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Dynamics of rational difference equations
containing quadratic terms
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Second order rational difference equations with quadratic terms in their numerators and linear terms in
their denominators exhibit a rich variety of dynamic behaviors. It is demonstrated that depending on the
parameters and initial values, there can be globally attracting fixed points, coexisting periodic solutions or
chaotic trajectories.
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1. Introduction

Consider the second order, rational difference equation

xnþ1 ¼
Ax2

n þ Bxnxn21 þ Cx2
n21 þ Dxn þ Exn21 þ F

axn þ bxn21 þ g
: ð1Þ

If A ¼ B ¼ C ¼ 0, then both the numerator and the denominator are linear functions. The

linear/linear case has been studied extensively [2,4,6,7,10–12]. The last three references list

additional papers in this area. As a result of these studies much is understood about the

behavior of this interesting class of nonlinear difference equations and their various

applications. By contrast, no systematic study of rational equations containing quadratic terms

has been conducted, although a few special instances of such equations have been considered

previously. An equation of type (1) that is related to the Fibonacci numbers through the secant

method for estimating the solutions of certain quadratic equations has been studied [10, p. 174]

and the references cited therein. In Ref. [3] (or see [10, p. 155]) a rational equation which is not

of type (1) but falls into the more general quadratic category that contains (1) has been studied.

Equations of type (1) also include rational equations that are the sum of a linear equation

and a linear/linear rational equation, i.e.

xnþ1 ¼ axn þ bxn21 þ
qxn þ rxn21 þ s

axn þ bxn21 þ g
ð2Þ
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Equation (1) includes a large number of special cases that can be obtained by fixing some

of the parameters or coefficients (in particular, by setting some equal to zero). Some of these

cases are trivial and some others either reduce to the linear/linear case or to a linear case. In

this paper we consider a few non-trivial cases involving at least one quadratic term in the

numerator of (1). We study the global attractivity of a positive fixed point or equilibrium, the

occurrence of periodic solutions and give conditions for the occurrence of chaotic behavior

(in the sense of Li and Yorke [13]; also see [14]). Some of these types of behavior (e.g.

multiple coexisting periods or chaos) are not possible for linear equations and are also not

seen in linear/linear equations. A semiconjugate relation that links (1) to a first order rational

equation facilitates some of our calculations.

2. Global attractivity

The following general result which involves coordinate-wise monotonicity is from Ref. [9]

(but also see Refs. [8,10,12,15]). We use it here to give sufficient conditions for the global

attractivity of the positive fixed point.

Lemma 1. Let I be an open interval of real numbers and suppose that f [ CðI m;RÞ is

nondecreasing in each coordinate. Let �x [ I be a fixed point of the difference equation

xnþ1 ¼ f ðxn; xn21; . . . ; xn2mþ1Þ ð3Þ

and assume that the function hðtÞ ¼ f ðt; . . . ; tÞ satisfies the conditions

hðtÞ . t if t , �x and hðtÞ , t if t . �x; t [ I: ð4Þ

Then I is an invariant interval of (3) and �x attracts all solutions with initial values in I.

Theorem 1. Assume that all parameters in (1) are non-negative and satisfy the following

conditions:

aC # bB; bA # aB; aF # gD; bF # gE; jbD2 aEj # gB ð5Þ

0 # Aþ Bþ C , aþ b; g # Dþ E with F . 0 if g ¼ Dþ E: ð6Þ

Then (1) has a unique fixed point �x . 0 that attracts all positive solutions.

Proof. We first show that if the inequalities (5) hold then the function

f ðu; vÞ ¼
Au2 þ Buvþ Cv 2 þ Duþ Evþ F

auþ bvþ g
ð7Þ

is nondecreasing in each of its two coordinates u,v. This is demonstrated by computing the

partial derivatives fu and fv and setting f u $ 0 and f v $ 0. By direct calculation f u $ 0 iff

aAu2 þ 2bAuvþ 2gAuþ ðbB2 aCÞv2 þ ðgBþ bD2 aEÞvþ gD2 aF $ 0:
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The above inequality holds for all u, v . 0 if

aC # bB; gBþ bD2 aE $ 0; aF # gD: ð8Þ

Similarly, f v $ 0 iff

bCv 2 þ 2aCuvþ 2gCvþ ðaB2 bAÞu2 þ ðgBþ aE2 bDÞuþ gE2 bF $ 0

which is true for all u,v . 0 if

bA # aB; gBþ aE2 bD $ 0; bF # gE ð9Þ

The middle inequalities in (8) and (9) combine into the single inequality jbD2 aEj # gB.

Therefore, (5) gives sufficient conditions for f to be nondecreasing in each of its coordinates.

Next, assume that (6) holds and define

a ¼
Aþ Bþ C

aþ b
; b ¼

Dþ E

aþ b
; c ¼

F

aþ b
; d ¼

g

aþ b
:

Then the function h in (4) takes the form

hðtÞ ¼
at 2 þ bt þ c

t þ d
:

Now �x is a fixed point of (1) if and only if �x is a solution of the equation h(t) ¼ t. This is

equivalent to the quadratic

ð1 2 aÞt 2 2 ðb2 dÞt2 c ¼ 0: ð10Þ

Since by (6) a , 1 and d # b with c . 0 if d ¼ b, a unique positive fixed point is

obtained as

�x ¼
b2 d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2 dÞ2 þ 4ð1 2 aÞc

p
2ð1 2 aÞ

; or multiplying by
aþ b

aþ b

�x ¼
Dþ E2 gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDþ E2 gÞ2 þ 4ðaþ b2 A2 B2 CÞF

p
2ðaþ b2 A2 B2 CÞ

:

ð11Þ

Next, we verify that conditions (4) hold. Note that h may be written as

hðtÞ ¼ fðtÞt; where fðtÞ ¼
at þ bþ c=t

t þ d
:

Since

f0ðtÞ ¼
ad 2 b2 ðc=tÞð2 þ d=tÞ

ðt þ dÞ2

and by (6) ad 2 b , d 2 b # 0, it follows that f is decreasing (strictly) for all t. Therefore,

with fð�xÞ ¼ hð�xÞ=�x ¼ 1 we find that

t , �x implies hðtÞ . fð�xÞt ¼ t;

t . �x implies hðtÞ , fð�xÞt ¼ t:

Now we may use Lemma 1 to complete the proof. A

Remark 1. The number of inequalities in Theorem 1 is partly necessitated by the 8

parameters in (1). Not all of the conditions in Theorem 1 are necessary; for example,
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Theorem 1 does not apply if F . 0 and g ¼ 0 in (1) since the condition a þ b . 0 together

with the 3rd and the 4th inequalities in (5) imply F ¼ 0 when g ¼ 0. However, for certain

values of the other 6 parameters, numerical investigations indicate that a globally attracting

positive equilibrium exists if F . 0 and g ¼ 0 in (1). The following result goes a step in that

direction, again by using Lemma 1. In the next section this case is revisited using a different

set of tools (see Theorem 4 and Remark 4).

Theorem 2. Assume that D ¼ E ¼ g ¼ 0 in (1) with other parameters non-negative and

satisfying the following conditions:

aþ b . Aþ Bþ C; 2Aþ B . a; 2C þ B . b; F . 0 ð12Þ

bA # aB; aC # bB: ð13Þ

(a) If (12) holds then there is a unique positive equilibrium �x and 0 , d , �x such that �x

attracts all solutions of (1) with initial values in the interval ð�x2 d; �xþ dÞ.

(b) If both (12) and (13) hold then �x attracts all solutions of (1) with initial values in

ð�x2 d;1Þ.

Proof.

(a) Let f and h be the two functions in the proof of Theorem 1. Then the fixed point of h is

the unique positive solution �x of

t ¼ hðtÞ ¼
at 2 þ c

t
with a ¼

Aþ Bþ C

aþ b
, 1; c ¼

F

aþ b
. 0:

That is,

�x ¼

ffiffiffiffiffiffiffiffiffiffiffi
c

1 2 a

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

aþ b2 A2 B2 C

s
: ð14Þ

Next, note that f uð�x; �xÞ . 0 iff

Aa�x2 þ 2Ab�x2 þ ðBb2 CaÞ�x2 2 Fa . 0: ð15Þ

With �x as in (14), inequality (15) is equivalent to

ðAaþ 2Abþ Bb2 CaÞF

aþ b2 A2 B2 C
. Fa að2Aþ BÞ þ bð2Aþ BÞ . aðaþ bÞ

or equivalently, 2Aþ B . a. Similarly, f vð�x; �xÞ . 0 iff

ðBa2 AbÞ�x2 þ 2Ca�x2 þ Cb�x2 2 Fb . 0 ð16Þ

and (16) is equivalent to 2C þ B . b. Since f u and f v are continuous functions on

(0, 1)2 we conclude that there is d . 0 such that

f uðu; vÞ; f vðu; vÞ . 0 for all u; v [ ð�x2 d; �xþ dÞ:
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Next,

hðtÞ2 t ¼ 2ð1 2 aÞt þ
c

t
, 0 if t .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ð1 2 aÞ

p
¼ �x

hðtÞ2 t ¼ 2ð1 2 aÞt þ
c

t
. 0 if t ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ð1 2 aÞ

p
¼ �x

so that (4) in Lemma 1 is satisfied on (0,1) and that lemma then completes the proof.

(b) Suppose that both (12) and (13) hold. Then for all u; v . �x,

f uðu; vÞ ¼ Aau2 þ 2Abuvþ ðBb2 CaÞv2 2 Fa

$ Aa�x2 þ 2Ab�x2 þ ðBb2 CaÞ�x2 2 Fa . 0

and

f vðu; vÞ ¼ ðBa2 AbÞu2 þ 2Cauvþ Cbv 2 2 Fb

$ ðBa2 AbÞ�x2 þ 2Ca�x2 þ Cb�x2 2 Fb . 0:

Hence the arguments in the proof of Part (a) apply to the interval ð�x2 d;1Þ and Lemma 1

once again completes the proof A.

When F ¼ 0 and g . 0 in (1) then the origin is a fixed point of (1) and the class of

solutions can be expanded to include the non-negative solutions. The next theorem gives

sufficient conditions for the global asymptotic stability of the origin in this case. The proof is

based on the following result from Ref. [10, Theorem 4.3.1] that for convenience we quote as

a lemma.

Lemma 2. Let �x be a fixed point of the difference equation (3) in a closed, invariant set

T , Rm and define

M ¼ {ðu1; . . . ; umÞ : j f ðu1; . . . ; umÞ2 �xj , max{ju1 2 �xj; . . . ; jum 2 �xj} < {ð�x; . . . ; �xÞ}:

Then ð�x; . . . ; �xÞ is asymptotically stable relative to the largest invariant subset S ofM > T

such that S is closed in T.

Theorem 3 (Global asymptotic stability of the origin). Assume that F ¼ 0 in (1)

with all other parameters non-negative. If the following conditions are satisfied for some

d [ ½0; 1�:

Aþ dB # a; C þ ð1 2 dÞB # b; Dþ E , g ð17Þ

then the origin is a fixed point of (1) that is asymptotically stable relative to ½0;1Þ2.
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Proof. The origin is a fixed point of (1) because F ¼ 0 and also by (17) g . 0. If f(u,v) is

given by (7) then for all u; v $ 0

f ðu; vÞ #
Auþ Bmin{u; v} þ Cvþ Dþ E

auþ bvþ g
max{u; v}

#
ðAþ dBÞuþ ½C þ ð1 2 dÞB�vþ Dþ E

auþ bvþ g
max{u; v}

, max{u; v}; ifðu; vÞ – ð0; 0Þ

where the strict inequality holds because of conditions (17). Now we apply Lemma 2 with

M ¼ T ¼ ½0;1Þ2 to conclude the proof. A

3. Limit cycles and chaos

In the proof of Theorem 1 it is seen that the restriction of the function f(u,v) in (7) to the

diagonal u ¼ v, namely the function h is again a function of the same type; i.e. both f and h

have a quadratic numerator and a linear denominator. The monotonicity conditions of

Lemma 1 ensured that global attractivity for h could be extended to f. Since the dynamics of

the one dimensional map are easier to analyze, it is natural to wonder whether there are

conditions that allow us to extend other properties of the one dimensional map (e.g. the

existence of limit cycles or the occurrence of chaos) to the higher order case. In this section

we discuss one such set of conditions using semiconjugacy [15].

First we consider a basic yet important consequence of having the 2nd degree terms in

(1). The presence of these terms allows (0,1) to be invariant even when some coefficients

or parameters in (1) are negative. It is seen later in this paper that negative coefficients are

often associated with complex trajectories, so the added flexibility in the next result is

significant.

Lemma 3. Let A;C;F;a;b; g $ 0 in (1) with Aþ C;aþ b . 0.

(a) If x0; x21 . 0 and any one of the following conditions holds, then xn . 0 for all n $ 1:

D;E $ 0; B . 22
ffiffiffiffiffiffiffi
AC

p
; ð18Þ

B;E $ 0; D . 22
ffiffiffiffiffiffiffi
AF

p
; ð19Þ

B;D $ 0; E . 22
ffiffiffiffiffiffiffi
CF

p
: ð20Þ

When two out of three coefficients can be negative then the positivity conditions are:

B . 22
ffiffiffiffiffiffiffi
AC

p
; D . 22

ffiffiffiffiffiffiffi
AF

p
and E $ 2

ffiffiffiffiffiffiffi
CF

p
; ð21Þ

B . 22
ffiffiffiffiffiffiffi
AC

p
; E . 22

ffiffiffiffiffiffiffi
CF

p
and D $ 2

ffiffiffiffiffiffiffi
AF

p
; ð22Þ

D . 22
ffiffiffiffiffiffiffi
AF

p
; E . 22

ffiffiffiffiffiffiffi
CF

p
and B $ 2

ffiffiffiffiffiffiffi
AC

p
: ð23Þ

(b) Let g . 0. Then (a) holds with all strict . changed to $ .
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Proof.

(a) Suppose that (18) holds. Then setting n ¼ 0 in (1) gives

x1 $
Ax2

0 þ Bx0x21 þ Cx2
21

ax0 þ bx21 þ g
.

ffiffiffi
A

p
x0 2

ffiffiffiffi
C

p
x21

� �2

ax0 þ bx21 þ g
$ 0:

Hence x1 . 0. By induction, it follows that xn . 0 for all n. Next, if (19) holds then

x1 $
Ax2

0 þ Dx0 þ F

ax0 þ bx21 þ g
.

ffiffiffi
A

p
x0 2

ffiffiffiffi
F

p� �2

ax0 þ bx21 þ g
$ 0:

Again by induction xn . 0 for all n. The proof is similar if (20) holds.

Now let (21) hold. Then

x1 .
Ax2

0 2 2
ffiffiffiffiffiffiffi
AC

p
x0x21 þ Cx2

21 2 2
ffiffiffiffiffiffiffi
AF

p
x0 þ 2

ffiffiffiffiffiffiffi
CF

p
x21 þ F

ax0 þ bx21 þ g

¼
2
ffiffiffi
A

p
x0 þ

ffiffiffiffi
C

p
x21 þ

ffiffiffiffi
F

p� �2

ax0 þ bx21 þ g
$ 0:

Hence, by induction xn . 0 for all n. For (22) and (23) a similar argument applies

with only minor modifications.

(b) This is clear since with g . 0 equation (1) is well-defined for non-negative

solutions. A

Now we define the one-dimensional, quadratic/linear rational map

gðtÞ ¼
pt 2 þ qt þ s

t þ w

and consider the difference equation

xnþ1 ¼ cxn þ f ðxn 2 cxn21Þ; jcj , 1: ð24Þ

Using f ¼ g in (24) and rearranging terms we obtain a difference equation of type (1) with

a . 0 and

A ¼ ðpþ cÞa; B ¼ 2cð2pþ cÞa; C ¼ pc 2a; D ¼ ðqþ wcÞa;

E ¼ 2qca; F ¼ sa; b ¼ 2ca; g ¼ wa
ð25Þ

To reduce the amount of calculations without losing the variety of dynamic behaviors that

we explore, we set w ¼ 0 and study the following difference equation:

xnþ1 ¼
ðpþ cÞx2

n 2 cð2pþ cÞxnxn21 þ pc 2x2
n21 þ qxn 2 qcxn21 þ s

xn 2 cxn21

; jcj , 1 ð26Þ

with initial values x0; x21 satisfying

x0 . cx21: ð27Þ

Note that if c # 0 then in particular every pair of positive initial values satisfies (27);

further, if p þ c . 0 and q $ 0 as well, then all of the coefficients are non-negative and

therefore all solutions of (26) are positive. However, as indicated by Lemma 3 positive
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solutions may also occur with negative coefficients; see Remark 3 below for a sufficient

condition that guarantees positive solutions when q , 0.

Equation (26) is equivalent to the system of first order equations

tnþ1 ¼ f ðtnÞ ð28Þ

xnþ1 ¼ cxn þ tnþ1: ð29Þ

This is an example of a triangular system. A general result on the structure of periodic

solutions of such systems in terms of the periodic orbits of its two first order equations

appears in Ref. [1]. Here, since the triangular system is specific in its second equation, we

derive the needed relationships directly and also establish attractivity when jcj , 1.

Equations (28) and (29) also constitute a semiconjugate factorization of (1) under

conditions (25). More precisely, the two dimensional mapping that is equivalent to (1) is said

to be semiconjugate to the mapping g or to equation (28) with f ¼ g and a semiconjugate link

provided by equation (29); see Ref. [15] for more background on this concept.

Remark 2. If tn . 0 for all n $ k where k is a positive integer, then xnþ1 . cxn for all

n $ k. This is evident from (29):

xkþ1 ¼ cxk þ tkþ1 . cxk:

This conclusion extends by induction to all points ðxn; xnþ1Þ in the plane with n $ k. In

particular if f ðtÞ . 0 for all t . 0 and we start with t1 ¼ x1 2 cx0 . 0 then the entire orbit

ðxn; xnþ1Þ of (24) stays in the region {ðu; vÞ : v . cu}.

If {tn} is a solution of the first order equation (28) then (29) has the following solution

xn ¼ cnx0 þ
Xn
j¼1

cn2jtj; n $ 1: ð30Þ

Using (30) we obtain results about the solutions of (1) based on the corresponding

properties of solutions of the first order equation (28). The link between the two equations

is furnished by the following result from Ref. [16] which we quote for convenience as a

lemma.

Lemma 4. Assume that jcj , 1.

(a) If for a given sequence {tn} of real numbers equation (29) has a solution {xn} of period

pthen {tn} is periodic with period p. Conversely, if {tn} is a periodic sequence of real

numbers with period p and

ji ¼
1

1 2 cp

Xp21

j¼0

cp2j21tðiþjÞmod p i ¼ 0; 1; . . . ; p2 1 ð31Þ

where {t0; . . . ; tp21} is a cycle of {tn} then the solution {xn} of equation (29) with

x0 ¼ j0 and t1 ¼ t0 has period p and {j0; . . . ; jp21} is a cycle of {xn}.

(b) If {tn} is a periodic solution of the first order equation (28) with prime period p and a

cycle {t0; . . . ; tp21} then (24) has a solution {xn} of prime period p with a cycle

{j0; . . . ; jp21} given by (31).
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(c) If f is continuous and {tn} is an attracting periodic solution of (28) then {xn} is an

attracting periodic solution of (24).

(d) If the first order equation (28) has an invariant interval ½m; n� then every solution of the

second order equation (24) is eventually contained in the planar compact, convex set:

Sm;n ¼ {ðx; yÞ : cxþ m # y

# cxþ n} > 2jcj2
max{jmj; jnj}

1 2 jcj
; jcj þ

max{jmj; jnj}

1 2 cj j

� �2

:

If (28) is chaotic in ½m; n� (e.g. if f has a period-3 point) then (24) is chaotic in Sm;n. Here

chaos is defined in the sense of Refs. [13] and [14].

It is clear from Lemma 4 that as long as jcj , 1 the various properties of the first order

equation (28) with f ¼ g directly lead to corresponding properties of (1) under conditions

(25). The conclusions of Parts (a) and (b) in Lemma 4 hold as long as jcj – 1; however,

neither Part (c) nor (d) hold if jcj $ 1.

We point out that if �t is a fixed point of (28) then by (31) the second order equation (24) has

a corresponding fixed point

�x ¼
�t

1 2 c
: ð32Þ

Lemma 5. Assume that s . 0; p $ 0 and consider

gðtÞ ¼ pt þ qþ
s

t
; t . 0: ð33Þ

(a) If p . 0 then the function g attains its global minimum value 2
ffiffiffiffiffi
sp

p
þ q on (0,1) at

t ¼
ffiffiffiffiffiffiffi
s=p

p
. Hence for p $ 0, gð0;1Þ , ð0;1Þ if and only if

q . 22
ffiffiffiffiffi
sp

p
:

(b) The positive fixed points of g, when they exist, are solutions of the equation fðtÞ ¼ 0

where

fðtÞ ¼ ðp2 1Þt 2 þ qt þ s:

There are three possible cases:

(i) If p ¼ 1 and q , 0 then g has a unique fixed point

�t ¼
s

jqj
. 0:

(ii) If p , 1 then g has a unique positive fixed point

�t ¼
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4sð1 2 pÞ

p
2ð1 2 pÞ

:

(iii) If p . 1 and

q # 22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðp2 1Þ

p
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then g has up to two positive fixed points

�t1 ¼
jqj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 2 4sðp2 1Þ

p
2ðp2 1Þ

# �t2 ¼
jqj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 2 4sðp2 1Þ

p
2ðp2 1Þ

:

(c) Let q . 22
ffiffiffiffiffi
sp

p
and g2ðtÞ ¼ gðgðtÞÞ. Then

g2ðtÞ ¼ t iff fðtÞcðtÞ ¼ 0

where

cðtÞ ¼ ½pðpþ 1Þt 2 þ qðpþ 1Þt þ sp�: ð34Þ

Proof.

(a) limt!0þgðtÞ ¼ limt!1gðtÞ ¼ 1 and

g0ðtÞ ¼ p2
s

t 2
; g00ðtÞ ¼

2s

t 3
:

Hence, a global minimum 2
ffiffiffiffiffi
sp

p
for g occurs on (0,1) at t ¼

ffiffiffiffiffiffiffi
s=p

p
.

(b) The fixed points of g are solutions of the equation g(t) ¼ t, or equivalently of

0 ¼ gðtÞ2 t ¼ tgðtÞ2 t 2 ¼ fðtÞ:

Solving this quadratic equation readily gives the roots structure as claimed in

(i)–(iii).

(c) The equation g2ðtÞ ¼ t written explicitly is

p2t þ qðpþ 1Þ þ
sp

t
þ

st

pt 2 þ qt þ s
¼ t: ð35Þ

Since pt 2 þ qt þ s has no real roots when q . 22
ffiffiffiffiffi
sp

p
, the real solutions of (35) in (0,1)

are precisely those of

tðpt 2 þ qt þ sÞg2ðtÞ ¼ t 2ðpt 2 þ qt þ sÞ

After multiplying out the terms and rearranging them, the following is obtained:

pðp2 2 1Þt 4 þ qðpþ 1Þð2p2 1Þt 3 þ ½q2ðpþ 1Þ þ 2sp 2�t 2 2 spð2pþ 1Þt þ s2p ¼ 0: ð36Þ

The roots of the quartic polynomial on the left hand side of (36) are precisely the solutions

of the equation g2ðtÞ ¼ t. The solutions of the latter equation obviously include the fixed

points, or the roots of fðtÞ so the quartic is divisible by fðtÞ. Dividing in the straightforward

fashion yields the polynomial cðtÞ as the quotient.

We now consider applications of Lemmas 3 and 4 to equation (26) with initial values (27).

As an initial value problem, (26) and (27) are semiconjugate to the first order discrete initial

value problem

tnþ1 ¼ ptn þ qþ
s

tn
; t0 ¼ x0 2 cx21 . 0: ð37Þ

The semiconjugate link is provided by the nonautonomous, linear first order

equation (29). A
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Remark 3.

(a) Let us check whether the results in Lemma 5 are consistent with Lemma 3 when c , 0

(so that b . 0). In this case, if q , 0 then D ¼ q , 0 and E ¼ 2cq , 0 while all other

parametes in (1) are non-negative. We now check to see if (23) in Lemma 3 holds. By

Lemma 5(a) and conditions (25) when a ¼ 1

E ¼ 2cq ¼ jcjq . 22jcj
ffiffiffiffiffi
sp

p
¼ 22

ffiffiffiffiffiffiffiffiffi
spc 2

p
¼ 22

ffiffiffiffiffiffiffi
CF

p
:

Similarly, by conditions (25)

B $ 2
ffiffiffiffiffiffiffi
AC

p
, ð2pþ cÞ2 $ 4ðpþ cÞp , c 2 $ 0:

Finally,

22
ffiffiffiffiffiffiffi
AF

p
¼ 22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ cÞs

p
. 22

ffiffiffiffiffi
sp

p
:

As it is possible that 22
ffiffiffiffiffi
sp

p
, q # 22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ cÞs

p
we conclude that one of three

inequalities in (23) is not satisfied. We recall from Remark 2 that when c , 0 it may

happen that xn , 0 for some n $ 1 (though xn . cxn21). Of course, if q . 22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ cÞs

p

and (23) is satisfied then xn . 0 for all n.

(b) When c ¼ 0 then (26) reduces to the first order equation (37). On the other hand, as jcj

approaches 1 the behavior of solutions of (26) becomes completely different from the

first order case and generally, more complex (figure 1 below). Thus c, or 2b=a by (25)

is a focusing parameter that relates the first order equation to the second order one, with

the two equations coinciding when c ¼ 0; however, c does not affect the first order

equation in any way.

The next result on the global attractivity of the positive fixed point supplements

Theorems 1 and 2. In particular, it shows that the coefficients of the linear terms in the

numerator of equation (1) can play a significant role in the behavior of solutions of (1).

Theorem 4. Assume that s . 0, 0 # p # 1 and 0 , jcj , 1.

(a) Let p , 1 and assume that

q $ 22p

ffiffiffiffiffiffiffiffiffiffiffi
s

pþ 1

r
: ð38Þ

Then the positive fixed point

�x ¼
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4sð1 2 pÞ

p
2ð1 2 pÞð1 2 cÞ

attracts all solutions of (26) satisfying (27).

(b) Let p ¼ 1. If

2
ffiffiffiffiffi
2s

p
# q , 0 ð39Þ
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then all solutions of (26) satisfying (27) converge to the positive fixed point

�x ¼
s

qðc2 1Þ
:

If

q $ 0 ð40Þ

then every solution of (26) satisfying (27) is unbounded.

Proof.

(a) Because of Lemma 4 it is sufficient to prove that the fixed point �t ¼ �xð1 2 cÞ is a global

attractor for (37). To show that �t is attracting on (0,1) we prove that

g2ðtÞ . t if t , �t and g2ðtÞ , t if t . �t; t . 0 ð41Þ

where g2ðtÞ ¼ gðgðtÞÞ; see Ref. [15, Theorem 2.1.2]. By Lemma 5(c) the positive

solutions of g2ðtÞ ¼ t are the positive zeros of fðtÞcðtÞ. The only positive zero of fðtÞ is

the fixed point �t. Also c has no positive real roots; for p . 0 its discriminant is negative

by (38):

q2ðpþ 1Þ2 2 4sp2ðpþ 1Þ , 0:

Therefore, the only zero of g2ðtÞ ¼ t in (0,1) is �t. From its explicit form in (35) we

see that g2ðtÞ!1 as t! 0þ so it must be that g2ðtÞ . t if t , �t. Also, for t sufficiently

large the last two terms of g2ðtÞ are negligible and bounded above by 1 . 0 such that

1 , ð1 2 p2Þt2 qðpþ 1Þ and so

g2ðtÞ # p2t þ qðpþ 1Þ þ 1 ¼ t2 ð1 2 p2Þt þ qðpþ 1Þ þ 1 , t:

Thus (41) holds and it follows that �t is a global attractor for (37). Therefore, �x attracts

all solutions of (26) satisfying (27).

(b) If p ¼ 1 then the first inequality in (39) is (38) and the second is needed to obtain the

unique fixed point �t ¼ 2s=q for (37). Repeating an argument similar to the proof of

Part (a) shows that (41) holds and thus �t is a global attractor in this case too.

Finally, if (40) holds then gðtÞ ¼ t þ qþ s=t . t for all t . 0. Hence, for every t0 . 0,

tn ¼ gnðt0Þ!1 monotonically as n!1. Hence, (30) implies that xn !1. A

Remark 4. The hypotheses in Part (a) of the preceding theorem overlap those in Theorems 1

and 2. For example, using (25):

aþ b2 A2 B2 C ¼ 1 2 2cþ c 2 2 pð1 2 2cþ c2Þ ¼ ð1 2 pÞð1 2 cÞ2:

Therefore, if c – 1 then the inequality p # 1 is equivalent to Aþ Bþ C # aþ b. In

particular, if p ¼ 1 so that Aþ Bþ C ¼ aþ b then Theorem 4 shows that the existence of a

globally attracting positive fixed point is possible only if the coefficient D ¼ q is negative.

Unlike Theorems 1 and 2, negative coefficients can be allowed in Theorem 4 since the

solutions of equation (26) can have negative values (also refer to Remark 3).
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Theorem 4 also helps in checking the necessity of hypotheses. In relation to Theorem 2,

when q ¼ w ¼ 0 (i.e. D ¼ E ¼ g ¼ 0) suppose that c , 0 and 2c , p so that the remaining

coefficients in (26) are non-negative. Then (38) holds and when p , 1, by Theorem 4 the

positive fixed point is globally attracting. Further, under conditions (25), the hypotheses in

Theorem 4(a) imply only the first of inequalities (13); the second, as well as the middle two

inequalities in (12) are implied if p . ð1 2 cÞ=2, or equivalently if A ¼ pþ c . ð1 þ cÞ=2.

Therefore, evidently they are not necessary. On the other hand, since Theorem 4 applies to a

special case of (1) where parameters are restricted, it should be viewed as supplementing, not

replacing the eariler results.

Theorem 5. Assume that

s; p . 0; 0 , jcj , 1; q , 22p

ffiffiffiffiffiffiffiffiffiffiffi
s

pþ 1

r
: ð42Þ

Then equation (26) has a positive periodic solution with prime period 2 (or a 2-cycle)

j0 ¼
ct0 þ t1

1 2 c2
; j1 ¼

ct1 þ t0

1 2 c2

where

t0 ¼
jqj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 2 4sp 2=ðpþ 1Þ

p
2p

; t1 ¼
jqj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 2 4sp2=ðpþ 1Þ

p
2p

: ð43Þ

This 2-cycle is asymptotically stable if in addition to (42) the following holds:

q . 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2spð2p2 þ 2pþ 1Þ

p
pþ 1

¼ 22p

ffiffiffiffiffiffiffiffiffiffiffi
s

pþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

1

2pðpþ 1Þ

s
: ð44Þ

Proof. Conditions (42) imply that the polynomial cðtÞ in (34) has two positive roots which

are computed easily as the numbers t0; t1 in (43). Since these are the non-fixed point

solutions of the equation g2ðtÞ ¼ t it follows that {t0; t1} is a 2-cycle of (37). Lemma 4(a)

then gives the 2-cycle {j0; j1} for (26).

By Lemma 4(c) the 2-cycle {j0; j1} is attracting if {t0; t1} is an attracting 2-cycle of (37);

i.e. if

jg0ðt0Þg
0ðt1Þj , 1:

See, Ref. [5]. With g given as in (33) the above inequality takes the form

p2
s

t2
0

� �
p2

s

t2
1

� �����
���� , 1 p2 þ

s2

t2
0t

2
1

2
spðt2

0 þ t2
1Þ

t2
0t

2
1

����
���� , 1 ð45Þ

Note that

t0 þ t1 ¼
q

p
and t0t1 ¼

s

pþ 1
) t2

0 þ t2
1 ¼ ðt0 þ t1Þ

2 2 2t0t1 ¼
q2ðpþ 1Þ2 2sp 2

p2ðpþ 1Þ
:
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Inserting these values in (45) and doing some straightforward calculations yield

4sp2

pþ 1
, q2 ,

2spð2p2 þ 2pþ 1Þ

ðpþ 1Þ2
:

This completes the proof. A

Remark 5. If s ¼ p ¼ 1 then Theorems 4 and 5 indicate that a (globally) attracting fixed

point �x ¼ 1=ðc2 1Þq exists when

2
ffiffiffi
2

p
# q , 0:

The fixed point �x becomes unstable and the stable 2-cycle {j0; j1} in Theorem 5 emerges

over the range

2

ffiffiffi
5

2

r
, q , 2

ffiffiffi
2

p
:

Thus as the bifurcation parameter q decreases and crosses 2
ffiffiffi
2

p
a period-doubling

bifurcation occurs for the second order equation (26). Then as q crosses 2
ffiffiffiffiffiffiffiffi
5=2

p
a second

period-doubling bifurcation destabilizes the 2-cycle and creates a stable 4-cycle. The

mapping

gðtÞ ¼ t þ qþ
1

t
ð46Þ

exhibits the usual bifurcations to higher periods that follow the Sharkovski ordering (see, e.g.

[15, p. 34]) as the parameter q continues to decrease further. The requirement that g in (46) be

positive puts a lower bound on q; in fact, by Lemma 5(a) it is necessary that

q . 22
ffiffiffiffiffi
sp

p
¼ 22.

The next result marks the emergence of a period 3 solution (through a tangent bifurcation

rather than a period-doubling one).

Lemma 6. If q ¼ 2
ffiffiffi
3

p
then the function gin (46) has a unique set of positive period 3 points

given by

t0 ¼
2ffiffiffi
3

p 1 þ cos
p

9

	 

; t1 ¼ gðt0Þ; t2 ¼ gðt1Þ: ð47Þ

Proof. A period 3 point is a solution of the equation g3ðtÞ ¼ t; which is equivalent to

1

t
þ

t

t 2 2
ffiffiffi
3

p
t þ 1

þ
tðt 2 2

ffiffiffi
3

p
t þ 1Þ

tðt2 2
ffiffiffi
3

p
Þðt 2 2

ffiffiffi
3

p
t þ 1Þ þ 2t 2 2

ffiffiffi
3

p
t þ 1

¼ 3
ffiffiffi
3

p
:

Multiplying out and rearranging various terms, the above equation may be written as the

polynomial equation

PðtÞ ¼ 3
ffiffiffi
3

p
t 7 2 39t 6 þ 66

ffiffiffi
3

p
t 5 2 168t 4 þ 77

ffiffiffi
3

p
t 3 2 57t 2 þ 7

ffiffiffi
3

p
t2 1 ¼ 0:
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By Lemma 5(b)(i) g has a unique positive fixed point at 1=
ffiffiffi
3

p
and no negative fixed points

so this is the only fixed point root of PðtÞ. Dividing we obtain

PðtÞ ¼ 3
ffiffiffi
3

p
t2 1=

ffiffiffi
3

p	 

QðtÞ

where

QðtÞ ¼ t 6 2 4
ffiffiffi
3

p
t 5 þ 18t 4 2

38
ffiffiffi
3

p

3
t 3 þ 13t 2 2 2

ffiffiffi
3

p
t þ

1

3
:

Since all the fixed points are accounted for, the 6 roots of Q give two sets of period 3 points

(if they are all real). These two sets are identical if Q is a perfect square, i.e.

QðtÞ ¼ ðt 3 þ lt 2 þ vt þ sÞ2: ð48Þ

Indeed, by matching coefficients on both sides of (48) we find a set of numbers

l ¼ 22
ffiffiffi
3

p
; v ¼ 3; s ¼ 2

1ffiffiffi
3

p

for which (48) holds for all t . 0. Therefore,

PðtÞ ¼ 3ð
ffiffiffi
3

p
t2 1Þ t 3 2 2

ffiffiffi
3

p
t 2 þ 3t2

1ffiffiffi
3

p

� �2

:

The roots of the cubic above can be found using the standard formula with radicals (see,

e.g. Ref. [17]); one root using this formula is found to be

t0 ¼
1ffiffiffi
3

p 2 þ

ffiffiffi
z

2

3

r
þ

ffiffiffi
�z

2

3

r !
where z ¼ 1 þ i

ffiffiffi
3

p
¼ 2eip=3:

Therefore,

t0 ¼
1ffiffiffi
3

p 2 þ e ip=9 þ e2ip=9
	 


¼
1ffiffiffi
3

p 2 þ 2 cos
p

9

	 


as in (47).

The following theorem is an immediate consequence of Lemmas 4–6, Remark 3(a), the

Sharkovski ordering and the “Chaos Theorem” of Li and Yorke; see Refs. [13–15]. A

Theorem 6. Let p ¼ s ¼ 1 in (26).

(a) If q ¼ 2
ffiffiffi
3

p
then (26) has a unique 3-cycle

j0 ¼
c2t0 þ ct1 þ t2

1 2 c3
; j1 ¼

c2t1 þ ct2 þ t0

1 2 c 3
; j2 ¼

c2t2 þ ct0 þ t1

1 2 c3

where t0; t1; t2 are given by (47).

(b) If 22 , q # 2
ffiffiffi
3

p
then equation (26) has periodic solutions of all possible periods.

(c) For 22 , q , 2
ffiffiffi
3

p
solutions of (26) exhibit chaotic behavior in the sense of Li and

Yorke.
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(d) If q . 22
ffiffiffiffiffiffiffiffiffiffiffi
1 þ c

p
then all solutions of (26) with positive initial values are positive; i.e.

(0,1) is invariant. In particular, this is the case for all 22 , q , 0 if c . 0.

Figures 1 and 2 illustrate Theorem 6. The straight lines in figure 1 have equations

y ¼ cxþ m; y ¼ cxþ n

where m ¼ gð1Þ ¼ 0:2 is the minimum value of g in (46) when q ¼ 21:8 and

n ¼ gð0:2Þ ¼ 3:4; refer to Lemmas 4(d) and 5(a). Figure 2 clearly shows the emergence

of the 3-cycle at q ¼ 2
ffiffiffi
3

p
as well as the initial period-doubling bifurcations mentioned in

Remark 5.

4. Future directions

The preceding discussion shows that the quadratic/linear rational difference equation (1) has

a rich dynamical sturcture. However, the coverage here is far from exhaustive and many

questions have been left unanswered. For equation (26) we omitted various cases here,

e.g. when p . 1 (i.e. Aþ Bþ C . aþ b) or when w . 0 (i.e g . 0). As Lemma 5 shows,

two positive fixed points exist when p . 1 and this situation adds another layer of complexity

to the second order equation; also when w . 0 the infinite discontinuity in g is shifted from

the origin to w so some new situations can occur in addition to having to modify various

calculations. These and similar cases can be studied in future papers.

The question is left open here as to what range of possible behaviors can occur in cases

where a semiconjugate relation is either not known for (1) or is quite different from the one

that resulted in (26), e.g. as in the case where D, E, F and g are all zeros in (1). In particular,

whether chaotic behavior can occur in the positive quadrant of the plane when all the

coefficients in (1) are non-negative is an open question. A traditional approach could be

fruitful in cases where semiconjugate relations are not known by seeking conditions under

which the fixed point may be a snap-back repeller; see Ref. [14].

Going in a different direction, the quadratic/linear rational equation (1) is itself a special

case of the quadratic/quadratic (or just quadratic) rational equation where both the numerator

and the denominator may contain second-degree terms. Extending (2), quadratic rational

difference equations include sums of two linear/linear rational difference equations.

Figure 1. Orbits of equation (26).

M. Dehghan et al.206



If we abbreviate the general case as QQR (or just QR) and refer to equation (1) as a QLR

equation then naturally a LQR equation presents itself as a case worthy of consideration.

LQR difference equations of certain types have been studied in the literature; see, e.g. Refs.

[4,7,8]. However, like other QR equations there has been no systematic study of LQR

equations.

All of these equations can be seen as extensions of the more familiar LLR (or LR)

equations. From the existing literature we know that the LR type equations exhibit a more

restricted variety of dynamic behavior than the QLR type and it should be interesting to learn

if LQR equations possess as rich a dynamic profile as the QLR type. A QR type equation

which is neither QLR nor LQR is studied in Refs. [3,10]. A long-term project could involve a

systematic study of QR type equations that is similar to the investigation of the LR case in

Ref. [12] where special cases are studied by setting some of the parameters equal to zero.

Such a study may also include non-autonomous QR equations with variable coefficients.
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