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ABSTRACT

We study the dynamics of a second-order difference equation that
is derived from a planar Ricker model of two-stage (adult-juvenile)
biological populations. We obtain sufficient conditions for global
convergence to zero in the non-autonomous case yielding general
conditions for extinction in the biological context. We also study
the dynamics of an autonomous special case of the equation that
generates multistable periodic and non-periodic orbits in the positive
quadrant of the plane.
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1. Introduction

Planar systems of type

xn+1 = σ1,nyn + σ2,nxn (1)
yn+1 = βnxneαn−c1,nxn−c2,nyn (2)

where αn,βn, σi,n, ci,n are non-negative numbers for i = 1, 2 and n ≥ 0 have been used to
model single-species, two-stage populations (e.g. juvenile and adult); see [4,8,9,13,19].
Early examples of stage-structured matrix models can be seen in [2,10,11], and their
comprehensive treatment is given in [3]. The exponential function that defines the time
and density dependent fertility rate classifies the above system as a Ricker model ([14]).
The coefficients σi,n are typically composed of the natural survival rates si and possibly
other factors. For example, they may include harvesting parameters, as in [13,19]:

σi = (1 − hi)si, β = (1 − h1)b, c1 = (1 − h1)γ , c2 = 0 (3)

All parameters in (3) are assumed to be independent of n. In this case, hi, si ∈ [0, 1],
i = 1, 2 denote harvest rates and natural survival rates, respectively. The study in [13]
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shows that the system (1) and (2) under (3) generates a wide range of different behaviors:
the occurrence of periodic and chaotic behaviour and phenomena such as bubbles and the
counter-intuitive ‘hydra effect’ (an increase in harvesting yields an increase in the over-all
population) are established for the autonomous system

xn+1 = (1 − h1)s1yn + (1 − h2)s2xn
yn+1 = (1 − h1)bxneα−(1−h1)γ xn .

Our results in this paper complement the existing literature, e.g. [1,4,6,8,9,13,19]. In
the next section we obtain general results on the uniform boundedness and convergence
to zero for the non-autonomous system (1) and (2). We also discuss a refinement of the
convergence to zero results when the parameters of the system are periodic (simulating
extinction in a periodic environment). In particular, these results show that convergence
to zero occurs even if the mean value of σ2,n exceeds 1 (as in case of stocking or migrations
into a population).

In Section 3 we study the dynamics of orbits for a special case of (1) and (2) in which
σ2,n = 0. This special case was studied with constant parameters (autonomous case) in [8]
where conditions were obtained for the occurrence of a globally attracting positive fixed
point as well as for the occurrence of attracting two-cycles that are not asymptotically stable
(neither locally nor globally).

This latter issue of particular interest to us in this section. In this case, the system reduces
to a second-order equation with a non-hyperbolic positive fixed point. A semiconjugate
factorization of this equation is known even with variable parameters and we use it to
prove the occurrence of complex dynamics, including multiple stable (or multistable)
periodic and non-periodic solutions generated from different initial values. Our results
not only extend the period-two result in [8] to a wider parameter range while allowing
some parameters to be periodic, but they also explain the stability nature of the two-cycles
observed in [8].

2. Uniform boundedness and global convergence to zero

For the system (1) and (2) we generally assume that for all n ≥ 0:

αn,βn, σi,n, ci,n ≥ 0, i = 1, 2 (4)
βn, σ1,n > 0 for inifinitely many n

2.1. General results

We begin with a simple, yet useful lemma.
Lemma 1: Let α > 0, 0 < β < 1 and x0 ≥ 0. If for all n ≥ 0

xn+1 ≤ α + βxn (5)

then for every ε > 0 and all sufficiently large values of n

xn ≤ α

1 − β
+ ε.
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Proof: Let u0 = x0 and note that every solution of the linear, first-order equation un+1 =
α + βun converges to its fixed point α/(1 − β). Further,

x1 ≤ α + βx0 = α + βu0 = u1
x2 ≤ α + βx1 ≤ α + βu1 = u2

and by induction, xn ≤ un. Since un → α/(1−β) for every ε > 0 and all sufficiently large
n

xn ≤ un ≤ α

1 − β
+ ε.

�
The following result from the literature is quoted as a lemma. See [16] for the proof and

some background and references on this result which holds in a more general setting than
discussed here.
Lemma 2: Let α ∈ (0, 1) and assume that the functions fn : [0,∞)k+1 → [0,∞) satisfy
the inequality

fn(u0, . . . , uk) ≤ αmax{u0, . . . , uk} (6)

for all (u0, . . . , uk) ∈ [0,∞) and all n ≥ 0. Then every solution {xn} of the difference
equation

xn+1 = fn(xn, xn−1, . . . , xn−k) (7)

satisfy the inequality
xn ≤ αn/(k+1) max{x0, x−1 . . . , x−k}. (8)

Note that (6) implies that xn = 0 is a constant solution of (7) and further, (8) implies
that this solution is globally exponentially stable.
Theorem 3: Assume that (4) holds and further, let αn be bounded and lim supn→∞
σ2,n < 1.

(a) If σ1,n is bounded and there is M > 0 such that βn ≤ Mc1,n for all n ≥ 0 then every
orbit of (1) and (2) in [0,∞)2 is uniformly bounded.

(b) If βn is bounded and the following inequality holds then all orbits of (1) and (2) in
[0,∞)2 converge to (0, 0):

lim sup
n→∞

(
σ1,nβneαn + σ2,n

)
< 1. (9)

Proof:

(a) For u, v ≥ 0 and all n ≥ 0 define

φn(u, v) = βneαn−c1,nu−c2,nv

If c1,n �= 0 for all n then elementary calculus yields

uφn(u, v) ≤ uφn

(
1
c1,n

, 0
)

= βn

c1,n
eαn−1 (10)

If c1,n = 0 for some n then βn ≤ Mc1,n = 0 and φn(u, v) = 0 for such n.
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Next, by the hypotheses there are numbersM1,M2 > 0 and σ̄ ∈ (0, 1) such that for
all sufficiently large values of n

σ1,n ≤ M1, αn ≤ M2, σ2,n ≤ σ̄

Since βn ≤ Mc1,n, it follows that for u, v ≥ 0 and all n

uφn(u, v) ≤ MeM2−1 .= M0

It follows that yn ≤ M0 for n ≥ 1 so by (1)

xn+1 ≤ M0M1 + σ2,n(u, v)xn ≤ M0M1 + σ̄xn

Next, applying Lemma 1 with ε = σ̄ /(1 − σ̄ ) we obtain for all (large) n

0 ≤ xn ≤ M0M1 + σ̄

1 − σ̄

as claimed.
(b) If φn is as defined in (a) above then (2) implies that

yn ≤ βneαnxn−1

By (9) there is δ ∈ (0, 1) such that σ1,nβneαn + σ2,n ≤ δ for all (large) n so from (1)
it follows that

xn+1 ≤ βneαnσ1,nxn−1 + σ2,nxn
≤ (

σ1,nβneαn + σ2,n
)
max{xn, xn−1}

≤ δmax{xn, xn−1}

Lemma 2 now implies that limn→∞ xn = 0. Further, since both αn and βn are
bounded, there is μ > 0 such that βneαn ≤ μ for all n. Thus,

lim
n→∞ yn ≤ μ lim

n→∞ xn−1 = 0

and the proof is complete. �
Remark 4:

(1) In Part (a) of the above corollary it is more essential to have c1,n �= 0 than βn be
bounded. Indeed, unbounded solutions occur in the following autonomous linear
system

xn+1 = σ1yn + σ2xn
yn+1 = βeαxn

in which c1,n = 0 for all n and βn = β is bounded. Note that

xn+2 = σ1yn+1 + σ2xn+1 = βeασ1xn + σ2xn+1
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so unbounded solutions exist unless σ1βeα ≤ 1 − σ2.
(2) For the autonomous system above (9) is equivalent to

βeα
σ1

1 − σ2
< 1

The left hand sideof the above equation represents the fundamental net reproductive
rate R0; see [5,7]. For non-autonomous matrix systems, the definition of R0 is not
straightforward (see, e.g. [6] for the case where the matrix P is periodically forced).
If we think of the quantity

βneαn
σ1,n

1 − σ2,n

as the net reproductive rate at each period n then (9) implies that the population
growth rate in each period is less than 1 in the long run, a fact that in the light of the
preceding discussion is not surprising (but also see Section 2.3).

(3) The arbitrary nature of the parameters in the above theorem preserve its conclusion
in the presence of low-level fluctuations in the parameters. For example, the param-
eters can be stochastic, i.e. random numbers that satisfy the condition in (9). These
can be drawn from distributions with bounded support (for example, uniform)
whose upper bounds satisfy the condition in the autonomous case discussed in
Item 2 above.

2.2. Global convergence to zero with periodic parameters

Theorem3 gives general sufficient conditions for the convergence of all non-negative orbits
of the planar system to (0,0). In this section we assume that all parameters are periodic and
study convergence to zero in this more restricted setting. In particular, the results in this
section indicate that global convergence to zero may occur even if (9) does not hold; see
Section 2.3 below. Recall from the proof of Theorem 3 that

xn+1 ≤ βneαnσ1,nxn−1 + σ2,nxn. (11)

The right hand side of the above inequality is a linear expression. Consider the linear
difference equation

un+1 = anun + bnun−1, an+p1 = an, bn+p2 = bn (12)

where the sequences an, bn have periods p1, p2 that are positive integers. If p = lcm (p1, p2)
is the least commonmultiple of the two periods, we say that the linear difference Equation
(12) is periodic with period p. We assume that

an, bn ≥ 0, n = 0, 1, 2, . . . (13)

In the biological setting, these parameters are defined as follows:

an = σ2,n, bn = βneαnσ1,n (14)
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Of interest is the fact that the biological parameters αn,βn, σ1,n need not be periodic
in order for an, bn to be periodic. As long as the combination of parameters βneαnσ1,n is
periodic along with σ2,n we obtain periodicity. This allows greater flexibility in defining
some of the system parameters.

By Lemma 2 every solution of (12) converges to zero if an + bn < 1 for all n. However,
it is known that convergence to zero may occur even when an + bn exceeds 1 (for infinitely
many n in the periodic case). We use the approach in [17] to examine the consequences
of this issue when the planar system has periodic parameters. The following result is an
immediate consequence of Theorem 13 in [17].
Lemma 5: Assume that (12) has period p ≥ 1 and δj, θj for j = 1, 2, . . . , p are obtained by
iteration from the real initial values

δ0 = 0, δ1 = 1; θ0 = 1, θ1 = 0 (15)

Suppose that the quadratic polynomial

δpr2 + (θp − δp+1)r − θp+1 = 0 (16)

is proper, i.e. not 0 = 0 and has a real root r1 �= 0. If the recurrence

rn+1 = an + bn
rn

(17)

generates nonzero real numbers r2, . . . , rp then {rn}∞n=1 is periodic with preiod p and yields
a semiconjuagte factorization of (12) into a pair of first order equations as follows:

tn+1 = −bn
rn
tn, t1 = u1 − r1u0 (18)

un+1 = rn+1un + tn+1. (19)

For an introduction to the concept of semiconjuagte factorization see [15] which also
contains the application of this method to linear equations over algebraic fields. A more
general application of semiconjugate factorization to linear equations in rings appears in
[17].

The sequence {rn} that is generated by (17) is said to be an eigensequence of (12).
Eigenvalues are constant eigensequences, since if p = 1 in Lemma 5 then (16) reduces to

r2 − δ2r − θ2 = 0 or r2 − a1r − b1 = 0

The last equation is recognizable as the characteristic polynomial of (12).
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Each of Equations (18) and (19) readily yields a solution by iteration as follows

tn = t1( − 1)n−1
(
b1b2 · · · bn−1

r1r2 · · · rn−1

)
, (20)

un = rnrn−1 · · · r2u1 + rnrn−1 · · · r3t2 + · · · rntn−1 + tn

= rnrn−1 · · · r2r1u0 +
n−1∑
i=1

rnrn−1 · · · ri+1ti + tn (21)

Lemma 6: Suppose that the numbers δn and θn are defined as in Lemma 5, although here
we do not assume that (12) is periodic. Then

(a) θn = 0 for all n ≥ 2 if and only if b1 = 0.
(b) If (13) holds then for all n ≥ 2

δn ≥ a1a2 · · · an−1, θn ≥ b1a2 · · · an−1 (22)
δ2n−1 ≥ b2b4 · · · b2n−2, θ2n ≥ b1b3 · · · b2n−1 (23)

Proof:

(a) Let b1 = 0. Then θ2 = b1 = 0 and since θ1 = 0 by definition it follows that θ3 = 0.
Induction completes the proof that θn = 0 if n ≥ 2. The converse is obvious since
b1 = θ2.

(b) Since δ2 = a1 and θ2 = b1 the stated inequalities hold for n = 2. If (22) is true for
some k ≥ 2 then

δk+1 = akδk + bkδk−1 ≥ akδk ≥ a1a2 · · · ak−1ak
θk+1 = akθk + bkθk−1 ≥ akθk ≥ b1a2 · · · ak−1ak

Now, the proof is completed by induction. The proof of (23) is similar since

δ3 = a2δ2 + b2δ1 ≥ b2 and θ4 = a3θ3 + b3θ2 ≥ b3b1

and if (23) holds for some k ≥ 2 then

δ2k+1 ≥ b2kδ2k−1 ≥ b2b4 · · · b2k−2b2k
θ2k+2 ≥ b2k+1θ2k ≥ b1b3 · · · b2k−1b2k+1

which establishes the induction step. �
Lemma 7: Assume that (13) holds with ai > 0 for i = 1, . . . , p and (12) is periodic with
period p ≥ 2. Then

(a) Equation (12) has a positive eigensequence {rn} of period p.
(b) If bi > 0 for i = 1, . . . , p then

r1r2 · · · rp = 1
2

(
δp+1 + θp +

√
(δp+1 − θp)2 + 4δpθp+1

)
(24)
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Hence, r1r2 · · · rp < 1 if

δpθp+1 < (1 − δp+1)(1 − θp) (25)

(c) If bi < 1 for i = 1, . . . , p then r1r2 · · · rp > b1b2 · · · bp.
Proof:

(a) Lemma 6 shows that δi > 0 for i = 2, . . . , p+1.Now, either (i) b1 > 0 or (ii) b1 = 0.
In case (i), the root r+ of the quadratic polynomial (16) is positive since by Lemma 6
θp+1 > 0 and thus

r+ =
δp+1 − θp +

√
(δp+1 − θp)2 + 4δpθp+1

2δp
>

δp+1 − θp + ∣∣δp+1 − θp
∣∣

2δp
≥ 0.

If r1 = r+ then from (17) ri = ai−1 + bi−1/ri−1 ≥ ai−1 > 0 for i = 2, . . . , p + 1.
Thus by Lemma 5, (12) has a unitary (in fact, positive) eigensequence of period p.
If b1 = 0 then by Lemma 6 θp = θp+1 = 0 and (16) reduces to

δpr2 − δp+1r = 0

which has a root r+ = δp+1/δp > 0. As in the previous case it follows that (12) has
a positive eigensequence of period p.

(b) To estalish (24), let r1 = r+ and note that (16) can be written as

r1 = δp+1r1 + θp+1

δpr1 + θp
(26)

Since {rn} has period p, rp+1 = r1 so from (17) and the definition of the numbers δn
and θn it follows that

ap + bp
rp

= rp+1 = δp+1r1 + θp+1

δpr1 + θp
= (apδp + bpδp−1)r1 + apθp + bpθp−1

δpr1 + θp

= ap(δpr1 + θp) + bp(δp−1r1 + θp−1)

δpr1 + θp

= ap + bp
(δpr1 + θp)/(δp−1r1 + θp−1)

Since bp �= 0 it follows that

rp = δpr1 + θp

δp−1r1 + θp−1

We claim that if bi �= 0 for i = 1, . . . , p then

rp−j = δp−jr1 + θp−j

δp−j−1r1 + θp−j−1
, j = 0, 1, . . . , p − 2 (27)
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This claim is easily seen to be true by induction; we showed that it is true for j = 0
and if (27) holds for some j then by (17)

ap−j−1 + bp−j−1
rp−j−1

= rp−j

= (ap−j−1δp−j−1 + bp−j−1δp−j−2)r1 + (ap−j−1θp−j−1 + bp−j−1θp−j−2)

δp−j−1r1 + θp−j−1

= ap−j−1(δp−j−1r1 + θp−j−1) + bp−j−1(δp−j−2r1 + θp−j−2)

δp−j−1r1 + θp−j−1

= ap−j−1 + bp−j−1(δp−j−2r1 + θp−j−2)

δp−j−1r1 + θp−j−1

from which it follows that

rp−j−1 = δp−j−1r1 + θp−j−1

δp−j−2r1 + θp−j−2

and the induction argument is complete. Now, using (27) we obtain

rprp−1 · · · r2r1 = δpr1 + θp

δp−1r1 + θp−1

δp−1r1 + θp−1

δp−2r1 + θp−2
· · · δ2r1 + θ2

δ1r1 + θ1
r1 = δpr1 + θp (28)

Given that r1 = r+ (28) implies that

r1r2 · · · rp = δp
δp+1 − θp +

√
(δp+1 − θp)2 + 4δpθp+1

2δp
+ θp

= 1
2

(
δp+1 + θp +

√
(δp+1 − θp)2 + 4δpθp+1

)

and (24) is obtained. Hence, r1r2 · · · rp < 1 if

δp+1 + θp +
√

(δp+1 − θp)2 + 4δpθp+1 < 2

Upon rearranging terms and squaring:

(δp+1 − θp)
2 + 4δpθp+1 < 4 − 4(δp+1 + θp) + (δp+1 + θp)

2

which reduces to (25) after straightforward algebraic manipulations.
(c) First, assume that p is odd. Then by (23)

δpθp+1 = (b2b4 · · · bp−1)(b1b3 · · · bp) = b1b2 · · · bp
so from (24)

r1r2 · · · rp >
√

δpθp+1 =
√
b1b2 · · · bp

If bi < 1 for i = 1, . . . , p then b1b2 · · · bp < 1 so
√
b1b2 · · · bp > b1b2 · · · bp as

required. Now let p be even. Then from (24) and (23)

r1r2 · · · rp > δp+1 + θp

2
≥ b2b4 · · · bp + b1b3 · · · bp−1

2
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If bi < 1 for i = 1, . . . , p then b2b4 · · · bp ≥ b1b2 · · · bp and b1b3 · · · bp−1 ≥
b1b2 · · · bp and the proof is complete. �

Theorem 8: Assume that the sequencesβneαnσ1,n and σ2,n are strictly positive and periodic
and let p be the least common multiple of their periods. All non-negative orbits of (1) and
(2) converge to (0,0) if βieαiσ1,i < 1 for i = 1, . . . , p and (25) holds.
Proof: Let {un} be a solution of the linear Equation (12) with an, bn defined by (14). If
u0 = x0 and u1 = x1 then by (11)

x2 ≤ β0eα0σ1,1x0 + σ2,1x1 = β0eα0σ1,1u0 + σ2,1u1 = u2
x3 ≤ β1eα1σ1,2x2 + σ2,2x2 ≤ β1eα1σ1,2u1 + σ2,2u2 = u3

By induction it follows that xn ≤ un. If (25) holds then by Lemma 7, limn→∞ un = 0 so
{xn} converges to 0. Further, limn→∞ yn = 0 as in the proof of Theorem 3 and the proof
is complete. �

Recall that the individual sequences αn,βn, σ1,n need not be periodic; see the note
following (14). Therefore, Theorem 8 applies to the system (1) and (2) even if the system
itself is not periodic as long as the combination βneαnσ1,n of parameters is periodic along
with σ2,n.

2.3. Stocking strategies that do not prevent extinction

Condition (25) and Theorem 8 have some interesting consequences. In particular, in a
periodic environment Theorem 8 applies where Theorem 3 may not. Recalling Remark 4,
Theorem 3 is a general expression of the fact that when the net reproductive rate R0 < 1 in
the long run then extinction occurs. Theorem 8 shows that in a periodic environment, this
restriction maybe replaced with (25), which may include boosts to the adult population
through stocking or migrations.

Condition (25) involves the numbers δj, θj rather than the coefficients of (12) directly.
To illustrate the biological significance of (25) and of Theorem 8 with regard to extinction
in a periodic environment when (9) does not hold, consider the case of period p = 2 where
the role of ai, bi is more apparent. Inequality (25) in this case is

δ2θ3 < (1 − δ3)(1 − θ2)

a1a2b1 < (1 − b2 − a1a2)(1 − b1)

Simple manipulations reduce the last inequality to

a1a2 < (1 − b1)(1 − b2). (29)

In this form, it is easy to see the significance of (25) with regard to extinction. For if
b1, b2 < 1 then (29) holds even if a1 > 1 or a2 > 1 (recall that these inequalities may
occur through stocking or migrations of adults into the system) so global convergence to
(0,0) my occur when (9) does not hold. Further, it is possible that (29) holds, together with
arbitrarily large mean value

a1 + a2
2

> 1 (30)
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if, say a1 → 0 as a2 → ∞. In population models this implies that if (29) holds with

ai = σ2,i, bi = βieαiσ1,i i = 1, 2

then extinction may still occur after stocking the adult population so that the mean value
of the composite parameter σ2,n exceeds unity by a wide margin.

3. Complexmultistable behaviour

In this section we consider the reduced system

xn+1 = σ1,nyn (31)
yn+1 = βnxneαn−c1,nxn−c2,nyn (32)

where we assume that
σ1,n, c1,n, c2,n,βn > 0, αn ≥ 0. (33)

In the context of stage-structured models the assumption σ2,n = 0 applies in particular,
to the case of a semelparous species, i.e. an organism that reproduces only once before
death. Additional interpretations in terms of harvesting, migrations or other factors may
be possible if σ2,n includes additional factors beyond the natural adult survival rate.

The system (31) and (32) with c2,n = 0 has been studied in the literature; for instance, an
autonomous version is discussed in [13,19]. The assumption c2,n > 0, which adds greater
inter-species competition into the stage-structured model, leads to theoretical issues that
are not well-understood. We proceed by folding he system (31) and (32) to a second-
order difference equation. The process here is simple and self-contained but for a broader
introduction and other applications of folding to the study of discrete planar systems we
refer to [18].

From (31) we obtain yn = xn+1/σ1,n. Now using (31) and (32) we obtain:

xn+2 = σ1,n+1βnxneαn−c1,nxn−c2,nyn = σ1,nβnxneαn−c1,nxn−(c2,n/σ1,n)xn+1

This can be written more succinctly as

xn+1 = xn−1ean−c1,nxn−1−(c2,n/σ1,n)xn (34)

where
an = αn + ln (βnσ1,n+1).

3.1. Fixed points, global stability

It is useful to start by examining the fixed points of (34) when all parameters are constants,
i.e. if (31) and (32) is an autonomous system. Then (34) takes the form of the autonomous
difference equation:

xn+1 = xn−1ea−c1xn−1−(c2/σ1)xn (35)

This equation clearly has a fixed point at 0. The following is consequence of
Theorem 3(b).
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Corollary 9: Assume that the system (31) and (32) is autonomous, i.e. αn = α, βn = β,
σ1,n = σ1, c1,n = c1 and c2,n = c2 are constants for all n.

(a) If a = α + ln (βσ1) < 0 then 0 is the unique fixed point of (35) in [0,∞) and all
positive solutions of (35) converge to zero.

(b) The eigenvalues of the linearization of (35) at 0 are ±ea/2; thus, 0 is locally asymp-
totically stable if a < 0.

If a > 0 then (35) has exactly two fixed points: 0 and a positive fixed point

x̄ = aσ1
c1σ1 + c2

.

Substituting rn = c1xn in (35) yields

rn+1 = rn−1ea−rn−1−brn , b = c2
σ1c1

(36)

The positive fixed point of this equation is

r̄ = a
1 + b

= c1x̄.

The next result is proved in [8].
Theorem 10: Let a ∈ (0, 1].
(a) If b ∈ (0, 1) (i.e. c2 < σ1c1) then the positive fixed point r̄ of (36) is a global attractor

of all of its positive solutions.
(b) If b = 1 (i.e. c2 = σ1c1) then every non-constant, positive solution of (36) converges

to a 2-cycle whose consecutive points satisfy rn + rn+1 = a, i.e. the mean value of the
limit cycle is the fixed point r̄ = a/2.

The two-cycle in Theorem 10(b) is not unique–it is determined by the initial values.We
derive the precisemechanism that explains this, andmuchmore complex behaviour below.
In particular, we extend Part (b) of Theorem 10 by showing that it holds for a ∈ (0, 2] and
even some parameters need not be constants.

3.2. Order reduction

The semiconjugate factorization method that we used earlier for linear equations also
applies to (34) if the following condition holds:

c2,n = σ1,nc1,n n = 0, 1, 2, . . . (37)

In the autonomous case this reduces to the condition in Theorem 10(b), i.e. c2 = σ1c1.
This condition that is restrictive but admissible in a biological sense, leads to interesting
non-hyperbolic dynamics that we explore in the remainder of this paper.

If (37) holds then we substitute rn = c1,nxn in (34) to obtain

rn+1 = c1,n+1

c1,n−1
rn−1ean−rn−1−rn
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which can be written as

rn+1 = rn−1edn−rn−1−rn (38)
dn = an + ln[c1,n+1/c1,n−1].

Note that if c1,n has period 2 or is constant then c1,n+1 = c1,n−1 so dn = an. In any case,
a solution xn = rn/c1,n of (34) is derived in terms of a solution of (38) when (37) holds.

Equation (38) admits a semiconjugate factorization that splits it into two equations of
order one. Using the concept of form symmetry from [15], we define

tn = rn
rn−1e−rn−1

for each n ≥ 1 and note that

tn+1tn = rn+1

rne−rn

rn
rn−1e−rn−1

= rn+1

rn−1e−rn−1−rn
= edn

or equivalently,

tn+1 = edn

tn
. (39)

Now

rn+1 = ednrn−1e−rn−1e−rn = edn
rn
tn
e−rn = edn

tn
rne−rn = tn+1rne−rn (40)

The pair of Equations (39) and (40) constitute the semiconjugate factorization of (38):

tn+1 = edn

tn
, t0 = r0

r−1e−r−1
(41)

rn+1 = tn+1rne−rn (42)

Every solution {rn} of (38) is generated by a solution of the system (41) and (42). Using
the initial values r−1, r0 we obtain a solution {tn} of the first-order Equation (41). This
solution is then used to obtain a solution of (42), and thus also of (38).

3.3. Complex behaviour for the autonomous equation

If p = 1 then dn is constant, say dn = d for alln. In this case (38) reduces to the autonomous
equation:

rn+1 = rn−1ed−rn−1−rn (43)

although (34) may not be autonomous, e.g. if c1,n has period 2, as noted above.
If d < 0 then Corollary 9 implies that all solutions of (43) converge to 0. Let d > 0 so

that there is a positive fixed point

r̄ = d
2
> 0.
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Figure 1. Bifurcation of multiple stable solutions in the state-space.

The eigenvalues of the linearization of (43) at r̄ are−1 and−d/2, showing in particular
that r̄ is nonhyperbolic. The behaviour of solutions of (43) is sufficiently unusual that we
use the numerical simulation depicted in Figure 1 to motivate the subsequent discussion.

In Figure 1, d = 4.5, r−1 = d/2 = 2.25 is fixed and r0 ∈ (0,∞) acts as a bifurcation
parameter. The changing values of r0 are shown on the horizontal axis in the range 2.5–
6.5. For every grid value of r0 in the indicated range, 300 points of the corresponding
solution {rn} are plotted vertically. In this figure, coexisting solutions with periods 2, 4,
8 and 16 are easily identified. The solutions shown in Figure 1 are stable since they are
generated by numerical simulation, so that qualitatively different, stable solutions exist for
(43) for different initial values. In the remainder of this section we explain this abundance
of multistable solutions for (43) using the reduction (41) and (42).

All solutions of (41) with constant dn = d and t0 �= ed/2 are periodic with period 2:{
t0,

ed

t0

}
=

{
r0

r−1e−r−1
,
r−1ed−r−1

r0

}
.

Hence the orbit of each nontrivial solution {rn} of (43) in its state-space, namely, the
(rn, rn+1)-plane, is restricted to the class of curve-pairs

g0(r, t0) = t0re−r and g1(r, t0) = t1re−r , t1 = ed

t0
(44)

These one-dimensional mappings form the building blocks of the two-dimensional,
standard state-space map F of (43), i.e.

F(u, r) = (r, ued−u−r).

There are, of course, an infinite number of initial value-dependent curve-pairs for the
map F.

The next result indicates the specific mechanism for generating the solutions of (43)
from its semiconjugate factorization.
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Lemma 11: Let d > 0 and let {rn} be a solution of (43) with initial values r−1, r0 > 0.

(a) For k = 0, 1, 2, . . . and t0 as defined in (41)

r2k+1 = g1 ◦ g0(r2k−1, t0), r2k+2 = g0 ◦ g1(r2k, t0)

Thus, the odd terms of every solution of (43) are generated by the class of one-
dimensional maps g1 ◦ g0 and the even terms by g0 ◦ g1;

(b) If the initial values r−1, r0 satisfy

r0 = r−1ed/2−r−1 (45)

then g0(r, t0) = g1(r, t0) = red/2−r ; i.e. the two curves g0 and g1 coincide with the
curve

g(r) .= red/2−r

The trace of g contains the fixed point (r̄, r̄) in the state-space and is invariant under
F.

Proof:

(a) For k = 0, 1, 2, . . . (42) implies that

r2k+1 = t2k+1r2ke−r2k = t1r2ke−r2k = g1(r2k, t0)
r2k = t2kr2k−1e−r2k−1 = t0r2k−1e−r2k−1 = g0(r2k−1, t0)

Therefore,
r2k+1 = g1(g0(r2k−1, t0), t0) = g1 ◦ g0(r2k−1, t0)

A similar calculation shows that

r2k+2 = g0(g1(r2k, t0), t0) = g0 ◦ g1(r2k, t0)

and the proof of (a) is complete.
(b) Note that g(r̄) = r̄ed/2−r̄ = r̄ so the trace of g contains (r̄, r̄). The curves g0, g1

coincide if t0 = ed/t0, i.e. t0 = ed/2. This happens if the initial values r−1, r0 satisfy
(45). In this case, (r−1, r0) is clearly on the trace of g and by (42)

r1 = t1r0e−r0 = ed

t0
r0e−r0 = t0r0e−r0 = g(r0)

Therefore, the point (r0, r1) is also on the trace of g . Since tn = t0 for all n if
t0 = ed/2 the same argument applies to (rn, rn+1) for all n and completes the proof
by induction. �

Note that the invariant curve g does not depend on initial values. There is also the
following useful fact about g .
Lemma 12: The mapping g has a period-three point for d ≥ 6.26.
Proof: Let a = d/2. The third iterate of g is

g3(r) = r exp
(
3a − r − 2rea−r + ea−rea−r

)
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In particular,
g3(1) < exp

(
3a − 1 − ea−1) .= h(a)

Solving h(a) = 1 numerically yields the estimate a ≈ 3.12. Since h(a) is decreasing if
a > 2.1 it follows that h(a) < 1 if a ≥ 3.13. Therefore, g3(1) < 1 for d ≥ 6.26. Further, for
ε ∈ (0, a)

g3(a − ε) > (a − ε) exp
[
2a + ε − 2(a − ε)eε + ea(1−eε)

]
> (a − ε) exp[e−a(eε−1) − 2a(eε − 1)]

For sufficiently small ε the exponent is positive so we may assert that

g3(1) < 1 < a − ε < g3(a − ε)

Hence, there is a root of g3(r), or a period-three point of g in the interval (1, a) if
a ≥ 3.13, i.e. d ≥ 6.26. �

The function compositions in Lemma 11 are specifically the following mappings:

g1 ◦ g0(r, t0) = red−r−t0re−r
,

g0 ◦ g1(r, t0) = red−r−t1re−r
, t1 = ed

t0
.

To simplify our notation, for each t ∈ (0,∞) define the class of functions ft : (0,∞) →
(0,∞) as

ft(r) = red−r−tre−r
.

We also abbreviate ft0 as f0, ft1 as f1, g0(·, t0) as g0 and g1(·, t0) as g1. Then we see from
the preceding discussion that

g1 ◦ g0 = f0, g0 ◦ g1 = f1. (46)

According to Lemma 11, iterations of f0 generate the odd-indexed terms of a solution
of (43) and iterations of f1 generate the even-indexed terms.

The next result furnishes a relationship between fi and gi for i = 0, 1.
Lemma 13: Let t0 ∈ (0,∞) be fixed and t1 = ed/t0. Then

f1 ◦ g0 = g0 ◦ f0 and f0 ◦ g1 = g1 ◦ f1. (47)

Proof: This may be established by straightforward calculation using the definitions of the
various functions, or alternatively, use (46) to obtain

f1 ◦ g0 = (
g0 ◦ g1

) ◦ g0 = g0 ◦ (g1 ◦ g0) = g0 ◦ f0

This proves the first equality in (47) and the second equality is proved similarly. �
The equalities in (47) are not conjugacies since g0 and g1 are not one-to-one. However,

the following is implied.
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Lemma 14:

(a) If {s1, s2, . . . , sq} is a q-cycle of f0, i.e. a solution (listed in the order of iteration) of

sn+1 = f0(sn) = sned−sn−t0sne−sn (48)

with minimal (or prime) period q ≥ 1 then {g0(s1), g0(s2), . . . , g0(sq)} is a q-cycle of
f1, i.e. a solution of

un+1 = f1(un) = uned−un−t1une−un (49)

with period q (listed in the order of iteration). Similarly, if {u1, u2, . . . , uq} is a q-cycle
of f1, i.e. a solution of (49)withminimal period q ≥ 1 then {g1(u1), g1(u2), . . . , g1(uq)}
is a q-cycle of f0, i.e. solution of (48) with period q.

(b) If {sn} is a non-periodic solution of (48) then {g0(sn)} is a non-periodic solution of (49).
Similarly, if {un} is a non-periodic solution of (49) then {g1(un)} is a non-periodic
solution of (48).

Proof:

(a) By the hypothesis, f0(sn+q) = sn for all n and in the order of iteration

f0(sk) = sk+1 for k = 1, . . . , q − 1 and f0(sq) = s1.

By Lemma 13,

f1(g0(sn+q)) = g0(f0(sn+q)) = g0(sn)

and also

f1(g0(sk)) = g0(f0(sk)) = g0(sk+1) for k = 1, . . . , q − 1,
f1(g0(sq)) = g0(f0(sq)) = g0(s1)

It follows that {g0(s1), g0(s2), . . . , g0(sq)} is a periodic solution of (49) with period q,
listed in the order of iteration. The rest of (a) is proved similarly.

(b) Let {sn} be a solution of (48) such that {g0(s n)} is a periodic solution of (49). Then
{g1(g0(s n))} is a periodic solution of (48) by (a). Since g1(g0(sn)) = f0(sn) by (46)
we may conclude that there is a positive integer q such that f q0 (sn) = f0(sn) = sn+1

for all n. Thus sn+1 = f q−1
0 (sn+1) for all n and it follows that {sn} is a periodic

solution of (48). This proves the first assertion in (b); the second assertion is proved
similarly. �

The next result concerns the local stability of the periodic solutions of (48) and (49).
Lemma 15: If {s1, s2, . . . , sq} is a periodic solution of (48) with minimal period q such that
sk �= 1 for k = 1, 2, . . . , q and

q∏
k=1

f ′
0 (sk) < 1 (50)
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then {g0(s1), . . . , g0(sq)} is a solution of (49) of period q with∏q
k=1 f

′
1 (g0(sk)) < 1. Similarly,

if {u1, u2, . . . , uq} is a periodic solution of (49) with uk �= 1 for k = 1, 2, . . . , q and

q∏
k=1

f ′
1 (uk) < 1

then {g1(u1), g1(u2), . . . , g1(uq)} is a solution of (48) of period q with
∏q

k=1 f
′
0 (g1(uk)) < 1.

Proof: By Lemma 13 and the chain rule

f ′
1(g0(r))g

′
0(r) = g ′

0(f0(r))f
′
0(r)

Now g ′
0(r) = (1 − r)t0e−r �= 0 if r �= 1. Thus if sk �= 1 for k = 1, 2, . . . , q then

q∏
k=1

f ′
1 (g0(sk)) = g ′

0(f0(s1))f
′
0(s1)

g ′
0(s1)

g ′
0(f0(s2))f

′
0(s2)

g ′
0(s2)

· · · g
′
0(f0(sq))f

′
0(sq)

g ′
0(sq)

= g ′
0(s2)f

′
0(s1)

g ′
0(s1)

g ′
0(s3)f

′
0(s2)

g ′
0(s2)

· · · g
′
0(s1)f

′
0(sq)

g ′
0(sq)

=
q∏

k=1

f ′
0 (sk) < 1

The second assertion is proved similarly. �
We are now ready to explain some of what appears in Figure 1.

Theorem 16: Let d > 0.

(a) Except among solutions whose initial values satisfy (45) there are no positive solutions
of (43) that are periodic with an odd period.

(b) If d ≥ 6.26 then (43) has periodic solutions of all possible periods, including odd
periods, as well as chaotic solutions in the sense of Li and Yorke.

(c) Let r−1, r0 > 0 be given initial values and define t0 by (41). Assume that t0 �=
ed/2 and the sequence of iterates {f n0 (r−1)} of the map f0 converges to a minimal
q-cycle {s1, . . . , sq}. Then the corresponding solution {rn} of (43) converges to the cycle
{s1, g0(s1), . . . , sq, g0(sq)} of minimal period 2q in the sense that

lim
k→∞

|r2(k+j)−1 − sj| = lim
k→∞

|r2(k+j) − g0(sj)| = 0 for j = 1, . . . , q (51)

(d) If {s1, . . . , sq} in (c) satisfies (50) and sj �= 1 for j = 1, . . . , q then for intial values
r′−1 > 0 and r′0 = g0(r′−1) where |r′−1 − r−1| is sufficiently small, the sequence
{f n0 (r′−1)} converges to {s1, . . . , sq} and (51) holds.

(e) Let r−1, r0 > 0 be given initial values and define t0 by (41). If the sequence of iterates
{f n0 (r−1)} of the map f0 is non-periodic then (43) has a non-periodic solution.
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Proof:

(a) This statement is an immediate consequence of Lemma 11 since the number of
points in a cycle must divide two, i.e. the number of curves g0, g1. An exception
occurs when (45) holds and the curves g0, g1 coincide.

(b) Suppose that the initial values r−1, r0 satisfy (45). Then g0 = g1 = g and the trace
of g contains the orbits of (43) since the trace of g is invariant by Lemma 11. By
Lemma 12 g has a period-three point if d ≥ 6.24 and in this case, (43) has solutions
with all possible periods in the state-space, including odd periods. In addition,
iterates of g also exhibit chaos in the sense of [12]. For (43) this is manifested in
the state-space on the trace of g if the initial point (r−1, r0) is on the trace of g .
For arbitrary initial values, odd periods do not occur by (a) and chaotic behaviour
generally occurs on the pair of curves g0, g1; see the Remark following this proof.

(c) This is an immediate consequence of Lemmas 11 and 14.
(d) If |r′−1−r−1| is sufficiently small then Lemma 15 implies that the sequence {f n0 (r′−1)}

converges to {s1, . . . , sq}. Now, if r′0 = g0(r′−1) then r′0/r′−1e
r′−1 = t0 and thus, (51)

holds by Part (c).
(e) This is clear from Lemmas 11 and 14. �

Remark 17:

(1) Theorem 16 explains how qualitatively different solutions in Figure 1 are generated
by different initial values. Changes in the initial value r0 of (43) while r−1 is fixed
result, by (41) in changes in the parameter value t0 in the mapping f0. The one-
dimensional map f0 generates different types of orbits with different values of t0
in the conventional way that is explained by the basic theory. All of these orbits,
combined with the iterates of the shadowmap f1 appear in the state-space of (43) as
points on the aforementioned pair of curves.

(2) Part (d) of Theorem 16 explains the sense in which the solutions of (43) are stable
and therefore appear as shown in Figure 1. This is not local or linearized stability
since if r′0 �= g0(r′−1) then

t ′0 = r′0
r′−1e

−r′−1
�= t0

and with the different parameter value t ′0, {f n0 (r′−1)}may not converge to {s1, . . . , sq}
even if |r′−1 − r−1| is small enough to imply local convergence for the iterates of f0
defined with the original value t0.

(3) In Parts (a) and (b) of Theorem 16 if the initial point is not on the trace of g then the
occurrence of all possible even periods and chaotic behavior is observed for smaller
values of d. In fact, since g involves d/2 but f0 involves d it follows that f0 actually
has period 3 points for d ≥ 3.13 if the initial values yield a sufficiently small value
of t0. In Figure 2 a stable three-cycle is identified for d = 3.6 and initial values
satisfying r0 = r−1e−r−1 (so that t0 = 1). Odd periods do not occur for (43) in this
case but all possible even periods, as well as chaotic behaviour (on curve-pairs) do
occur.
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Figure 2. Occurrence of period 3 for the associated interval map.

3.4. Further results: convergence to two-cycles

The preceding results indicate that the solutions of (48) and (49) determine the solutions
of (43). From Theorem 16 it is evident that complex behaviour tends to occur when d is
sufficiently large. Otherwise, the solutions of (43) tend to behave more simply as noted
in Theorem 10. We now consider the occurrence of two-cycles for a range of values of d
that are not too large but extend the range in Theorem 10(b), by examining the following
first-order difference equation that is derived from (48) and (49)

rn+1 = rned−rn−γ rne−rn , γ > 0 (52)

Lemma 18: If 0 < d ≤ 2 then (52) has a unique positive fixed point x̄.
Proof: Existence: Let η(x) = d − x − γ xe−x . The nonzero fixed points of (52) must
satisfy eη(x) = 1, i.e. η(x) = 0. Since η(0) = d > 0 and η(d) = −γ de−d < 0 there is a real
number x̄ ∈ (0, a) such that η(x̄) = 0. This proves existence.

Uniqueness: Note that η′(x) = −1 − γ e−x + γ xe−x .

Case 1 γ ≤ e; The function xe−x is maximized on (0,∞) at h(1) = e−1 so

η′(x) = −1 − γ e−x + γ xe−x ≤ −1 + 1 − γ e−x = −γ e−x < 0

It follows that η(x) is decreasing on (0,∞) for this case and has a unique zero that
occurs at x̄.

Case 2 e < γ < e2; Consider the function p(x) = x + γ xe−x . Now

p′(x) = 1 + γ e−x − γ xe−x = e−x(ex + γ − γ x)
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The function q(x) = ex + γ − γ x attains a minimum value at x = ln (γ ) since
q′(x) = ex − γ . Furthermore,

q( ln (γ )) = 2γ − γ ln (γ ) = γ (2 − ln (γ )) > 0

for γ < e2. This implies that p′(x) > 0 on (0,∞) and therefore p(x) is increasing on (0,∞).
Since η(x) = d − p(x), this implies that η(x) is decreasing on (0,∞) and therefore it has
a unique zero that occurs at x̄.

Case 3 γ > e2; In this case, we know that η(x) is decreasing on [0, 1] and η(x) < 0 for
x ∈ [d,∞). Thus it remains to establish that η(x) < 0 on (1, d).

η(x) = d − x − γ xe−x < d − 1 − e2−x < d − 2 ≤ 0

Thus η(x) has a unique zero that occurs at x̄ and this completes the proof for all the
above cases. �

The above observations also indicate that η(x) > 0 for x ∈ (0, x̄) and η(x) < 0 for
x ∈ (x̄,∞), which we will use in our further analysis. Before examining the stability profile
of x̄, we need to explore the properties of the function f (x).

Since f (x) = xed−x−γ xe−x = xeη(x), then f ′(x) = eη(x) + xη′(x)eη(x). By direct
calculations, f ′(x) can be written as

f ′(x) = eη(x)(1 − x)(1 − γ xe−x)

It follows that f has critical points when x = 1 and 1−γ xe−x = 0. Nowwe consider the
function φ(x) = 1−γ xe−x , which has a critical point at x = 1, since φ′(x) = γ e−x(1−x).
Hence it is decreasing on (0, 1) and increasing on (1,∞) andφ(1) = 1− γ

e is theminimum
of the function.

(i) When γ < e, then φ(1) > 0, so φ(x) > 0 on (0,∞), hence f (x) has only one
critical point at x = 1. When γ = e,φ(1) = 0, and again, the only critical point of
f (x) occurs at x = 1. We further break down the case of γ ≤ e into the following
subcases:
(a) When d < 1 + γ

e , η(1) = d − 1 − γ
e < 0, thus x̄ < 1. Moreover, f (1) =

d − 1 − γ
e < 1, which lets us conclude that f (x) < 1 for all x ∈ (0,∞).

(b) When d ≥ 1 + γ
e , η(1) = d − 1 − γ

e ≥ 0. This implies that x̄ > 1 if d > 1 + γ
e

and x̄ = 1 if d = 1 + γ
e .

(ii) When γ > e,φ(1) < 0, so f (x) has three critical points at x′ < 1, x′ = 1, x′′ > 1.
On (0, x′), 1 − x > 0 and φ(x) > 0, so f is increasing. On (x′, 1), 1 − x > 0 and
φ(x) < 0, so f is decreasing. On (1, x′′), 1 − x < 0 and φ(x) < 0, so f is increasing.
On (x′′,∞), 1 − x < 0 and φ(x) > 0, so f is decreasing. By the above observations,
it follows that x′, x′′ are local maxima and 1 is a minimum point. Next observe that

f (1) = e2−1− γ
e < 1

Given that γ x′e−x′ = γ x′′e−x′′ = 1,

f (x′) = x′ed−x′−γ x′e−x′ = x′ed−x′−1 < x′e2−x′−1 = x′e1−x′
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Similarly, f (x′′) < x′′e1−x′′ . Now, the function s(x) = xe1−x attains its maximum at
x = 1, since s′(x) = (1 − x)e1−x . Since s(1) = 1, this implies that s(x) < 1 for all
x �= 1, x > 0. This implies that f (x′), f (x′′) < 1 as well, thus for this case f (x) < 1
for all x ∈ (0,∞).

Now we establish the global stability of x̄.
Lemma 19: If 0 < d ≤ 2 then every solution to (52) from positive initial values converges
to x̄.
Proof: We establish convergence to x̄ by showing that |f (x) − x̄| < |x − x̄| for x �= x̄.
This is equivalent to

x < f (x) < 2x̄ − x for x < x̄ (53a)
x > f (x) > 2x̄ − x for x > x̄ (53b)

The first inequalities in (53a) and (53b) are straightforward to establish: since η(x) > 0
for x < x̄ and η(x) < 0 for x > x̄, then f (x) = xeη(x) > x if x < x̄ and f (x) = xeη(x) < x if
x > x̄.

To establish the second inequalities in (53a) and (53b), let

t(x) = f (x) + x − 2x̄

Notice that t(0) = −2x̄ < 0 and t(x̄) = 0. We now show that the inequalities f (x) <
2x̄ − x for x < x̄ and f (x) > 2x̄ − x for x > x̄ are equivalent to t(x) < 0 for x < x̄ and
t(x) > 0 for x > x̄, respectively. We establish this by showing that t(x) is strictly increasing
on (0,∞), i.e.

t ′(x) = f ′(x) + 1 > 0 for x > 0
We establish the above result by considering two cases:

Case 1 γ ≤ e; recall that f (x) is maximized at the unique critical point x = 1. Thus
f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1. We also showed that 1 − γ xe−x > 0 for x > 0.
Thus for all x > 1, since d ≤ 2

|f ′(x)| ≤ e2−x−γ xe−x
(x − 1)(1 − γ xe−x)

= (x − 1)e1−xe1−γ xe−x
(1 − γ xe−x)

< e−1e1−γ xe−x
(1 − γ xe−x)

= e−γ xe−x
(1 − γ xe−x) < 1

i.e. t ′(x) > 0 for x > 0 and inequalities in (53a) and (53b) follow.

Case 2 γ > e; in this case, f (x) has three critical points occurring at x′ < 1, 1 and x′′ > 1,
where x′ and x′′ are maxima and 1 is a minimum. Thus

f ′(x) > 0 and 1 − γ xe−x > 0 for x ∈ (0, x′)
f ′(x) < 0 and 1 − γ xe−x < 0 for x ∈ (x′, 1)
f ′(x) > 0 and 1 − γ xe−x < 0 for x ∈ (1, x′′)
f ′(x) < 0 and 1 − γ xe−x > 0 for x ∈ (x′′,∞)
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Thus f ′(x) < 0 if either x < 1 and 1 − γ xe−x < 0 or x > 1 and 1 − γ xe−x > 0. If x < 1
and 1 − γ xe−x < 0, then

|f ′(x)| ≤ e2−x−γ xe−x
(1 − x)(γ xe−x − 1)

= (γ xe−x − 1)e1−γ xe−x
e1−x(1 − x)

< e−1e1−x(1 − x)
= e−x(1 − x) < 1

If x > 1 and 1 − γ xe−x > 0, then

|f ′(x)| ≤ e2−x−γ xe−x
(x − 1)(1 − γ xe−x)

= (x − 1)e1−x(1 − γ xe−x)e1−γ xe−x

< e−1e1−γ xe−x
(1 − γ xe−x)

= e−γ xe−x
(1 − γ xe−x) < 1

In either case, if f (x) is decreasing then −1 < f ′(x) < 0, thus t ′(x) = f ′(x) + 1 > 0,
thus t(x) is increasing for x > 0, from which the second inequalities in (53a) and (53b)
follow. �

By Lemmas 11 and 19, the even and odd terms of (43) converge to M = x̄t0 > 0 and
m = x̄t1 > 0, proving the existence and stability of a two-cycle in the sense described in
Theorem 16(c). SinceM andmmust satisfy

m = Med−M−m and M = med−m−M

and
Mm = mMe2d−2(M+m) i.e. e2d−2(M+m) = 1

we conclude thatM +m = d. Thus the following extension of Theorem 10(b) is obtained.
Theorem 20: Let 0 < d ≤ 2. Then every non-constant, positive solution of (43) converges,
in the sense of Theorem 16(c), to a two-cycle {ρ1, ρ2} that satisfy ρ1 + ρ2 = d, i.e. the mean
value of the limit cycle is the fixed point r̄ = d/2.

As previously mentioned, (43) is valid when c1,n > 0 has period 2. In this case, the
solution of (34) corresponding to {rn} of (43) is xn = rn/c1,n which also converges to a
sequence of period 2. Thus we have the following corollary.
Corollary 21: Assume in the system (31) and (32) that σ1,n = σ1, αn = α, βn = β are
positive constants and c2,n = σ1c1,n for all n where c1,n has period two with c1,2k−1 = ξ1 and
c1,2k = ξ2 where ξ1, ξ2 > 0.

(a) If α + ln (σ1β) ∈ (0, 2] then every orbit {(xn, yn)} is determined as

xn = rn
c1,n

, yn = rn+1

σ1c1,n+1
.

(b) Every orbit in the positive quadrant converges to a two-cycle{(
ρ1

ξ1
,

ρ2

σ1ξ2

)
,
(

ρ2

ξ2
,

ρ1

σ1ξ1

)}
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where ρi = limk→∞ r2k−i for i = 1, 2 and ρ1 + ρ2 = α + ln (σ1β).

3.5. A concluding remark onmultistability

We finally mention a feature of (43) that may make its multistable nature less surprising.
Consider the following class of nonautonomous first-order equations

xn+1 = xneγn−θnxn

where γn, θn are given sequences of period 2 with θn > 0 for all n. The change of variable
un = θnxn reduces this equation to

un+1 = unecn−un , cn = γn + ln
θn+1

θn
(54)

This equation can be written as

un+1 = un−1ecn−1+cn−un−1−un

Since cn has period 2, the sum cn−1 + cn = d is a constant and (43) is obtained.
If r−1 = u0 and r0 = u1 = u0ec0−u0 then the corresponding solution of (43) is the

solution of (54) with the arbitrary initial value u0. Therefore, all solutions of (54) appear
among the solutions of (43) but not conversely. In fact, if c′n is any other sequence of period
2 such that c′n + c′n−1 = d then while

un+1 = unec
′
n−un

is a different equation than (54), it yields exactly the same second-order Equation (43).
Hence, the following assertion is justified:
Proposition 22: The solutions of (43) include the solutions of all first-order equations of
type (54) with cn + cn−1 = d.

The coexistence of solutions of so many different first-order equations among the
solutions of (43) is a further indication of the diversity of solutions that the latter may
exhibit.

4. Conclusion and future directions

In this paper we examine the dynamics of the non-autonomous system (1) and (2) whose
special cases appear in stage-structured models of populations that are of Ricker type, or
overcompensatory. In Section 2 we obtain conditions that imply uniform boundedness
as well as global convergence to zero with variable parameters. In biological models these
results give general conditions for the species’ extinction. We have also shown that in
periodic environments certain stocking strategies do not prevent extinction.

In Section 3 we study the dynamics of a special case of the system that is mathematically
interesting.Weuse semiconjugate factorization to show that in awider range of parameters
than what is considered in [8] complex and multistable behaviour occurs. Multistability of
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periodic and non-periodic solutions is possible because such solutions are attracting, yet
neither locally nor globally asymptotically stable.

The results in Section 3 concern Equation (43) which is autonomous (even if the system
is not). For future investigation one may consider the more general, non-autonomous
Equation (38) with periodic dn. Preliminary work on this periodic case shows that the
dynamics of (38) where dn has an odd period (including the autonomous case p = 1) is
substantially and qualitatively different from the case where dn has an even period.

Another generalization of (43), namely the autonomous equation

rn+1 = rn−1ed−brn−1−crn (55)

where b, c > 0 exhibits different dynamics than (43) when b �= c. In particular, we expect
that mulitstable orbits will not occur although complex behaviour is possible. There is
currently no comprehensive study of the dynamics of (55) that we are aware of so obtaining
significant details on the dynamics of this equation would be desirable.
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