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Global Stability and Boundedness in
xnþ1 ¼ cxn þ f ðxn 2 xn21Þ

C.M. KENT and H. SEDAGHAT*

Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014,
USA

(Received 17 September 2003; In final form 11 November 2003)

Dedicated to Saber Elaydi on the Occasion of His 60th Birthday.

For the equation in the title, we present conditions on the function f that are sufficient for the boundedness of all
solutions, conditions that imply oscillation of all solutions and also conditions that imply the global asymptotic
stability of the unique fixed point. In the latter case, we also specify conditions under which convergence to the
equilibrium is monotonic.

Keywords: Second-order difference equation; Non-linear; Global asymptotic stability; Semicycle; Variation of
constants; Boundedness

AMS Subject Classification Numbers: 39A10; 39A11

The non-linear, second order difference equation

xnþ1 ¼ cxn þ f ðxn 2 xn21Þ; x0; x21 [ R ð1Þ

has its roots in the early macroeconomic models of the business cycle. The linear model in

Ref. [5] as well as non-linear models such as those in Refs. [2] and [4] are all modeled by

special cases of Eq. (1). For more details, some historical remarks and additional references

see Ref. [9]. Throughout this paper we assume that 0 # c , 1 and f is continuous on R.

Depending on the conditions placed on the function f, Eq. (1) displays a considerable

variety of different types of asymptotic behavior that range from stable (and unstable) global

convergence to the equilibrium, to persistent oscillations (periodic, aperiodic and chaotic)

which in some cases occur off-equilibrium; see Refs. [6,9,10], as well as the Remark after

Lemma 3 and the Example below.

In this paper, we present a set of conditions on f that imply boundedness, as well as

conditions that imply oscillations of all solutions. In addition, we discuss conditions that

imply the global asymptotic stability of the equilibrium. Our results also partially establish

Conjectures 1 and 2 in Ref. [8] under weaker hypotheses. All of the necessary background

for this paper (fixed points, linearization, stability, semicycles, etc.) is found in standard texts

such as Refs. [1] and [3].
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GLOBAL STABILITY

We begin with a discussion of the global asymptotic stability of the equilibrium. Note that

Eq. (1) has a unique fixed point �x ¼ f ð0Þ=ð1 2 cÞ; so if f (0) ¼ 0 then the only fixed point of

Eq. (1) is at the origin. We need a result from Ref. [7] which we quote here as a lemma.

Lemma 1 Let g:Rm ! R be continuous and let �x be an isolated fixed point of

xnþ1 ¼ gðxn; xn21; . . .; xn2mÞ:

Also, assume that for some a [ (0,1) the set

Aa ¼ {ðu1; . . .; umÞ : jgðu1; . . .; umÞ2 �xj # amax {ju1 2 �xj; . . .; jum 2 �xj}}

has a non-empty interior (i.e. g is not very steep near �x) and let r be the largest positive

number such that ½�x 2 r; �x þ r �m , Aa: Then, �x is exponentially stable relative to the

interval ½�x 2 r; �x þ r �:

The function g in Lemma 1 is said to be a weak contraction on the set Aa. See Ref. [9] for a

systematic development of the concepts of weak contractions (respectively, expansions) and

their relationship to asymptotic stability (respectively, instability).

As a corollary to Lemma 1 we have the following general fact regarding the global

attractivity of the equilibrium in Eq. (1).

Corollary 1 If j f ðtÞj # ajtj for all t and 0 , a , ð1 2 cÞ=2 then the origin is globally

asymptotically stable in Eq. (1).

Proof The inequality involving f in particular implies that f (0) ¼ 0, so that the origin is the

unique fixed point of Eq. (1). Define gðx; yÞ ¼ cx þ f ðx 2 yÞ and notice that

jgðx; yÞj # cjxj þ ajx 2 yj # ðc þ aÞjxj þ ajyj # ðc þ 2aÞmax {jxj; jyj}:

Since c þ 2a , 1 by assumption, it follows that g is a weak contraction on the entire plane

and therefore, Lemma 1 implies that the origin is globally asymptotically (in fact,

exponentially) stable in Eq. (1). A

Remarks (1) Noteworthy in the preceding result is the fact that restrictions on f are

minimal, except of course for the upper bound on a. A consideration of linear f (t) ¼ at shows

that some restriction on either f or on a is necessary to assure convergence. For instance, if

f (t) ¼ t then solutions of Eq. (1) generally do not converge to zero for any value of c as

specified above. Hence, if the conclusion of Corollary 1 is to hold, then it is necessary that

a [ (0,1). But alone this is not sufficient; for example, if f (t) ¼ 2at where

1 þ c

2
, a , 1

then the negative eigenvalue of the linearization of Eq. (1) will have a magnitude less

than 21 and so the solutions of Eq. (1) will be typically unbounded.

(2) If f (0) ¼ 0 and f is continuously differentiable with j f 0(t)j # a for all t or more

generally, if f satisfies the Lipschitz inequality

j f ðtÞ2 f ðsÞj # ajt 2 sj; t; s [ R

C.M. KENT AND H. SEDAGHAT1216



then in particular (with s ¼ 0) it is also true that j f (t)j # ajtj for all t [ R. However, a

function f satisfying the conditions of Corollary 1 need not be Lipschitz.

In the remainder of this section, we consider alternative conditions that improve the upper

bound on a in Corollary 1. We begin with the next lemma which furnishes some useful

inequalities.

Lemma 2 If there is a . 0 such that j f ðtÞj # ajtj for all t, then for all n,

xnþ1 2 xn # ða þ c 2 1Þðxn 2 xn21Þ; if xn $ xn21 $ 0;

xnþ1 2 xn $ ða þ c 2 1Þðxn 2 xn21Þ; if xn # xn21 # 0:

Proof Suppose that xn $ xn21 $ 0: Then,

xnþ1 2 xn ¼ 2ð1 2 cÞxn þ f ðxn 2 xn21Þ # ðc 2 1Þxn þ aðxn 2 xn21Þ

# ðc 2 1Þðxn 2 xn21Þ þ aðxn 2 xn21Þ ¼ ða þ c 2 1Þðxn 2 xn21Þ:

If xn # xn21 # 0; then the above argument holds when the inequalities are reversed

in it. A

Recall that with the origin as an equilibrium, a positive (respectively, negative) semicycle of

a solution {xn} of Eq. (1) is a collection of consecutive terms {xkþ1, xkþ2,. . ., xkþl} where l $ 1

and xkþj $ 0 (respectively, xkþj , 0) for 1 # j # l and xk, xkþl þ 1 , 0 (respectively, $0).

The number l is the length of the semicycle. See Ref. [3] for more details and applications of

semicycle analysis. The next result is an immediate corollary of Lemma 2.

Corollary 2 Under the hypotheses of Lemma 2, if 0 , a # 1 2 c then the maximum

(respectively, minimum) of a positive (respectively, negative) semicycle is achieved at the

first or the second term of that semicycle.

The condition on f in the next lemma prevents certain types of unusual oscillations from

occurring (see the Remark following the lemma).

Lemma 3 If t f (t) $ 0 for all t then every eventually non-negative and every eventually

non-positive solution of Eq. (1) is eventually monotonic.

Proof Suppose that {xn} is a solution of Eq. (1) that is eventually non-negative, i.e. there is

k . 0 such that xn $ 0 for all n $ k. Either xn $ xn21 for all n . k in which case {xn} is

eventually monotonic, or there is n . k such that xn # xn21. In the latter case,

xnþ1 ¼ cxn þ f ðxn 2 xn21Þ # cxn # xn

so that by induction, {xn} is eventually non-increasing, hence monotonic. The argument for

an eventually non-positive solution is similar and omitted. A

Remark (Off-equilibrium Oscillations) If the inequality mentioned in Lemma 3 does not

hold, then it is possible for Eq. (1) to have oscillatory solutions that are eventually non-

negative (or non-positive). For example, if

f ðtÞ ¼ min {1; jtj}; c ¼ 0

then Eq. (1) has a stable period-3 solution {xn} ¼ {0, 1, 1} which is clearly both non-

negative and non-monotonic. Note also that here

n!1
lim inf xn ¼ 0 , 1 ¼

n!1
lim sup xn

GLOBAL STABILITY AND BOUNDEDNESS 1217



so {xn} oscillates off the equilibrium value, which is the origin in this case.

Off-equilibrium oscillations, which are obviously non-linear in nature, can occur in both

convergent and non-convergent solutions of Eq. (1) and they may also be associated with

chaos [9,10].

Lemma 4 Assume that t f(t) $ 0 for all t. Let {xn} be a solution of Eq. (1) with at least two

adjacent semicycles, one positive and one negative. Denote the first term at which the

maximum of a positive semicycle occurs by xM and in the succeeding (or preceding) negative

semicycle, denote the first term at which the minimum occurs by xm. Then {xn} is strictly

decreasing (respectively, increasing) from xMþ1 (respectively, xmþ1) to xm (respectively, xM).

Proof Note that because of maximality, xMþ1 # xM so we have

xMþ2 ¼ cxMþ1 þ f ðxMþ1 2 xMÞ # cxMþ1 , xMþ1:

The same observation plus induction if necessary, shows that xMþiþ1 , xMþi for as long

as xMþi is within the positive semicycle. Suppose that xMþkþ1 ¼ xm2l , 0 is the first element

of the negative semicycle. Then,

xm2l ¼ xMþkþ1 ¼ cxMþk þ f ðxMþk 2 xMþk21Þ , xMþk

and also

xm2lþ1 ¼ cxm2l þ f ðxm2l 2 xMþkÞ # cxm2l , 0:

If xm2l # xm2lþ1 then

xm2lþ2 ¼ cxm2lþ1 þ f ðxm2lþ1 2 xm2lÞ $ cxm2lþ1 . xm2lþ1

so it may be concluded that xm2l ¼ xm and the lemma is proved. If not, then

xm2l . xm2lþ1

and a repeat of the above argument will establish that either xm2lþ1 ¼ xm or that

xm2lþ1 . xm2lþ2

in which case we continue inductively until xm is reached. On the upward path from xm we

have xmþ1 $ xm due to minimality and thus if xmþ1 , 0, then

xmþ2 ¼ cxmþ1 þ f ðxmþ1 2 xmÞ $ cxmþ1 . xmþ1:

As in the downward case, one may use induction to show that xn must increase strictly

either indefinitely, or if there is an adjacent positive semicycle, then until xn is non-negative.

After that, until the maximum of the following positive semicycle is reached one shows a

strictly increasing pattern in a manner similar to that for the negative semicycle, with

inequalities reversed. A

Theorem 1 Assume that for all t, t f(t) $ 0 and there is a . 0 such that j f (t)j # ajtj. If

a ,
2 2 c

3 2 c
8 d or a # 1 2 c and c – 0 ð2Þ

then the origin is globally asymptotically stable in Eq. (1).
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Proof In the light of Lemma 3 we may assume that solutions of Eq. (1) oscillate about the

origin. Let {xn} be such a solution and with Lemma 4 in mind, let

xM $ xMþ1 . · · · . xMþk $ 0 . xMþkþ1

be the segment stretching from the peak of a positive semicycle down to zero. Then we claim

that
xMþi 2 xMþiþ1; xMþk; jxMþkþ1j # mxM ; i ¼ 0; 1; . . .; k: ð3Þ

where m ¼ max {a, 1 2 c}. To establish this claim, note that

jxMþ1 2 xMj ¼ ð1 2 cÞxM 2 f ðxM 2 xM21Þ # ð1 2 cÞxM # mxM

jxMþ2 2 xMþ1j # ð1 2 cÞxMþ1 2 aðxMþ1 2 xMÞ # mxMþ1 þ mðxM 2 xMþ1Þ ¼ mxM

jxMþ3 2 xMþ2j # ð1 2 cÞxMþ2 2 aðxMþ2 2 xMþ1Þ # mxMþ1 # mxM :

The above process inductively gives

jxMþkþ1 2 xMþkj # mxM :

In particular, this observation establishes the above claim. Next, by Lemma 4, let

0 . xMþkþ1 ¼ xm2l . xm2lþ1 . · · · . xm21 . xm

represent the part of the succeeding negative semicycle that stretches from zero down to the

minimum of the negative semicycle. We consider two cases:

Case 1 a þ c # 1, c – 0; Corollary 2 implies that xm ¼ xMþkþ1 or xm21 ¼ xMþkþ1.

In the first case,
jxmj # mxM ¼ ð1 2 cÞxM

and in the second case, Lemma 2 implies that

0 $ xm 2 xMþkþ1 $ ða þ c 2 1ÞðxMþkþ1 2 xMþkÞ $ 0

so that jxmj ¼ jxMþkþ1j # mxM.

Case 2 a þ c . 1; for j ¼ 1; . . .; l 2 1; by Lemma 2

jxm2lþjþ1 2 xm2lþjj # ða þ c 2 1Þjxm2lþj 2 xm2lþj21j:

Further, from Eq. (3)

xMþk; jxMþkþ1j ¼ jxm2lj # jxMþkþ1 2 xMþkj # mxM ¼ axM;

and also jxm2lþ1 2 xm2lj # axm2l21 ¼ axMþk # a2xM : Writing

jxmj ¼ jxm 2 xm21j þ jxm21 2 xm22j þ · · ·jxm2lþ1 2 xm2lj þ jxm2lj;

and substituting for various terms, we obtain

jxmj # axM

Xl21

j¼0

aða þ c 2 1Þ j þ axM # axM 1 þ a
X1
j¼0

ða þ c 2 1Þ j

" #

¼ a 1 þ
a

2 2 a 2 c

h i
xM

If b is the coefficient of xM, then b , 1 if and only if a , (2 2 c)/(3 2 c).
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The preceding arguments for Cases 1 and 2 show that under conditions (2),

jxmj # gxM ; where g ¼ max {m; b} , 1: ð4Þ

Arguments similar to the above show that if

xm # xmþ1 , · · · , xmþl , 0 # xmþlþ1

is the segment stretching from the peak of the negative semicycle up to zero, then

xmþiþ1 2 xmþi; jxmþlj; xmþlþ1 # mxm; i ¼ 0; 1; . . .; l:

Applying Corollary 2 and Lemma 2 in a manner similar to the above, we can show once

again that if xM* is the peak of the positive semicycle following the current negative one, then

under conditions (2),

x
M * # gjxmj; where g ¼ max {m; b} , 1: ð5Þ

Now an obvious induction based on inequalities (4) and (5) establish the global attractivity

of the origin. To complete the proof of the theorem, we show that the origin is stable. In the

light of the preceding discussion which shows that the consecutive peaks decrease in

magnitude, we need only show that the first peak (positive or negative) that may occur in each

solution, approaches zero as the initial conditions x0, x21 approach zero. Let xp be this initial

peak for some p $ 0 and note that if c þ a # 1, then we have jxpj # jx0j by Corollary 2, and

stability follows. So we assume in the rest of the proof that c þ a . 1 and consider a few

cases.

Case 1 x0 $ x21 . 0 or x0 # x21 , 0; for 0 # n # p, jxnj $ jx0j . 0 and

xnþ1

xn

¼ c þ
f ðxn 2 xn21Þ

xn

# c þ
aðxn 2 xn21Þ

xn

¼ c þ a 2
a
xn

xn21

:

Define rn ¼ xn=xn21 and z0 ¼ ðx0=x21Þ ¼ r0 and note that rn; z0 . 0: Further, if for

1 # n # p,

zn ¼ c þ a 2
a

zn21

ð6Þ

then

r1 # a þ c 2
a

z0

¼ z1

r2 # a þ c 2
a

r1

# a þ c 2
a

z1

¼ z2

and so on. Inductively, rn # zn for 1 # n # p. Further, since jxnj $ jxn21j it follows that

1 # rn # zn , c þ a; 1 # n # p:

Therefore, jxnj # znjxn21j and we may conclude that

jxpj # jx0j
Yp

n¼1

zn # jx0jðc þ aÞ p:
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Because xp is a semicycle peak, we note that jxpþ1j # jxpj so rpþ1 # 1: Note that the

function f(z) ¼ c þ a 2 a/z is increasing and f(z) , z if z $ 1, so the terms zn are

decreasing in (6) as long as they are greater than 1. Let m be the smallest index such that

fmðc þ aÞ , 1:

Then, m is independent of x21, x0 and m $ p since z1 ¼ f(z0) , c þ a. Further, if

K ¼ (c þ a)m, then

jxpj # jx0jðc þ aÞp # Kjx0j:

It follows that if jx0j ! 0 (so jx21j ! 0 also) then jxpj ! 0.

Case 2 x0 . 0 $ x21; to avoid a trivial case, assume that x1 $ x0 . 0 so that Case 1

obtains with shifted indices. Thus, defining z1 ¼ x1/x0 and arguing as in Case 1, we find that

xp # x1

Ypþ1

n¼2

zn # x1ðc þ aÞp # K½cx0 þ f ðx0 2 x21Þ�

so that xp ! 0 in this case as x0, x21 ! 0.

Case 3 x0 , 0 # x21; as in Case 2, assume that x1 # x0 , 0 and conclude that

jxpj # jx1jðc þ aÞ p # Kjcx0 þ f ðx0 2 x21Þj:

Case 4 0 # x0 , x21; in this case, assuming that {xn} is not monotonically decreasing to

zero, there is k $ 1 such that xk , 0 # xk21 as in Case 3. Hence, with p $ k, and

z1 ¼ xkþ1/xk we have

jxpj # jxkjðc þ aÞ p # Kjcxk21 þ f ðxk21 2 xk22Þj ð7Þ

Further, for 1 # j # k 2 1 because t f(t) $ 0, we have

xj ¼ cxj21 þ f ðxj21 2 xj22Þ # cxj21 # c2xj22 # · · · # c jx0

Therefore, the right hand side of Eq. (7) approaches zero as x0, x21 ! 0, as desired.

Case 5 0 $ x0 . x21; this case is handled similarly to Case 4, using Case 2.

Stability of the origin now follows from Cases 1 to 5 and the proof of the theorem is

complete. A

Corollary 3 If t f(t) $ 0 and j f ðtÞj # ajtj for all t where

0 , a , max {1 2 c; d}

(e.g. if a # 1/2) then the origin is globally asymptotically stable.

The statement of Corollary 3 may be compared with that of Corollary 1. Next, we explore

the effects of the relationship between f (t) and the linear mapping at on the behavior of the

solutions of Eq. (1).

Theorem 2 Let b ¼ ð1 2
ffiffiffiffiffiffiffiffiffiffiffi
1 2 c

p
Þ2: Then, the following are true:

(a) If b $ a . b and ajtj # j f ðtÞj # bjtj for all t, then every non-zero solution of Eq. (1)

oscillates about the origin.
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(b) If t f(t) $ 0 and j f ðtÞj # ajtj for some positive a # b and all t, then every solution of

Eq. (1) is eventually monotonic.

Proof (a) Assume on the contrary that Eq. (1) has a non-zero solution {xn} that is

eventually monotonic. Then, there is k $ 1 such that either (i) xk $ xkþ1 $ · · · or (ii)

xk # xkþ1 # · · ·: We consider (i), since the arguments for (ii) will be similar. First, suppose

that xn $ 0 for all n $ k. We may assume that xn . 0 for all n $ k. For otherwise, xn ¼ 0 for

n $ l and some least l $ k. In particular, this implies that f (2xl21) ¼ 0 with xl21 – 0 which

is not possible if j f ðtÞj $ ajtj: So we may define

rj ¼
xjþk

xjþk21

; j ¼ 1; 2; . . .

Note that since j f ðtÞj $ ajtj we have t f(t) $ 0 and thus

rjþ1 ¼ c þ
f ðxjþk 2 xjþk21Þ

xjþk

# c þ
aðxjþk 2 xjþk21Þ

xjþk

¼ c þ a2
a

rj

: ð8Þ

If faðtÞ ¼ c þ a2 a=t then fa is an increasing function of t for t . 0, so that by Eq. (8)

rjþ1 # faðrjÞ # faðfaðrj21ÞÞ ¼ f2
aðrj21Þ # · · · # f j

aðr1Þ

But since a . b, it is easy to see that fa has no fixed points, which implies that fl
aðr1Þ # 0

for some l $ 1. But then we obtain the contradiction rlþ1 # 0.

Therefore, in Case (i) above it must be that there is n $ k such that xn , 0. Without loss of

generality, we may assume that xk , 0. Again defining rj as above, we see that rj . 0 for all j

and also that

rjþ1 # c þ b2
b

rj

¼ fbðrjÞ:

The above inequality follows because xjþk , 0 for all j and j f ðtÞj # bjtj: Now an

argument similar to the above for a implies a contradiction in this case also. We conclude

that no non-zero solution can be eventually monotonic.

(b) The inequality a # b is equivalent to (a þ c)2 $ 4a so that

p ¼
a þ c 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ cÞ2 2 4a

p
2

is a (positive) real number. In fact, it is easy to verify that p is a fixed point of the mapping

fa(t) ¼ c þ a 2 a/t and p , 1. First, suppose that the initial values x21, x0 are such that

0 # px21 # x0 # x21 ð9Þ

and let {xn} be the solution of Eq. (1) that is generated by these initial values. If xn . 0 for all

n, then by Lemma 3 {xn} is monotonic (in fact, decreasing). Otherwise, there is an integer

m $ 1 such that xm # 0 but xm21 . 0. It follows that x21 $ x0 . · · · . xm and

0 $ xm ¼ cxm21 þ f ðxm21 2 xm22Þ $ cxm21 þ aðxm21 2 xm22Þ

so that

xm21

xm22

#
a

a þ c
: ð10Þ
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Further,

a

a þ c
$

xm21

xm22

¼ c þ
f ðxm22 2 xm23Þ

xm22

$ c þ a 2
axm23

xm22

¼ fa

xm22

xm23

	 


Since fa and its inverse f21
a are both increasing functions, the above inequality yields

xm22

xm23

# f21
a

a

a þ c

	 

: ð11Þ

Note that

f21
a ðsÞ ¼

a

a þ c 2 s
; 0 # s , a þ c

so the right hand side of Eq. (10) equals f21
a ð0Þ: Hence, we may express the right hand side

of Eq. (11) as f22
a ð0Þ: This pattern continues inductively, since if for any n ¼ 2,. . .,m we

have

xm2nþ1

xm2n

# f2ðn21Þ
a ð0Þ

then

f2ðn21Þ
a ð0Þxn2m $ cxm2n þ f ðxm2n 2 xm2n21Þ $ cxm2n þ aðxm2n 2 xm2n21Þ

which yields

xm2n

xm2n21

#
a

a þ c 2 f2ðn21Þ
a ð0Þ

¼ f2n
a ð0Þ:

In particular, for n ¼ m, we obtain

x0 # f2m
a ð0Þx21:

But, it is easy to see that the real sequence {f2n
a ð0Þ} is strictly increasing towards p, which

is also a fixed point of f21
a : Therefore, f2m

a ð0Þ , p and we obtain x0 # f2m
a ð0Þx21 , px21

which contradicts Eq. (9).

A similar argument shows that if x21 # x0 # px21 , 0; then xn , 0 for all n $ 1 and thus

again the solution is monotonic (strictly increasing, in fact).

In the general case, the sequence starting from an arbitrary pair of initial values x21, x0 if

not monotonic, will have a term xk which is either a positive maximum, i.e. xk $ 0, xk21, xkþ1

or a negative minimum, i.e. xk # 0, xk21, xkþ1. Consider the positive maximum case. Then,

xk $ xkþ1 ¼ cxk þ f ðxk 2 xk21Þ $ cxk: ð12Þ

Now, if a # b then c $ 2
ffiffiffi
a

p
2 a . a since 0 , a , 1. Thus,

c 2 p ¼
c 2 a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ cÞ2 2 4a

p
2

. 0

i.e. c . p. From Eq. (12) it follows that xk $ xkþ1 . pxk . 0 at which point the same

argument as that given above for Eq. (9) applies and establishes that the solution {xn} is

monotonically decreasing for n . k. A similar argument for the negative minimum case

finally completes the proof. A
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According to Theorem 2, the solutions of Eq. (1) tend to be oscillatory for c close to zero,

but when c is close to 1 the solutions tend to be monotonic. The next corollary improves the

conclusion of Corollary 3 for values of c near 1.

Corollary 4 If t f(t) $ 0 and j f ðtÞj # ajtj for all t where

0 , a , max {b; 1 2 c; d}

then the origin is globally asymptotically stable.

The results of this section address Conjecture 2 in Ref. [8]. Though not fully settling that

conjecture, the inequalities on a in Corollary 4 cover much of the unit square in the (c, a)

parameter space and under a weaker restriction on f than in Ref. [8], i.e. t f(t) $ 0 instead of f

being non-decreasing. Based on numerical simulations, we conjecture that the rest of the unit

square will also work out; i.e. the following stronger form of Conjecture 2 in Ref. [8] seems

to be true:

Conjecture If t f(t) $ 0 and j f (t)j # ajtj for all t where 0 , a , 1, then the origin is

globally asymptotically stable in Eq. (1).

BOUNDEDNESS OF SOLUTIONS

The conditions in Theorem 2(a) imply oscillatory behavior for all solutions of Eq. (1). These

oscillations may be bounded or unbounded. We now turn to the question of the boundedness

of solutions. We say that Eq. (1) has an absorbing interval [a, b ] if for every set x0, x21 of

initial values, the corresponding solution {xn} is eventually in [a, b ]; that is, there is a

positive integer N ¼ N(x0, x21) such that xn [ [a, b ] for all n $ N. Note that an absorbing

interval is compact by definition. Clearly, if Eq. (1) has an absorbing interval, then every

solution of Eq. (1) is bounded; however, the converse is not true (consider a linear map that

has an eigenvalue of unit magnitude [9]).

The next theorem uses the method of variation of constants (or parameters [1]) to obtain a

sufficient condition for the existence of an absorbing interval.

Theorem 3 Assume that there are constants B . 0 and a [ [0, 1) such that

j f ðtÞ2 atj # B for all t: ð13Þ

Then Eq. (1) has an absorbing interval.

Proof Assume that Eq. (13) holds and let {yn} be any solution of Eq. (1). We show that

there is a constant M . 0 independent of y0 , y21 such that jynj # M for all sufficiently large

n $ 1; in particular, [2M, M ] is an absorbing interval. To this end, define

rn ¼ f ð yn 2 yn21Þ2 að yn 2 yn21Þ

and note that jrnj # B for all n. Next, consider the non-homogeneous linear equation

xnþ1 2 ða þ cÞxn þ axn21 ¼ rn ð14Þ

and note that {yn} is a solution of Eq. (14). Hence,

yn ¼ xðhÞn þ xð pÞ
n
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where {xðhÞn } is the solution of the homogeneous equation corresponding to Eq. (14) and

{xð pÞ
n } is a particular solution of Eq. (14). There are two possible cases:

Case 1 (a þ c)2 2 4a – 0; in this case

xðhÞn ¼ C1l
n
1 þ C2l

n
2

where the constants C1, C2 are determined by the initial conditions y0 , y21 and l1 – l2 are

the eigenvalues (real or complex)

l1; 2 ¼
1

2
a þ c ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ cÞ2 2 4a

q� 

:

Further, using the method of variation of constants, the particular solution {xð pÞ
n } is found

to be

xð pÞ
n ¼

1

l2 2 l1

Xn21

j¼0

rn2ð jþ1Þðl
j
2 2 l

j
1Þ:

It follows that for all n

jynj # jC1l1j
n
þ jC2l2j

n
þ

B

jl2 2 l1j

Xn21

j¼0

jl2j
j
þ

Xn21

j¼0

jl1j
j

" #
:

Hence, for all sufficiently large n

jynj # 1 þ
B

jl2 2 l1j

X1
j¼0

jl2j
j
þ

X1
j¼0

jl1j
j

" #
¼ 1 þ

B

jl2 2 l1jð1 2 jl2jÞð1 2 jl1jÞ
¼ M:

Case 2 (a þ c)2 2 4a ¼ 0; in this case

xðhÞn ¼ C1l
n þ C2nln; l ¼

a þ c

2
[ ð0; 1Þ

and

xð pÞ
n ¼

Xn21

k¼0

rkðn 2 k 2 1Þln2k22 ¼
Xn21

j¼1

rn2j21 jl j21:

Hence,

jynj # jC1jl
n þ jC2jnl

n þ B
Xn21

j¼1

jl j

Thus, for large enough n we have

jynj # 1 þ B
X1
k¼1

jl j ¼ 1 þ B
d

djlj

X1
k¼0

l j ¼ 1 þ
B

ð1 2 jljÞ2
¼ M:

This completes the proof. A
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Theorem 3 complements a boundedness result in Ref. [6] and addresses Conjecture 1 in

Ref. [8], proving it for a large class of functions f. Though not all functions allowed by that

conjecture are permitted in Theorem 3, the latter covers functions that are not considered in

Ref. [8] (indeed, in Theorem 3 it is not even necessary that f be continuous).

We close with an example that illustrates various uses of the preceding results and also

suggests new directions for substantial work of a different nature on Eq. (1).

Example In Eq. (1), set

f ðtÞ ¼ at þ
at

1 þ jtj
p ; a . 0; p . 1:

The function f (t) converges to the linear map at for large jtj; in particular, f neither has a

lower bound nor an upper bound. However, it is not hard to see that

j f ðtÞ2 atj ¼
ajtj

1 þ jtj
p , a:

Therefore, by Theorem 3 every solution of Eq. (1) is bounded when a , 1. Further, since

for all t

ajtj , j f ðtÞj # 2ajtj

by Theorem 2(a) every solution of Eq. (1) is oscillatory if a $ b. Also, by Corollary 4, the

condition

a ,
1

2
max {b; 1 2 c; d}

ensures that the origin is globally asymptotically stable. Note that f 0(0) ¼ 2a, so if a . 1/2

then the origin is unstable (this may be inferred from the magnitudes of the eigenvalues of the

linearization of Eq. (1) [9]). We can say more: By Corollary 3 and Theorem 2(a), the

conditions

b # a ,
1

2
max {1 2 c; d}

imply that every solution of Eq. (1) converges to zero in an oscillatory fashion (these

conditions generally require that c not be close to 1). Finally, Theorem 2(b) ensures the

monotonic convergence of all solutions of Eq. (1) to zero if a # b/2.

We also note that the function f of this example is non-decreasing if p # 3 þ 2
ffiffiffi
2

p
: In this

case, numerical simulations and computer-generated, approximate bifurcation diagrams with

a as the changing parameter indicate that all solutions of Eq. (1) are either periodic or almost

periodic for various fixed values of c, p. When p . 3 þ 2
ffiffiffi
2

p
(e.g. p $ 6) and f is no longer

monotonic, then substantial changes occur in the asymptotic behavior of the solutions of

Eq. (1). More complicated forms of behavior seem to occur that for a . 1/2 range from

periodic to chaotic.
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