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Difference equations with absolute values

C. M. KENT and H. SEDAGHAT*

Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA

(Received 30 May 2004; in final form)

We study a class of multiparameter difference equations that contain the absolute value of a difference.
Using two different semiconjugate factorizations, we obtain precise information about the solutions of
these equations for various ranges of parameter values.

Keywords: Absolute value; Monotonic solutions; Non-autonomous equations; Semiconjugate relations

1. Introduction

Consider the second-order, 3-parameter difference equation

xnþ1 ¼ jaxn 2 bxn21j þ cxn: ð1Þ

The case c ¼ 0 is studied extensively in [3] and [5] where several different types of

behavior that bifurcate with changing parameters are shown to occur for equation (1).

Periodic solutions, unbounded solutions and convergent (monotonic as well as non-

monotonic) solutions all exist depending on the parameter values a, b; further, solutions with

qualitatively different behavior may coexist with the same set of parameter values. Another

special case of equation (1) where a ¼ b and 0 # c , 1 is studied in [6] where various

criteria for the global asymptotic stability of the origin are given, including conditions for

monotonic and non-monotonic convergence.

Here we study equation (1) and its generalizations under different restrictions on

parameter values than considered in previous studies. With the new parameter ranges, a

semiconjugate relation facilitates the derivation of explicit solutions. Also with the aid of

another semiconjugate relation we obtain results concerning the solutions of equation (1)

when the first semiconjugate relation does not hold so as to highlight some differences

that exist between the two cases. For background material and related issues, see [2,4]

and [7].

2. The basic second order equation

In the case, b ¼ ac; equation (1) can be written as

xnþ1 ¼ jakxn 2 cxn21j þ cxn: ð2Þ
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Making the substitution

xn 2 cxn21 ¼ tn ð3Þ

reduces equation (2) to the first order equation

tnþ1 ¼ jaktnj: ð4Þ

Evidently solutions of equation (2) with real initial values x0; x21 coincide with the

solutions of the uncoupled system of first order equations (3) and (4). We first solve equation

(4) with t0 ¼ x0 2 cx21 to get

tn ¼ jt0kaj
n
; n ¼ 1; 2; . . . ð5Þ

Using this solution, in the first order equation (3) inductively yields a solution

xn ¼ x0c
n þ jt0j

Xn
k¼1

cn2kjaj
k

ð6Þ

for equation (2). Upon adding the geometric series and rearranging terms, we obtain the first

part of the following comprehensive result on equation (2). The remaining parts are then

easily established using the first part. In the following and elsewhere, “almost all solutions”

means solutions generated by all initial values outside a set of Lebesgue measure zero in the

phase space.

Theorem 2.1 (a) The general solution of equation (2) is given by

xn ¼ ðx0 2 s0Þc
n þ s0jaj

n
; jaj – c; s0 ¼

jat0j

jaj2 c

and in the exceptional case where jaj ¼ c we get

xn ¼ ðx0 þ jt0jnÞc
n:

(b) If max{jaj; jcj} , 1 then every solution of equation (2) converges to zero.

(c) If max{jaj; jcj} ¼ 1 and c , 1; then every solution of equation (2) is bounded. If

c . 21; then almost all solutions of equation (2) converge to a nonzero constant. If c ¼ 21;

then non-trivial solutions of equation (2) converge to one of the following period-2

sequences

x0 þ
jat0j

jaj þ 1

� �
ð21Þn; jaj , 1

x0 þ
jt0j

2

� �
ð21Þn þ

jt0j

2
; jaj ¼ 1:

(d) If max{jaj; jcj} . 1 or c ¼ jaj ¼ 1; then almost all solutions of equation (2) are

unbounded. If jcj # 1 , jaj then all unbounded solutions approach infinity eventually

monotonically.

Equations (3) and (4) constitute a semiconjugate factorization of equation (2) in the sense

of [7, Section 3.2]. Here, the factor map f ðtÞ ¼ jaktj is linked via the mapHðx; yÞ ¼ x2 cy to

the standard vectorization or unfolding of equation (2). Although it is not easy to discover

semiconjugacies in general, it is worth noting that when a particular equation can be split or

factorized, a semiconjugate relation can often be identified. In fact, another semiconjugate

factorization which applies to equation (1) generally (not just to the special case (2)) is
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obtained by dividing equation (1) on both sides by xn to get

xnþ1

xn
¼ a2

bxn21

xn

����
����þ c:

This latter equation can be written as

rnþ1 ¼ cþ a2
b

rn

����
����; n ¼ 0; 1; 2; . . . ð7Þ

if we define rn ¼ xn=xn21 for every n $ 0: We thus have a map Hðx; yÞ ¼ x=y linking

equation (1) to the factor map that defines the dynamics of the ratios rn, namely,

fðrÞ ¼ cþ a2
b

r

����
����; r – 0:

The advantage of equation (7) over equation (4) is that equation (7) applies when b is not

equal to ac. A disadvantage of equation (7) is that it does not account for those solutions of

equation (1) that pass through zero. Rather than finding an explicit solution for equation (7)

we use it in a qualitative fashion, as was done in [3,5,6].

The next theorem, which may be compared with Theorem 2.1, concerns the case b – ac:

But first, we present a useful lemma on the behavior of the iterates of the mapping f or of the

solutions of equation (7) in this case.

Lemma 2.2 (a) If a; c . 0 and 0 , b , ac then the mapping f has a unique fixed point

r * . b=a that attracts all positive orbits of f.

(b) If 0 , a , c and b . ac then the mapping f has a unique fixed point �r [ ð0; b=aÞ that

attracts all positive orbits of f.

Proof (a) It is clear that f attains its global minimum value c uniquely at r ¼ b=a; further, if

b , ac then ðaþ cÞ2 2 4b . ða2 cÞ2 so f has a unique fixed point

r * ¼
aþ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ cÞ2 2 4b

p
2

. c .
b

a
:

Since b , ac; for all r . 0 we have fðrÞ $ c . b=a: Thus for any sequence of ratios

rn ¼ xn=xn21 we have rn . b=a for n $ 1: Hence, we can eliminate the absolute value from

equation (7) and rewrite it as a Riccati equation

rn ¼
ðaþ cÞrn 2 b

rn
:

It is not difficult to see that every solution of this equation converges to r * (or see [1] or

Theorem A.4 in [4]).

(b) If 0 , a , c and b . ac then f has a positive fixed point

�r ¼
c2 aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 aÞ2 þ 4b

p
2

,
b

a
:

We note that �r is the unique fixed point of f since f is strictly decreasing if r , b=a and

for r $ b=a we have

r . aþ c2
b

r
¼ fðrÞ ð8Þ
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if 0 , a , c and b . ac: From equation (8), it also follows that if rn is any solution of

equation (7) then there is N $ 1 such that rN , b=a: Further, rnþ1 . b=a for n $ N if

rn , r0 ¼
ab

a2 þ b2 ac
: ð9Þ

We note that fðr0Þ ¼ b=a: However, equation (9) cannot hold because r0 , c # rn for all

n $ 1: Note that after multiplying and rearranging terms, the inequality r0 , c is seen to be

equivalent to bðc2 aÞ . acðc2 aÞ which is true under the hypotheses in this case. We have

established that rn [ ðc; b=aÞ for n $ N so the absolute value may be eliminated from

equation (7) to get the Riccati equation

rn ¼
ðc2 aÞrn þ b

rn
:

Now from [1] or Theorem A.4 in [4] it follows that rn ! �r as n!1:

Theorem 2.3 (a) Let 0 , a; c , 1 and 0 , b , ac: Then every positive solution of

equation (1) converges to zero eventually monotonically if

b . aþ c2 1: ð10Þ

But if aþ c . 1 and

b , aþ c2 1 ð11Þ

then every positive solution of equation (1) approaches infinity eventually monotonically.

In either case, if x0; x21 . 0 then for all n $ 1 there are suitable constants k1; k2 such that

xn ¼ k1

aþ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ cÞ2 2 4b

p
2

 !n

þ k2

aþ cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ cÞ2 2 4b

p
2

 !n

: ð12Þ

(b) Let 0 , a , c and b . ac: Then every positive solution of equation (1) converges to

zero eventually monotonically if

b , 1 2 cþ a ð13Þ

in which case c , 1 also. But if

b . 1 2 cþ a ð14Þ

then every positive solution of equation (1) approaches infinity eventually monotonically.

In either case, for all n sufficiently large, there are suitable constants k1, k2 such that

xn ¼ k1

c2 a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 aÞ2 þ 4b

p
2

 !n

þ k2

c2 aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 aÞ2 þ 4b

p
2

 !n

: ð15Þ

Proof (a) First, note that if 0 , a; c , 1 then að12 cÞ , 12 c so

aþ c2 1 , ac:

If r * is the fixed point in Lemma 2.2(a), then it follows that if equation (10) holds then

r * , 1 while if equation (11) holds with aþ c . 1 then r * . 1: Thus, if xn is any positive

solution of equation (1) then since xnþ1 ¼ rnþ1xn we see from Lemma 2.2 that for all large n,

the sequence xn is decreasing to zero or increasing to infinity depending on whether equation

(10) or (11) holds, respectively. The explicit expression for xn is obtained by dropping the
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absolute value from equation (1) and solving the resulting linear equation

xnþ1 ¼ ðaþ cÞxn 2 bxn21

with initial values x0, x1 to get the explicit form in equation (12). We note that, the two

eigenvalues of the linear equation that are shown in equation (12), the one that is not equal to

r * is always between 0 and 1 under the hypotheses of this theorem.

(b) By Lemma 2.2(b), the fixed point �r attracts all positive orbits of f. Now if equation (13)

holds, then �r , 1 while equation (14) implies that �r . 1: The stated conclusions are therefore

true. Also equation (13) plus the condition b . ac gives c , 1; for otherwise equation (13)

would yield

b2 a , 1 2 c # 0

which would contradict b . ac $ a: Therefore, convergence to zero under condition

equation (13) requires that c , 1: On the other hand, with equation (14) it is possible that

c , 1 so unbounded solutions may still occur when a; c , 1:

Since every orbit rn of f approaches �r; there is a positive integer N such that rn , b=a for

all n $ N: This means that a , b=rn for n $ N and the absolute value may thus be removed

from equation (1) to solve the resulting linear equation

xnþ1 ¼ ðc2 aÞxn þ bxn21

with initial values xN21; xN to get the explicit form (15). A

Remark 2.4 When b ¼ aþ c2 1; i.e. the missing value in Theorem 2.3(a), then r * ¼ 1 and

from equation (12) it follows that every solution of equation (1) approaches a constant,

namely, k2 in a monotonic fashion. Similarly, when b ¼ 12 cþ a then �r ¼ 1 while the other

eigenvalue shown in equation (15) equals 2b. Since here 0 , b , 1 we see that every

solution of equation (1) approaches the constant k2 in an oscillatory fashion.

Remark 2.5 Theorem 2.3 provides a set of restrictions on the three parameters of

equation (1) that permit the removal (eventually, for large n) of the absolute value from

equation (1), one way or the other. Thus we were able to obtain the explicit formulas

(12) and (15) for the asymptotic behavior of the solutions of equation (1). Such flexibility

does not exist for all parameter values; for example, if c , a and b . ac then the

absolute value may continue to affect the asymptotic behavior in the long term because

of the existence of multiple fixed points or of periodic orbits for the mapping f. The

analysis would then require using methods similiar to those discussed in [3] for the case

c ¼ 0:

3. Higher order and other generalizations

The next result concerns a delay version (and a generalization) of the second order equation

(2). In this case, it is illuminating to write the solution in terms of its k constituent

subsequences.

Theorem 3.1 The general solution of the equation

xnþ1 ¼ ajxn 2 cxn2kj þ cxn2kþ1; k $ 1; a . 0; c – 0 ð16Þ

Difference equations with absolute values 681



with a fixed delay k is given in terms of the subsequences

xkmþj ¼ ðxj2k 2 sjÞc
mþ1 þ sja

kðmþ1Þ; m ¼ 0; 1; 2; . . . ð17Þ

when a – c1=k where for each j ¼ 1; 2; . . .; k;

sj ¼
jx0 2 cx2kja

j

ak 2 c
:

When a ¼ c 1=k we have for j ¼ 1; 2; . . .; k;

xkmþj ¼ ½xj2k þ jx0 2 cx2kjc
21þj=kðmþ 1Þ�cmþ1: ð18Þ

Proof As in the preceding section, we find the solutions of the linear non-homogeneous

equation of order k given by the semiconjugate link

xn 2 cxn2k ¼ jt0ja
n; t0 ¼ x0 2 cx2k: ð19Þ

The eigenvalues of the homogeneous part are all the k-th roots of the real number c so it is

possible to express the solutions of equation (16) in the customary way using trigonometric

functions. However, a more informative form of the solution can be obtained by introducing

the variables

yðjÞm ¼ xkmþj; j ¼ 1; 2; . . .; k; m ¼ 0; 1; 2; . . .

in equation (19) to obtain k independent subsequences each of which satisfies a first order

equation

yðjÞm 2 cy
ðjÞ
m21 ¼ jt0ja

kmþj; y
ðjÞ
0 ¼ xj ¼ cxj2k þ jt0ja

j:

Solving this equation for each fixed j and some straightforward calculations give equation

(17) or (18) as appropriate.

The next result extends Theorem 2.1 to a non-autonomous version of equation (2). Given

the fundamentally non-homogeneous nature of equation (3), this is a natural extension of

Theorem 2.1.

Theorem 3.2 Let an, bn, dn be given sequences of real numbers with an $ 0 and

bnþ1 þ dn $ 0 for all n $ 0: The general solution of

xnþ1 ¼ anjxn 2 cxn21 þ bnj þ cxn þ dn; c – 0 ð20Þ

is given by

xn ¼ x0c
n þ

Xn
k¼1

cn2k dk21 þ jt0j
Yk21

j¼0

aj þ
Xk21

i¼1

ðbi þ di21Þ
Yk21

j¼i

aj

 !
: ð21Þ

where t0 ¼ x0 2 cx21 þ b0:

Proof Equation (20) has a semiconjugate factorization as

xn 2 cxn21 þ bn ¼ tn; tn ¼ an21jtn21j þ bn þ dn21: ð22Þ

The second equation in (22) may be solved recursively to get

tn ¼ jt0j
Yn21

j¼0

aj þ bn þ dn21 þ
Xn21

i¼1

ðbi þ di21Þ
Yn21

j¼i

aj: ð23Þ
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Substituting equation (23) in the first equation in (22) and using another recursive

argument yields equation (21).

In order to efficiently extract some new information from Theorem 3.2 we consider a

special case in which bnþ1 þ dn ¼ 0 in equation (20).

Corollary 3.3 (a) Let an, bn be given sequences of real numbers with an $ 0 for all

n $ 0: Then the general solution of

xnþ1 ¼ anjxn 2 cxn21 2 bnj þ cxn þ bnþ1; c – 0 ð24Þ

is given by

xn ¼ x0c
n þ

Xn
k¼1

cn2k bk þ jt0j
Yk21

j¼0

aj

 !
ð25Þ

where t0 ¼ x0 2 cx21 2 b0:

(b) If jcj , 1 and
Qn

k¼0 ak and bn are bounded, then all solutions of equation (24) are

bounded.

(c) If jcj , 1 and
Qn

j¼0 aj ! a and bn ! b as n!1 then every solution of equation (24)

converges to the real number

bþ ajt0j

12 c
:

(d) If aN ¼ 0 for some least N $ 0; then for all n $ N þ 1 the solution xn of equation (24)

reduces to

xn ¼ cn2NxN þ
Xn

k¼Nþ1

cn2kbk: ð26Þ

In particular, if jcj , 1 and an ¼ 0 for some n $ 0; then each solution of equation (24)

converges to a solution of

ynþ1 ¼ cyn þ bnþ1:

Proof (a) This is an immediate consequence of Theorem 3.2.

(b) Taking the absolute value of equation (25) gives the following

jxnj # jx0kcj
n
þ
Xn21

k¼0

jcj
k
ðBþ Ajt0jÞ # jx0cj þ

Bþ Ajt0j

1 2 jcj

where A ¼ supn$1

Qn21
k¼0 jakj and B ¼ supk$1jbkj: Boundedness follows.

(c) Let pn be any convergent sequence of real numbers with limit p. Then by a

straightforward argument it may be established that

lim
n!1

Xn
k¼1

cn2kpk ¼
p

1 2 c
:

Thus the proof is completed by taking limits in equation (25) with pn representing bn orQn21
k¼0ak:

(d) If there is a least positive integer N such that aN ¼ 0; then for all n $ N þ 1; equation

(23) reduces to tn ¼ bn þ dn21 ¼ 0: Using this in the first equation in (22) gives equation

(26). The last assertion now follows from equation (26).
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Remark 3.4 The situation in Corollary 3.3(d) is an interesting consequence of having a

variable coefficient an; it says in effect that if the minimum of an is zero and jcj , 1; then the

coefficients an (and thus the absolute value) have no effects on the solutions of equation (24)

aysmptotically. We emphasize that the conclusion of Corollary 3.3(d) is not valid in the more

general context of Theorem 3.2.

Another interesting consequence of variable an is the possibility that every solution of

equation (24) or more generally of equation (20) may converge to a finite real number even if

an . 1 for all n. For example, if jcj , 1 then each solution of the equation

xnþ1 ¼ cxn þ 21=n! xn 2 cxn21 2
n

nþ 1

����
����þ nþ 1

nþ 2

by Corollary 3.3(c) converges to the real number

1þ 2ejx0 2 cx21j

12 c

since for all n $ 1;

lim
n!1

Yn21

k¼0

21=k! ¼ 2
P1

k¼0
1=k!

¼ 2e:

Remark 3.5 Some of the preceding methods also apply to certain equations that do not

explicitly involve the absolute value. For example, arguing as we did in Theorem 3.2 and

Corollary 3.3, it follows that the solutions of the quadratic equation

ðznþ1 2 czn þ bnþ1Þ
2 ¼ a2ðzn 2 czn21 2 bnÞ

2 ð27Þ

are given by

zn ¼ z0c
n þ

Xn
k¼1

cn2kðbk þ jt0ja
kskÞ

where sn is an arbitrary sequence in the set { 2 1,1}. This latter sequence originiates in the

semiconjugate factor t2nþ1 ¼ a2t2n of equation (27) which is equivalent to

jtnþ1j ¼ jaktnj: ð28Þ

It is evident that the general solution of equation (28) has the form tn ¼ jt0ja
nsn:

4. Conclusion and future directions

We obtained several results about difference equations containing the absolute value of a

difference. Many of these results can be further extended, and some of these generalizations

are straightforward. But there are also less routine problems that exist in various cases. For

example, the behavior of solutions of equation (1) in cases (i.e. for parameter values) not

discussed here or in [3,5] or [6] remain to be determined. In fact, one may choose to study the

more general equation

xnþ1 ¼ jaxn 2 bxn21j þ cxn þ dxn21
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and obtain results based on various subsets of the 4 dimensional parameter space, rather like

we did here or in [3,6].

Going in a different direction, we may study non-autonomous equations such as

xnþ1 ¼ janxn 2 bnxn21j

about which relatively little is known, in spite of the remarkable simplicity of the equation

and its similarity to a linear equation. Both of the preceding equations are amenable to

analysis using ratios, a procedure that was effective in Theorem 2.2 as well as in various

previous work. Ratios however, are not as effective for generalizations of the above equations

to order 3 and greater so new methodology may need to be developed for equations whose

order is greater than 2.
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