S.
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LEMMA 2. Let X be a fixed point of the difference equation (4) in a closed, invariant set
T C R™ and define the set M as

{(M], ...,Mm) : |f(l/l], ---7um) _-)_Cl < max{lul _)—C|7 ~--7|um - -)_Cl}} U {(-)_Cv 7-)_(:)}
Then (x, ...,X) is asymptotically stable relative to the largest invariant subset S of
M N T such that S is closed in T.
THEOREM 2. Assume that the following conditions are satisfied for equation (3) for some
6€[0,1]:
A+dB=a, CH+(1—-6B=B, D +---+D,<y. (15)
Then the origin is the unique non-negative fixed point of (3) and it is asymptotically

stable relative to [0, )",

Proof. Let D = D| + --- 4+ D,,. The origin is clearly a fixed point of (3) since y > D =0
by (15). Also by (15), A+ B+ C = a+ B. If this inequality strict then there exists a
negative fixed point

_ y—-D
2a@+B—-A—B—-0C)’

X =

while if A+ B+ C = o+ B then there are no nonzero fixed points. It follows that the
origin is the only non-negative fixed point of (3). Next, if

AM% + Buluk_H + CMI%Jrl + Dlul +---+ Dmum
ouy + Bugyr + 7y

g(ula ...,Mm) =

with m > k then defining w = max{u, ...,u,} forall u;, ..., u, =0

Bmin{uy, upiy ymax{uy, upy1} + p(Auy + Cugyy + D)
auy + Pugyr +y

gluy, ... uy) =

_ [B&+B( — §)Jminfuy, w1} + Auy + Cuyy +D
=p
auy + Bugr + vy

_ (A4 6B)u; + [C+ (1 — 6)Blug+1 + D
-k auy + Bugyy +y

<, if @y, .. ) # (0, ..., 0),

where the strict inequality holds because of conditions (15). Now we apply Lemma 2 with
S=M =T = [0,00)" to conclude the proof. O

Next, we show that even when the origin is the only non-negative fixed point in
equation (3) or its special case (1), it may not be globally attracting under certain
conditions. Note that one of the inequalities in (15) is contradicted in Theorem 3
below, which we present after a few preliminaries. For further details in this direction,
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see Ref. [7]. Recall from (8) that

AM% —i—BulukH + Cu%_H +Du| +Euk+] +F
auy + Bugyr +y .

f(ula ...,l/lk.H):

Also the partial derivatives f,, and f,,,, of fused in the next result are

ful(ul7u2> "'7uk+1) =
ot CCan? B (16)
aui + 2ABuyugy 1 + 2Ayuy + (BB — Caug + (By+ DB — E&)uy + Dy
(awy + By + )
and
fuk+1(u1>u2a B I/tk+1) =
a7)

CBu,%H + 2Cau vy + 2Cyups1 + (Ba — AB)M% + By+Ea— DB)u; +Evy
(auy + Bugr1 + 7)° '

DEFINITION 1.

1. Let N € (0,0)*"! denotes the region in which the partial derivatives of f satisfy
fu=0andf,, =0.

2. Let V € (0,0)"! denotes the region in which Su, =0.

3. Let ) denotes the set {(uy, s, ..., ux, urs1) € (0,00)F :yy =0},

LeMMA 3. Assume that the following inequalities hold for the parameters of equation (1):
F=0, D+E<y, A+B+C=a+p.

Then, in Y, we have f(O,ua, ..., up,a) = f(0,uy, ..., ux,b), for any 0 = a <b.

Proof. Let (uy,uy, ..., ux+1) € V. Then u; = 0. If we let ux4; = a and we assume that
0 < a <b,then f(O,uy, ..., u,a) = f(0,uy, ...,u,b), where

Ca2+Ea< Cb* + Eb
Ba+vy =~ Bb+y

& CPa’h + Cya® + EBab + Eya = CBab® + Cyb* + EfBab + Evyb

f(O,MQ, -"7ukaa)Sf(07u2a ...,M]“b)@

& CBab(b — a)+ Cy(b + a)b — a) + Ey(b — a) = 0,

which is true by assumption (with equality holding if C = E = 0). ]
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THEOREM 3. Assume that the following inequalities hold for the parameters of equation

(1):
F=0, D+E<vy, A+B+C=a+pB, B<C, aC<pBA+B), BB<Ca

or By+DB—Ea<0, Ba=AB and By+Ea—DB=0.

Then
limx, = oo
n—o00
for every solution {x,} of (1) with initial values xo,x—1, ...,X—; € (u, ) where

vy—E
= max
IJ’ C_B’p’q )

and p and q are defined as follows:

—QAy+By+DB—Ea)+,/D,

p= 2Aat2ABTBB—Ca)  * D, =0,
0, D, <0,
and
—(Ay+By+DB—Ea)+,/D, D 0
q= 2(AB+BB—Ca) ) q )
0, D, <0,
with

D, = 2Ay+ By+ DB — Ea)* — 4(Aa + 2AB + BB — Ca)Dy,

D, = (Ay+ By+ DB — Ea)’ — 4AB+ BB — Ca)Dy.

Proof. Under our assumptions f,,, =0 on (0,001, We observe that the condition
Ca < (A + B) and equation (16) imply the following:

O):  fu,(ui uay oo yupyugyr) >0 for all  wy =uy; >p, and thus N D
{(ur,uz, ... g, ugg1) € (0,000 4y =y > p}, where N is as defined in
Definition 1.

(02): Let uy=uy;=v>q and let up,...,uu >0 be arbitrary. Then

Soua, oo g, ug,v) > f(O,up, oo ug, v), where
(A+B+Cw>+ (D +E)w
> £(0,uy, ...
f(V,l/l2, 7l/ik,V) f( , U2, ,Mk,V)@ (a+B)V+'y
Cv’+E
> T A+ B+ OB+ )+ (D +E)XBy+ )

Bv+y
> (Cv+ E)[(a+ By + vl

< (AB+BB — Cayw*+ (Ay+ By+ DB — Ea)v + Dy > 0,
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which is true since the condition that Ca < B(A 4+ B) holds (so that
AB+ BB — Ca > 0) and by the definition of g

We make further observations.

(03):  Let V, N be as defined in Definition 1. Note that V U N = (0, o0)**!

1. Suppose that (uj,us, ...,ux,uxg+1) € V. Then f,; =0, by definition, but also
fu, = 0, where the conditions that 8 < C; BB < Ca or By + D — Ea < 0; and
Ba=AB and By+ Ea — DB = 0 all hold. Hence, if u; < u4, then

f(u17 ...,Mk,btk+1)>f(lxt],u2, ...,Mk,bt]):>

f(uh .- '7uk7uk+l) > min{.f(uh .- '7uk7u1)7f(uk+1>u27 ...,Ltk+1)}.

2. Suppose that (uy, ua, ..., ux, 1) € N (so thatf,,, = 0,f,,,, = 0). The following
is true:
(a) If uy < ugsq, then

f(ulvuZa "'aukvuk+l) >f(ulau2a "'auk7ul)

= min{f(ula .. 'aukaul)vf(ukJrlaqu .. -7uk+1)}'

(b) If uy = wgq, then
Sluruy oo, Uier) = f(Ugr, Ua, ooy Uk, Ugrr)
= min{f(uy, ..., w, u1), f(Ugrr, Uz, oo Ugr1) )
3. Thus, in general,
flur,uay oo, wgeyy) = minf{f (uy, up, oo ug, ur), f(Ug1, U, oo g, 1)} for

k+1
(Ml,l/lz, .. '7ukauk+l) € (0700)

(04): Let uy =0 and w =v > (y— E)/(C — B), and let uy, ..., u; € (0,0) be

arbitrary. Then f(0, uy, ..., ux,v) > v, since given the condition that 8 < C, we
have
Cv?+E —E
fO,up, ... ug,v) >v©g>v@77< V
Bv+vy cC-B

(05):  w>0since (y — E/C — B) > 0 by the conditions that D + E < yand B < C.
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Combining Observations (01)-(04), we have that, for wuj;,ury; > p and
Uy, ..., ux € (0,00),

Sy, up, oo g, gy ) = min{f(uy, ua, oo ug, uy), f(urgr, U, o g, Ukt 1)
> min{f(0,uy, ... ug,up),fO,uz, ... ug,upy1)} > min{uy, ugyg}
= minfuy, uz, ..., Uk, U1}

Therefore, in summary, we can say that

fQup,up, oo g, ug) > min{ug, up, .. g, ugyr },  for
(18)

(Ui, ua, ... thry) € (@, )

Now let {x,}:. _, be a positive solution of equation (1), with k € {1,2, ...}, and suppose
that x—x, ..., x—1,x0 € (u, ). Next define

«def .
X, =min{X,, Xp—1, ..., Xu—x}, forall n=0.

Clearly, min{x,,x,—x} = min{x,,x,—, ..., x,—x}. Thus, given equation (18) and the
assumption that (xo,x_1, ..., x_x) € (u, )1, we have

. 3k
xp = f(xo, X1, ..., X—x) > min{xg, Xx—1, ..., X} = x5 > p.
By induction,

Xn+1 =f(x117xn—17 oo 7xn—k) > min{xmxn—h cee 7xn—k} = X: > M, forall n= 07
(19)

and so equation (18) holds for (u;, us, ..., upr1) = (X4, Xp—1, .., xp—) foralln = 0. Also,
from equation (19), we have x:+1 = min{X,;41, X0, -+, Xn—it1) = x:, for all n = 0. This
means that {x) }:::0 is a nondecreasing sequence, and so there exists u < L = oo such that
lim,—ox;, =L and x, = L(x; < Lif L = o0) for all n = 0. We show that L = oo by

contradiction. Assume that L < oo, Let us define the function ¢ : [0, c0) — R as follows:

HOZ[BL + x) — C(L — V)L — x) + AL +x) — E(L — ).

Then, from the conditions in the hypotheses and the fact that L is positive (by Observation
(05)), we have that ¢(0) = [8 — C]L* + [y — E]L < 0. By the continuity of ¢on R, there
exists € > 0, ¢ < L such that ¢(¢) < 0. Thus, we have the following:

C(L— &) +E(L—¢)

5L oty >L+e. (20)

Now, there exists N = O such that for all n = N,

xn_k,...,xn_],anxZ>L—s. 21)
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It follows from equations (20) and (21) and Lemma 3 that

Cxp_y + Expi _ C(L — e)* + E(L — ¢) -

= L+e
anfk + vy B(L - 8) + vy
Hence, from observation (O4) by induction, x,—, ...,X,—1,X, > L+ & for all n = N,
and so
L= limx, = limmin{x,,%,—1, ..., X,—¢} = limmin{L+¢,L+e,...,L+¢}
n—00 n—oo n—o00
=L+e,

which is impossible and the proof is complete. (|
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