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Convergence, Periodicity and Bifurcations for
the Two-parameter Absolute-Difference
Equation

C.M. KENT and H. SEDAGHAT*

Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014,
USA

(Received 21 December 2003; In final form 11 February 2004)

The two-parameter absolute-difference equation xnþ1 ¼ jaxn 2 bxn21j is studied. Based on the parameter values a, b
and a pair of initial values, we consider the existence and bifurcations of solutions having one or more of the
following properties: (i) unbounded, (ii) convergent (to zero or to a positive constant), (iii) monotonic, (iv) periodic
and (v) non-periodic oscillatory. The semiconjugate first order equation satisfied by the ratios {xn=xn21} is used to
significant advantage for points ða; bÞ in certain regions of the parameter plane. Some open problems and conjectures
are presented.

Keywords: Global asymptotic stability; Oscillatory; Bifurcations; Ratios; Semiconjugate; The golden mean

AMS Subject Classification Numbers: 39A11; 39A10

Consider the second-order difference equation

xnþ1 ¼ jaxn 2 bxn21j; a; b $ 0; n ¼ 0; 1; 2; . . .: ð1Þ

An equation such as this may appear implicitly in smooth difference equations (or

difference relations) that are in the form of e.g. quadratic polynomials. In such cases, the

solutions of the quadratic equation include the solutions of Eq. (1) so statements can be made

with regard to the existence and stability of the solutions for the more general, smooth

equations based on the solutions of Eq. (1). We may assume that the initial values x21, x0 in

Eq. (1) are non-negative and for non-triviality, at least one is positive. Dividing both sides of

Eq. (1) by xn we obtain a ratios equation

xnþ1

xn

¼ a 2
bxn21

xn

����
����;

which can be written as

rnþ1 ¼ a 2
b

rn

����
����; n ¼ 0; 1; 2; . . .; ð2Þ
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where we define rn ¼ xn=xn21 for every n $ 0: We may think of Eq. (2) as the recursion

rnþ1 ¼ f ðrnÞ where f is the piecewise smooth mapping

f ðrÞ ¼ a 2
b

r

����
����; r . 0:

In this format, solutions {rn} of Eq. (2) can be written as rn ¼ fnðr0Þ for n $ 1: Note that

Eq. (2) is a first order equation and a one-dimensional semicongjugate of Eq. (1) with the

ratio x/y as a link map; see Ref. [6]. Also see Refs. [2,3] for an application of ratio links.

Additional background material for this paper may be found in Refs. [1,6]. The special case

where a ¼ b ¼ 1 in Eqs. (1) and (2) is studied in Ref. [9] where the following is proved:

Theorem A Let a ¼ b ¼ 1 in Eq. (1) and let Qþ denote the set of all non-negative rational

numbers.

(a) If x0=x21 � Qþ then the corresponding solution {xn} of Eq. (1) converges to zero.

(b) If x0=x21 [ Qþ or x21 ¼ 0 then the corresponding solution {xn} of Eq. (1) has period 3

eventually and for all large n it has the form

{0;a;a; 0;a;a; 0; . . .};

where a . 0:

(c) Equation (2) has a p-periodic solution {r1; . . .; rp} for every p – 3 given by

r1 ¼
1 þ

ffiffiffi
5

p

2
; r2 ¼

ffiffiffi
5

p
2 1ffiffiffi

5
p

þ 1
ð p ¼ 2Þ;

r1 ¼
1

2
yp24 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

p24 þ 4yp24yp21

qh i
; rk ¼

yk24r1 2 yk22

yk23 2 yk25r1

; 2 # k # p; ð p $ 4Þ;

where yn is the n-th Fibonacci number; i:e: ynþ1 ¼ yn þ yn21 for n $ 22 where we define

y23 ¼ 21; y22 ¼ 1:

(d) The mapping f has a scrambled set S; hence, if {xn} is a solution of Eq. (1) with initial

value ratio x0=x21 [ S; then the sequence {xn=xn21} of consecutive ratios is chaotic.

Although Eq. (1) is a rather simple equation, Theorem A suggests that for some values of

the parameters a, b it exhibits interesting dynamics. In this paper, we study the asymptotic

behavior of Eq. (1) for different parameter values a; b $ 0: For comparison, it is interesting to

note that Eq. (1) relates to certain other simple equations such as

unþ1 ¼ aun þ bun21 vnþ1 ¼ max{avn; bvn21} wnþ1 ¼ min{awn; bwn21} ð3Þ

through the relations

ja2 bj ¼ 2 max{a;b} 2 ðaþ bÞ ¼ max{a;b} 2 min{a;b}:

In contrast to Eq. (1), each of the equations in (3) produces solutions with simple behaviors

for all parameter values a, b. Some indication of the major difference between these equations

and Eq. (1) may be had by looking at their semiconjugate factors through ratio links:

fuðrÞ ¼ a þ
b

r
; fvðrÞ ¼ max a;

b

r

� �
; fwðrÞ ¼ min a;

b

r

� �
:
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It is evident from a quick examination of these mappings that only the factor f which was

defined for Eq. (1) is capable of generating complex behavior on the half-line. Indeed, an

important feature of f is its nonsmooth critical point at b/a whose pre-image is the origin,

namely, the point of discontinuity of f. This source of complexity is lacking in the factors

fu, fv and fw all of which are non-increasing maps.

THE UNIT SQUARE a;b # 1

We first consider the parameter values ða; bÞ in the unit square. The function f

(or equivalently, its vectorization Vf) in Lemma 1 below is said to be a weak contraction

on the set Aa; see Ref. [6] for a general theory of weak contractions and weak expansions as

well as a proof of the lemma.

Lemma 1 Let f : Rm ! R be continuous and let x̄ be an isolated fixed point of

xnþ1 ¼ f ðxn; xn21; . . .; xn2mÞ:

Let Vf ðu1; . . .; umÞ ¼ ð f ðu1; . . .; umÞ; u1; . . .; um21Þ and for a [ ð0; 1Þ define the set

Aa ¼ ðu1; . . .; umÞ : j f ðu1; . . .; umÞ2 �xjf g # amax{ju1 2 �xj; . . .; jum 2 �xj}:

If S is a subset of Aa such that Vf ðS), S and ð�x; . . .; �xÞ [ S; then ð�x; . . .; �xÞ is

asymptotically ðin fact, exponentiallyÞ stable relative to S.

Corollary 1 If a; b , 1 then the origin is globally asymptotically stable for Eq. (1).

Proof Define f ðx; yÞ ¼ jax 2 byj and note that for x; y [ ½0;1Þ2 we have

f ðx; yÞ # max{ax; by} # max{a; b}max{x; y}:

Hence f is a weak contraction on ½0;1Þ2 and Lemma 1 applies. The proof is completed

upon recalling that for each solution {xn} of Eq. (1) xn $ 0 for all n $ 1: A

Lemma 2 Let 0 , a; b # 1 and either a ¼ 1 or b ¼ 1: For each solution {xn} of Eq. (1)

if xk . xk21 . 0 for some k $ 0 then xn , xk for all n . k:

Proof First, let b ¼ 1 and 0 , a # 1: If axk . xk21 then

xkþ1 ¼ axk 2 xk21 , axk # xk: ð4Þ

From this we infer that axkþ1 , axk # xk So

xkþ2 ¼ xk 2 axkþ1 , xk: ð5Þ

Now from Eqs. (4) and (5) it follows that

xkþ3 # max{axkþ2; xkþ1} , xk:

The last step is easily extended by induction to all n . k: Next, assume that axk # xk21:

Then

xkþ1 ¼ xk21 2 axk , xk21 , xk

and it follows that axkþ1 , axk # xk: This again implies Eq. (5) and we argue as before.

TWO-PARAMETER ABSOLUTE-DIFFERENCE EQN 819



Now, assume that a ¼ 1 and 0 , b # 1: Since xk . xk21 $ bxk21 . 0 by hypothesis,

it follows that

0 , xkþ1 ¼ xk 2 bxk21 , xk:

If xkþ1 $ bxk; then xkþ2 ¼ xkþ1 2 bxk , xkþ1 so that

xkþ3 # max{xkþ2; bxkþ1} , xk:

Inductively, xn . xk for n . k: If xkþ1 , bxk then

xkþ2 ¼ bxk 2 xkþ1 , bxk # xk;

which implies xkþ3 , xk and by induction the proof is completed. A

Theorem 1 For all ða; bÞ [ ½0; 1
2 except at the three boundary points ð1; 1Þ; ð1; 0Þ and

ð0; 1Þ; the origin is globally asymptotically stable for Eq. (1).

Proof In light of Corollary 1 it remains only to consider the boundaries where either a ¼ 1

or b ¼ 1: For such points ða; bÞ; first assume that 0 , ab , 1 and let {xn} be a solution of

Eq. (1). Either xn , xn21 for all n in which case xn converges to zero monotonically, or there

is k1 $ 0 such that xk1
. xk121 . 0: In the latter case, Lemma 2 implies that xn , xk1

for all

n . k1: If the sequence {xn} is not eventually decreasing, then there is an increasing

sequence ki of positive integers such that

xk1
. xk2

. · · · . xki
. · · ·

and for i ¼ 1; 2; 3; . . .

xn , xki
if ki , n # kiþ1:

These facts imply that xn ! 0 as n ! 1: Stability of the origin follows from Lemma 2

also since xn # max{x0; x21} for all n $ 1:

It remains for us to examine the three boundary points mentioned in the statement of

the theorem. At ða; bÞ ¼ ð1; 1Þ Theorem A shows that the origin is not globally attracting.

At ða; bÞ ¼ ð1; 0Þ; Eq. (1) reduces to the trivial equation xnþ1 ¼ xn whose solutions are the

constants x0. At ða; bÞ ¼ ð0; 1Þ each solution of xnþ1 ¼ xn21 trivially has period 2: {x21; x0}:

Since for a ¼ 0ð1Þ reduces to xnþ1 ¼ bxn21 and for b ¼ 0 it reduces to xnþ1 ¼ axn; it is

evident that along the rays from the origin through ð0; 1Þ and through ð1; 0Þ all solutions of

Eq. (1) are unbounded when b . 1 or a . 1 respectively. Therefore, the points ð0; 1Þ and

ð1; 0Þ are bifurcation points on their respective rays. The same is true for the ray through

ð1; 1Þ; though this is much harder to verify. In the remainder of this paper we consider the

behavior of solutions of Eq. (1) when ða; bÞ is outside the unit square. A

THE REGION b # a 2=4

The semiconjugate factor map f on the half-line can be used to further explore the behavior

of solutions in both convergent and non-convergent cases. The mapping f always has a fixed

point r̄ through its left half

f LðrÞ ¼
b

r
2 a; 0 , r #

b

a
:
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Solving f LðrÞ ¼ r gives the value of r̄ as

�r ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b

p
2 a

h i
:

It may be noted that r̄ is an unstable fixed point for all positive values of a, b, since

f0
Lð�rÞ

�� �� ¼ b

�r2
¼

b

b 2 a�r
. 1:

The right half of f, namely,

f RðrÞ ¼ a 2
b

r
; r $

b

a

can have up to two fixed points if the equation f RðrÞ ¼ r possesses real solutions. Solving

the latter equation yields two values

r�1 ¼
1

2
a 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 2 4b

ph i
; r�2 ¼

1

2
a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 2 4b

ph i
both of which are real if and only if a2 $ 4b: Stated differently, f has up to two additional

fixed points for all points ða; bÞ on or below the parabola b ¼ a2=4 in the parameter plane.

On this parabola,

r�1 ¼ r�2 ¼
a

2

and the single fixed point of f is semistable. In the sub-parabolic region b , a2=4;

b

a
, r�1 , r�2

with r�1 unstable and r�2 asymptotically stable as may be readily verified. The tangent

bifurcation of the factor map f that produces r�1 ; r�2 when a parameter point ða; bÞ crosses the

parabola b ¼ a2=4 corresponds to significant behavioral changes in the solutions of Eq. (1)

as well. In this section, we examine the region below the parabola, beginning with the

following lemma whose straighforward proof is omitted.

Lemma 3 Let b # a2=4:

(a) r�2 # a with equality holding if and only if b ¼ 0:

(b) Let a , 2: Then r�1 , 1; also r�2 , 1 if and only if b . a 2 1: Further, r�2 ¼ 1 if

b ¼ a 2 1:

(c) Let a $ 2: Then r�2 $ 1; also r�1 # 1 if and only if b # a 2 1: Further, r�1 ¼ 1

if b ¼ a 2 1:

In Lemma 3 notice that the line b ¼ a 2 1 is tangent to the parabola b ¼ a2=4 at a ¼ 2:

Lemma 4 Let b # a2=4 and let {xn} be a solution of Eq. (1) such that xk $ r�1 xk21 for some

integer k $ 0:

(a) If b – a2=4 then there are real constants c1, c2 such that

xn ¼ c1ðr
�
1 Þ

n þ c2ðr
�
2 Þ

n; n $ k: ð6Þ

TWO-PARAMETER ABSOLUTE-DIFFERENCE EQN 821



(b) If b ¼ a2=4 then there are real constants c1; c2 such that

xn ¼ ðc1 þ c2nÞða=2Þn; n $ k ð7Þ

with r�1 ¼ r�2 ¼ a=2:

Proof By hypothesis, rk ¼ xk=xk21 $ r�1 : If rn ¼ f ðrn21Þ for n . k; then since rn $ r�1 for

n $ k; we may write

xnþ1

xn

¼ rnþ1 ¼ f RðrnÞ ¼ a 2
bxn21

xn

i.e. xnþ1 ¼ axn 2 bxn21 for n $ k: The eigenvalues of the preceding linear equation are none

other than r�1 and r�2 so Eq. (6) or Eq. (7) holds as appropriate for n $ k and suitable constants

c1; c2. A

Theorem 2 Let a , 2:

(a) If a 2 1 , b # a2=4 then every nontrivial solution of Eq. (1) converges to zero

eventually monotonically.

(b) If b ¼ a 2 1 then every solution of Eq. (1) converges to a non-negative constant

eventually monotonically.

(c) If b , a 2 1 with a . 1 then any solution {xn} of Eq. (1) for which xk . r�1 xk21 for some

integer k $ 0 is unbounded and stricly increasing eventually. On the other hand, if

a solution of Eq. (1) is bounded, then it is strictly decreasing to zero; such solutions do exist.

Proof

(a) First, let {xn} be a positive solution of Eq. (1), i.e. xn . 0 for n $ 21: Then the sequence

{rn} where rn ¼ f ðrn21Þ and r0 ¼ x0=x21 is well defined for all n. If xn , r�1 xn21 for all

n $ 0 then xn ! 0 as n ! 1 because r�1 , 1 by Lemma 3. Otherwise, xk $ r�1 xk21 for

some k $ 0 so by Lemma 4, Eq. (6) or Eq. (7) holds as appropriate, and since r�2 , 1 the

proof is completed. Next, suppose that xm ¼ 0 for some m $ 21: Then xmþ2 ¼ axmþ1

and therefore,

rmþ2 ¼
xmþ2

xmþ1

¼ a:

By Lemma 3, r�2 # a so rmþ2 $ r�2 . r�1 : Letting k ¼ m þ 2 and applying the above

argument once more we obtain Eq. (6) or Eq. (7) and complete the proof.

(b) Here r�2 ¼ 1 and r�1 , 1; the proof is similar to that for Part (a).

(c) With r�2 . 1 . r�1 ; if {xn} is a solution with rk ¼ xk=xk21 . r�1 for some k, then apply

Lemma 4 with Eq. (6) to show that {xn} is unbounded and eventually increasing. This

argument also shows that if {xn} is bounded, then it has to be strictly decreasing with

xn # r�1 xn21 for all n $ 0: It is clear in this case that xn ! 0 as n ! 1: Finally,

to verify that the latter type of solution does exist, let x0=x21 ¼ r0 belong to either of

the sets

B ¼
[1
i¼0

f2ið�rÞ; B1 ¼
[1
i¼0

f2iðr�1 Þ
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of backward iterates of �r or r�1 respectively under the inverse map f21. Then rn ¼ �r , 1

or rn ¼ r�1 , 1 for all large n and xn converges to zero exponentially. A

Remark 1 The region in the parameter plane that is mentioned in Theorem 2(a) contains

points outside the unit square. In addition to being globally attracting in this region, it is also

not hard to see that the origin is stable as well, using the facts that r�2 , 1 and that the iterates

f take a fixed number (i.e. independent of x0, x21) to drop below 1 on their way to r�2 :

Relating to Theorem 2(b), if b ¼ a ^ 1 then as might be expected the origin is not the

unique fixed point of Eq. (1).

Lemma 5

(a) �r $ 1 if and only if b $ a þ 1: Also �r ¼ 1 if b ¼ a þ 1:

(b) If �r $ 1 and b # a2=4 then a $ 2 þ
ffiffiffi
8

p
< 4:828:

Note that the line b ¼ a þ 1 intersects the parabola at a ¼ 2 þ
ffiffiffi
8

p
: Further, on both lines

b ¼ a ^ 1; (1) is degenerate in the sense that if x21 ¼ x0 then xn ¼ x0 for all n $ 0:

In particular, the origin is not the only fixed point of Eq. (1).

Theorem 3 Let a $ 2 and b # a2=4:

(a) Any solution {xn} of Eq. (1) for which xk . r�1 xk21 for some integer k $ 0 is unbounded

and strictly increasing eventually.

(b) If b , a þ 1; then there are solutions of Eq. (1) that converge to zero eventually

monotonically, and if b ¼ a ^ 1; then there are also solutions that are eventually

constant and positive.

Proof

(a) This is proved similarly to Theorem 2ðcÞ, the only difference being that here it is

possible that r�1 $ 1:

(b) If b , a þ 1; then by Lemma 5, �r , 1 so if x0=x21 ¼ r0 [ B where B is the set of

backward iterates defined in the proof of Theorem 2(c), then xn ! 0 eventually

monotonically. If b ¼ a þ 1; then �r ¼ 1 so r0 [ B implies that rn ¼ 1 for all large n and

thus xn is eventually constant. For b ¼ a 2 1 it is the case that r�1 ¼ 1 so letting r0 [ B1

we obtain an eventually constant solution. A

THE REGION b > a 2=4

In this region, the absence of fixed points such as r�1 and r�2 mandates the use of different tools

and methods. In particular, periodic solutions present themselves as interesting substitutes.

We observe that a positive, p-periodic solution {xn} of Eq. (1) induces a periodic ratio

sequence {xn /xn21} of the same period that satisfies the identity
Qp

i¼1xi=xi21 ¼ 1: It follows

that positive, period-p solutions of Eq. (1) correspond in a one-to-one fashion to the p-cycles

{rn} of Eq. (2) with the property that
Qp

i¼1ri ¼ 1: We begin with the next lemma, which

shows in particular that unlike the fixed points r�1 and r�2 ; we can always expect to find two-

cycles for Eq. (2), even when b . a2=4:

TWO-PARAMETER ABSOLUTE-DIFFERENCE EQN 823



Lemma 6

(a) For fixed a; b . 0; Eq. (2) has a unique two-cycle {r1; r2} where

r1 ¼
b

a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ 4b2

p
2 a2

2a
; r2 ¼

b

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ 4b2

p
2 a2

2a
: ð8Þ

(b) For fixed a2 . b . 0; Eq. (2) has a unique three-cycle {r1; r2; r3} where

r2 ¼ f Lðr1Þ ,
b

a
; r3 ¼ f Lðr2Þ .

b

a
; r1 ¼ f Rðr3Þ ,

b

a

and r1 is given by

r1 ¼
aða2 þ 3bÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 þ bÞ2 2 4b3

p
2ða2 þ bÞ

: ð9Þ

Proof

(a) If {r1; r2} is a two-cycle of Eq. (2) with r1 , r2; then it is the case that r1 , b=a , r2:

This is true becausef R is increasing and alsof2
LðrÞ ¼ r implies that r ¼ �r:Hence both of

r1 and r2 cannot be on one side of b=a. Now setting r2 ¼ f Lðr1Þ and r1 ¼ f Rðr2Þ gives

r1 ¼ a 2
b

f Lðr1Þ
¼ a 2

br1

b 2 ar1

¼
ab 2 ða2 þ bÞr1

b 2 ar1

:

Solving the above equation for r1 we obtain the value in Eq. (8) as the only solution in

the interval ð0; b=aÞ: Then r2 ¼ f Lðr1Þ is the other value Eq. (8).

(b) We calculate the three-cycle indicated in the statement of the lemma similarly to Part(a),

although the algebraic manipulations are more extensive. The unique value for

r1 [ ð0; b=aÞ in the form (9) is defined only when the expression under the square root is

non-negative; i.e. r1 exists if and only if

aða2 þ bÞ $ 2b3=2:

This inequality can be written as a cubic polynomial inequality in a

a3 þ ab 2 2b
ffiffiffi
b

p
$ 0:

Noting that a ¼
ffiffiffi
b

p
is a root of the polynomial on the left hand side, we have a factorisation

ða 2
ffiffiffi
b

p
Þða2 þ a

ffiffiffi
b

p
þ 2bÞ $ 0:

Since the quadratic factor is positive for a; b . 0 we conclude that r1 (hence also the three-

cycle) exist when a $
ffiffiffi
b

p
or equivalently, a2 $ b: If the equality holds, then we calculate

from Eq. (9)

r1 ¼ a ¼
b

a
;

where the last equality is equivalent to b ¼ a2: However, b=a maps to zero and cannot be

a periodic point of f; therefore, the strict inequality a2 . b must hold. A
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In Lemma 6, we point out that b . 0 because it is necessary that r1 . 0 in both Eqs. (8)

and (9). We need one more lemma before presenting our main theorem on periodicity.

The next lemma concerns solutions that contain zeros, i.e. they “pass through the origin”

repeatedly. Note that such solutions cannot be represented by the mapping f.

Lemma 7 Assume that b . 0 and let {xn} be a solution of Eq. (1) such that xk ¼ 0 for some

k $ 0 and xk21 . 0:

(a) If xkþ2 ¼ 0; then a ¼ 0 and xkþ2n21 ¼ bnxk21 for n ¼ 1; 2; 3; . . .

(b) If xkþ3 ¼ 0; then a2 ¼ b and xkþn ¼ anþ1xk21 for n – 3j; j ¼ 1; 2; 3; . . .

Proof

(a) We have xkþ1 ¼ bxk21 . 0 and 0 ¼ xkþ2 ¼ axkþ1: Thus a ¼ 0 and the stated formula is

easily established by induction on n.

(b) Since xkþ3 ¼ jaxkþ2 2 bxkþ1j ¼ 0; it follows that axkþ2 ¼ bxkþ1 – 0: In particular,

a – 0 and xkþ2 – 0: In fact,

xkþ2 ¼ axkþ1 ¼ abxk21;

so

0 ¼ xkþ3 ¼ bja2 2 bjxk21

and it follows that b ¼ a2:We may now write xkþ1 ¼ a2xk21 and xkþ2 ¼ a3xk21: Further,

xkþ4 ¼ bxkþ2 ¼ a5xk21; xkþ5 ¼ axkþ4 ¼ a6xk21:

Induction on n now completes the proof. A

Theorem 4

(a) Equation (1) has a period-2 solution if and only if

b2 2 a2 ¼ 1 or equivalently b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
for a $ 0: ð10Þ

Further, if a . 0; then the period-2 solutions are positive and confined to the pair of

lines y ¼ r1x and y ¼ r2x in phase space, where r1, r2 are given by

r1 ¼
b 2 1

a
; r2 ¼

b þ 1

a
: ð11Þ

On the other hand, the only period-2 solutions of Eq. (1) that pass through the origin

occur at a ¼ 0 where b ¼ 1:

(b) Equation (1) has a period-3 solution if and only if

a3 þ ab 2 b3 ¼ 1; a $ 1: ð12Þ

Further, if a . 1; then the period-3 solutions are positive and confined to the three

lines y ¼ rix in phase space where for i ¼ 1; 2; 3; ri are given by

r1 ¼
ab þ 1

a2 þ b
; r2 ¼

b2 2 a

ab þ 1
; r3 ¼

b þ a2

b2 2 a
: ð13Þ

TWO-PARAMETER ABSOLUTE-DIFFERENCE EQN 825



On the other hand, the only period-3 solutions of Eq. (1) that pass through the origin

occur at a ¼ 1 where b ¼ 1.

Proof

(a) First, let us assume that a . 0 and use Eq. (8) to compute

r1r2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ 4b2

p
2 a2

h i
: ð14Þ

Setting r1r2 ¼ 1 and simplifying, we obtain the quadratic curve in Eq. (10).

Next, using Eq. (10) we may simplify the formulas in Eq. (8) to obtain the values in

Eq. (11). For parameter values on the quadratic curve (10), if x0=x21 equals either r1 or

r2 then f ðx0=x21Þ ¼ r2 and f ðx1=x0Þ ¼ r1 or conversely, so the corresponding solution

{xn} of Eq. (1) with period 2 is confined to the lines y ¼ r1x and y ¼ r2x in phase space.

Now consider the case a ¼ 0 in Eq. (10). Although r1; r2 are not defined, it is clear that

for ða; bÞ ¼ ð0; 1Þ every solution of Eq. (1) has period 2 and by Lemma 7(a) these include

all the period-2 solutions that pass through the origin. Since every positive period-2

solution of Eq. (1) induces a two-cycle in the ratios, it follows from Lemmas 6 and 7 that

there are no other period-2 solutions of Eq. (1) than the ones already mentioned.

(b) With r1 given by Eq. (9) and

r2 ¼ f Lðr1Þ ¼
b 2 ar1

r1

; r3 ¼ f Lðr2Þ ¼
ða2 þ bÞr1 2 ab

b 2 ar1

we see that

r1r2r3 ¼ ða2 þ bÞr1 2 ab ¼
1

2
aða2 þ bÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 þ bÞ2 2 4b3

q� �
: ð15Þ

Setting r1r2r3 ¼ 1 and re-arranging terms, gives the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 þ bÞ2 2 4b3

q
¼ aða2 þ bÞ2 2; ð16Þ

which can hold only when (i) aða2 þ bÞ2 2 $ 0 or equivalently, b $ 2=a 2 a2 and

(ii) b , a2 so that the square root is real and r1 . 0: The curve 2=a 2 a2 is strictly

decreasing and intersects the parabola b ¼ a2 at a ¼ 1: It follows that Eq. (16) holds for

a . 1:Now, if we square both sides of Eq. (16) and simplify, we get the cubic equation in

(12). This equation in turn may be used to simplify the values r1; r2; r3 in Lemma 6(b) to

get the values in Eq. (13). It follows from Lemma 6 that positive period-3 solutions of

Eq. (1) exist if and only if the parameters a; b satisfy Eq. (12) with a . 1 and in this case

the solution in the phase space is confined to the three straight lines mentioned in the

statement of the theorem.

Next, consider a ¼ 1 in Eq. (12). Here, also b ¼ 1, so Lemma 7(b) shows that all period-3

solutions that pass through the origin are accounted for. The proof is now complete. A

Remarks 2

(a) As seen earlier, for ða; bÞ ¼ ð1; 1Þ the period 3 solutions of Eq. (1) pass through the

origin and are not positive. Hence, they cannot correspond to three-cycles of Eq. (2),

a fact that is consistent with Theorem A(c). On the other hand, note that as ða; bÞ
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approaches ð1; 1Þ along the curve (12) the quantities r1, r2, r3 in Eq. (13) have the

following limits

ða;bÞ! ð1;1Þ
lim r1 ¼ 1;

ða;bÞ! ð1;1Þ
lim r2 ¼ 0;

ða;bÞ! ð1;1Þ
lim r3 ¼ 1:

These correspond to, respectively, the line y ¼ x; the x-axis and the y-axis in the

phase plane of Eq. (1) which are indeed lines containing the period-3 solutions of

Theorem A(b) in the phase plane. Therefore, the non-positive period-3 solutions

of Eq. (1) may be interpreted as limiting values of the positive period-3 solutions as

ða; bÞ approaches ð1; 1Þ along the curve (14). Also see Corollary 3 below.

(b) No period-2 or period-3 solution of Eq. (1) is stable, whether asymptotically or

structurally. Theorem 4 shows the structural instability; as for asymptotic instability,

recall that since a p-cycle {r1; . . .; rp} of Eq. (2) does not contain the minimum point of

f, it is unstable if

1 ,
Yp

i¼1

jf
0

ðriÞj ¼
Yp

i¼1

b

r2
i

¼
bpQp

i¼1

r2
i

that is, if Yp

i¼1

ri , bp=2:

If p ¼ 2 and a . 0; then r1r2 , ða2 þ 2b 2 a2Þ=2 ¼ b by Eq. (14), so the positive two-

periodic solutions are not asymptotically stable. The same conclusion clearly holds when

a ¼ 0 and b ¼ 1: For p ¼ 3 and a . 1 we have from Eq. (15) that r1r2r3 , b3=2 if and only if

aða2 þ bÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 þ bÞ2 2 4b3

q
, 2b3=2:

The preceding inequality reduces to 2b3=2 , aða2 þ bÞ which is true if r1 is real. Hence,

positive period-3 solutions of Eq. (1) are not asymptotically stable. Also, Theorem A shows

that the period-3 solutions passing through the origin are unstable, although rather ironically,

these are the only solutions that appear in computer simulations because of their rationality!

We can now state the following result concerning the bifurcations of solutions of Eq. (1)

at the point ða; bÞ ¼ ð1; 1Þ:

Corollary 2 Every neighborhood of ð1; 1Þ in the parameter plane contains a pair ða; bÞ

for which one of the following is true:

(a) Every solution of Eq. (1) converges to zero;

(b) There are unbounded solutions of Eq. (1) that are equal to zero infinitely often;

(c) There are positive solutions of Eq. (1) that are 3-periodic (hence also bounded but not

convergent).

Proof

(a) For each ða; bÞ in the open unit square every solution converges to zero by Theorem 1.

(b) On the parabola b ¼ a2 which contains ð1; 1Þ; Lemma 7 shows that the desired solutions

exist for every value a . 1: In fact, Lemma 7 shows that as ða; bÞ passes ð1; 1Þ on
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the curve b ¼ a2; solutions of Eq. (1) change qualitatively from bounded and

convergent to unbounded and non-convergent, with an “uneasy compromise” taking

place at ð1; 1Þ:

(c) For each ða; bÞ on the cubic curve a3 þ ab 2 b3 ¼ 1 which contains ð1; 1Þ; Theorem 4

establishes the existence of positive period-3 solutions for every value a . 1: A

As the preceding results show, periodic ratios are useful in answering certain questions

about the dynamics of Eq. (1). The next result is another example of this usage.

Theorem 5 Let b . a2=4:

(a) If b # ða2 þ aÞ=ða þ 2Þ then there are solutions of Eq. (1) that converge to zero

eventually monotonically.

(b) If ða2 þ aÞ=ða þ 2Þ , b ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
then for all a $ 0 there are solutions of Eq. (1) that

converge to zero in an oscillatory fashion.

(c) If b .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
then for all a $ 0 there are solutions of Eq. (1) that are oscillatory and

unbounded. However, if b , a þ 1; then there are also solutions that converge to zero

monotonically (eventually monotonically if b , 2a2).

(d) If b ¼ a; then for all a . 0 there are solutions of Eq. (1) that converge to zero in an

oscillatory fashion as well as solutions that converge to zero eventually monotonically.

Proof (a) and (b) Setting r2 # 1 in Eq. (8) and simplifying gives

b #
a2 þ a

a þ 2
ð17Þ

with equality holding if and only if r2 ¼ 1: Using Eq. (10) we find that r1r2 , 1 if and only if

b ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
: Further, for a . 0; we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
. a whereas ða2 þ aÞ=ða þ 2Þ , a:

It follows that the region in Part (b) is nonempty and in there, r1r2 , 1 but r2 . 1: Hence,

if e.g. x0=x21 ¼ r1 then the ratio sequence is 2-periodic. In this case, x1 ¼ r2x0 . x0 while

x2 ¼ r1r2x0 , x0: Inductively, for all n $ 1; it follows that

x2n21 . r2r1x2n21 ¼ r2x2n ¼ x2nþ1 . x2n . r1r2x2n ¼ x2nþ2:

It is clear that {xn} in this case converges to zero in an oscillatory fashion. This proves

statement (b); we also note that the region of the parameter plane in this case contains a part

of the unit square. On the other hand, if Eq. (17) holds, then both r2 and r1r2 are less

than unity and the solution {xn} with x0=x21 ¼ r1 converges to zero monotonically. This

concludes the proof of Part (a).

(c) In this case r1r2 . 1, so solutions of Eq. (1) with x0=x21 ¼ r1 are unbounded and

they oscillate because r1 , 1: In fact, this last inequality holds provided that

b . ða2 2 aÞ=ð2a 2 1Þ which is true because

ða2 2 aÞ=ð2a 2 1Þ ¼ a½ða 2 1Þ=ð2a 2 1Þ
 , a ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
, b:

If b , a þ 1; then by Lemma 5, �r , 1 so if x0 ¼ �rx21 then xn ¼ �rxn21 for all n and {xn}

converges to zero monotonically. If also b , 2a2 (possible for a . ½ð1 þ
ffiffiffiffiffi
17

p
Þ=8
1=2Þ then

we find that �r , a so that f21ð�r) is not empty. In this case, we can find solutions {xn} of

Eq. (1) where there is k $ 0 such that xk ¼ �rxk21 and thus {xn} converges to zero eventually

monotonically. Note that these conclusions extend similar ones made in Theorem 3(b) for

the region b # a2=4:
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ðdÞThe line b ¼ a in the parameter space lies within the region in Part ðbÞ so there are

solutions of Eq. (1) in this case that converge to zero in an oscillatory fashion. Further,

b , a þ 1 so �r , 1 and if {xn} is a solution of Eq. (1) with x0=x21 in the set B of backward

iterates of �r under f, then xn ¼ �rxn21 for all sufficiently large n. Clearly, such {xn} converges

to zero eventually monotonically. A

If we raise the lower limit in Theorem 5(c) to b . a þ 1 the following stronger conclusion

is obtained.

Theorem 6 Let b . a2=4: If b . a þ 1; then every solution of Eq. (1) is unbounded.

If a solution {xn} has the property that xk # xk21 for some k $ 0 then {xn} is unbounded and

oscillatory. There are also unbounded solutions of Eq. (1) that are monotonically increasing.

Proof Since the case a ¼ 0 is discussed in Lemma 7, we assume from here on that a . 0:

Define c ¼ b 2 a and note that c . 1: Let {xn} be a non-zero solution of Eq. (1) where there

is k $ 0 such that xk # xk21: Then

xkþ1 ¼ jbxk21 2 axkj ¼ jcxk21 2 aðxk 2 xk21Þj $ cxk21 $ cxk . xk: ð18Þ

Notice that a decrease is always followed by an increase in such a way that the post-

decrease high value xkþ1 $ cxk21 with xk21 representing the pre-decrease high.

Next, xkþ2 ¼ jcxk 2 aðxkþ1 2 xkÞj and here are two possible cases: If

xkþ2 ¼ cxk 2 aðxkþ1 2 xkÞ ð19Þ

then clearly xkþ2 , cxk # cxk21 # xkþ1 which implies that

xkþ3 ¼ jcxkþ1 2 aðxkþ2 2 xkþ1Þj . cxkþ1 . xkþ1 . xkþ2:

Therefore, the situation in Eq. (18) is repeated with the new low and high values xkþ2 and

xkþ3. If Eq. (19) does not hold, then its negative holds for possibly more than one index value:

xkþj ¼ aðxkþj21 2 xkþj22Þ2 cxkþj22 ¼ axkþj21 2 bxkþj22; j ¼ 2; 3; 4. . .: ð20Þ

Equation (20) is linear with complex eigenvalues since b . a2=4: If l ^ are these

eigenvalues, then jl^j ¼
ffiffiffi
b

p
. 1 if b . a þ 1: It follows that there is an integer jmaxða; bÞ $

2 such that
xkþjmaxþ1 # xkþjmax

and once again a situation analogous to that in Eq. (19) is obtained. We have shown that after

at most a finite number of terms (determined only by the values of a, b) there will be a drop in

the value of xn for all n, i.e. {xn} is oscillatory. Further, if {nm} where m ¼ 0; 1; 2; . . . is the

sequence of indicies at which drops in xn occur, then x21þnm
$ x1þnm21

; so from the preceding

arguments and Eq. (18) it may be concluded that

x1þnm
$ cx21þnm

$ cx1þnm21
:

Therefore, inductively

x1þnm
$ cx1þnm21

. c2x1þnm22
. · · · . cmx1þn0

from which we may conclude that {xn} is unbounded.

Finally, if b . a þ 1 then any strictly increasing solution of Eq. (1) must approach infinity,

since the origin is the only possible fixed point of Eq. (1). Such strictly increasing solutions

do exist; for example, since �r . 1 by Lemma 5, a solution {xn} with x0=x21 ¼ �r converges to

infinity monotonically.
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We note here that if a þ 1 , b # a2=4; then by Theorem 3 the solutions of Eq. (1) are

generally unbounded, approaching infinity eventually monotonically. A

The special role of period 3 in the Li-Yorke Theorem in Ref. [4] gives the following result

on the complex nature of the mapping f. The significant consequence of the following

corollary and its extensions is that regardless of whether a solution {xn} of Eq. (1) converges

or not, it may oscillate in a complicated way.

Corollary 3 Let b # a2: Then the mapping f is chaotic in the sense of [4]; i.e. it has an

uncountable set S called a scrambled set with the following properties:

(i) S contains no periodic points of f and f ðSÞ , S;

(ii) For every x; y [ S and x – y;

k!1
lim supkf kðxÞ2 f kð yÞk . 0;

k!1
lim infkf kðxÞ2 f kð yÞk ¼ 0:

(iii) For every x [ S and periodic y,

k!1
lim supkf kðxÞ2 f kð yÞk . 0:

Proof Let ½0;1
 be the one-point compactification of the closed half-line ½0;1Þ and extend

f continuously to ½0;1
 as follows:

f* ð0Þ ¼ 1; f* ð1Þ ¼ a; f* ðrÞ ¼ f ðrÞ if r [ ð0;1Þ:

Then f* defines a continuous dynamical system on the compact interval ½0;1
: Now, if

b , a2 then by Lemma 6(b) f has a three-cycle, which is also clearly a three-cycle for f*.

Also if b ¼ a2 then since

a ¼
b

a

f
! 0

f*
! 1

f*
! a

it follows that f* again has a three-cycle, namely, {a; 0;1}: In either case, since ½0;1
 is

homeomorphic to ½0; 1
; by the Li-Yorke theorem f* has a scrambled set S* , ½0;1
:

Define

S ¼ S* 2 {1} <
[1
n¼0

f2nð0Þ

" #
:

Since <1
n¼0f

2nð0Þ is countable for each n, it follows that S is an uncountable subset of

ð0;1Þ> S* which satisfies conditions (i)–(iii) above because

fjS ¼ f* jS:

Hence, S is a scrambled set for f as required. A

With the aid of a more general result on chaos from Ref. [5] Corollary 3 can be extended to

the region b # 2a2 where f may not have a period-3 point. Indeed, it can be shown that f

has a snap-back repeller (in the weak or non-smooth sense—see Refs. [5,7]) if and only if

b , 2a2 and also when b ¼ 2a2 then f* has a snap-back repeller. We do not work out the

routine details of this extension here, but refer to [7,9] for similar problems.
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THE LINE b 5 1 : PERIODICITY

By Lemma 7 and Theorem 4 in the preceding section, periodic solutions of Eq. (1) occur when

ða; bÞ ¼ ð0; 1Þ; ð1; 1Þ: These points are both located on the part of the line b ¼ 1 that lies inside

the region b . a2=4 in the parameter plane. In this section, we find that this is not a

coincidence, but part of a larger picture. Let us begin with the next result, which extends

Lemma 7 to periods 4,5 and provides additional information with respect to periodic solutions

that pass through the origin.

Lemma 8 Assume that a; b . 0 and let {xn} be a solution of Eq. (1) such that xk ¼ 0 and

xk21 . 0 for some k $ 0:

(a) If xkþ4 ¼ 0 then a2 ¼ 2b and

xkþ4nþj ¼ b2xkþ4ðn21Þþj; j ¼ 0; 1; 2; 3; n $ 1: ð21Þ

In particular, {xn} is 4-periodic if and only if b ¼ 1 and a ¼
ffiffiffi
2

p
:

(b) If xkþ5 ¼ 0 then a2 ¼ gb; a2 ¼ b=g or a2 ¼ g2b where g ¼ ð
ffiffiffi
5

p
þ 1Þ=2 is the golden

mean. If a2 ¼ gb then

xkþ5nþj ¼
ab2

g2
xkþ5ðn21Þþj; j ¼ 0; 1; 2; 3; 4; n $ 1: ð22Þ

In particular, {xn} is 5-periodic if and only if ab2=g2 ¼ 1; i.e. b ¼ g3=5 and

a ¼ g4=5: If a2 ¼ b=g then

xkþ5nþj ¼
ab2

g
xkþ5ðn21Þþj; j ¼ 0; 1; 2; 3; 4; n $ 1: ð23Þ

In particular, {xn} is 5-periodic if and only if ab2=g ¼ 1; i.e. b ¼ g3=5 and

a ¼ g21=5: If a2 ¼ g2b then

xkþ5nþj ¼
ab2

g
xkþ5ðn21Þþj; j ¼ 0; 1; 2; 3; 4; n $ 1: ð24Þ

In particular, {xn} is 5-periodic if and only if ab2=g ¼ 1; i.e. b ¼ 1 and a ¼ g:

Proof In general, xkþ1 ¼ bxk21 . 0 and xkþ2 ¼ axkþ1 . 0:

(a) From 0 ¼ xkþ4 ¼ jaxkþ3 2 bxkþ2j we get

axkþ3 ¼ bxkþ2 ¼ abxkþ1

i.e. xkþ3 ¼ bxkþ1: But xkþ3 ¼ jaxkþ2 2 bxkþ1j ¼ ja2 2 bjxkþ1 so

ja2 2 bj ¼ b:

For positive a; b this equation is equivalent to a2 ¼ 2b: Further, we calculate

xkþ5 ¼ bxkþ3 ¼ b2xkþ1; xkþ6 ¼ axkþ5 ¼ abxkþ3 ¼ b2xkþ2:
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These in turn imply that

xkþ7 ¼ jab2xkþ2 2 b3xkþ1j ¼ b2xkþ3;

xkþ8 ¼ jab2xkþ3 2 b3xkþ2j ¼ b2xkþ4 ¼ 0:

Now simple induction on n proves Eq. (21). The statement about 4-periodic solutions is now

obvious.

(b) xkþ3 ¼ jaxkþ2 2 bxkþ1j ¼ ja2 2 bjxkþ1 and

xkþ4 ¼ jaxkþ3 2 bxkþ2j ¼ jaja2 2 bj2 abjxkþ1:

Since 0 ¼ xkþ5 ¼ jaxkþ4 2 bxkþ3j we have axkþ4 ¼ bxkþ3; i.e.

a2j ja2 2 bj2 bj ¼ bja2 2 bj:

For positive a; b this equation is equivalent to one of three possible forms:

b2 2 a2b 2 a4 ¼ 0; a2 , b

b2 þ a2b 2 a4 ¼ 0; b , a2 , 2b

b2 2 3a2b þ a4 ¼ 0; a2 . 2b:

For a2 , b solving the corresponding quadratic equation for b in terms of a gives

a single positive solution

b ¼

ffiffiffi
5

p
þ 1

2
a2 ¼ ga2 or a2 ¼

1

g
b:

For the range b , a2 , 2b solving the corresponding quadratic equation also yields a

single positive solution

b ¼

ffiffiffi
5

p
2 1

2
a2 ¼

a2

g
or a2 ¼ gb

and for the last range, we find two positive solutions only one of which is acceptable for

a2 . 2b; namely,

b ¼
3 2

ffiffiffi
5

p

2
a2 ¼

a2

g2
or a2 ¼ g2b:

First, let a2 ¼ gb: Then

xkþ6 ¼ bxkþ4 ¼ abj ja2 2 bj2 bjxkþ1 ¼
ab2

g2
xkþ1;

xkþ7 ¼ axkþ6 ¼
a2b2

g2
xkþ1 ¼

ab2

g2
xkþ2;

xkþ8 ¼ jaxkþ7 2 bxkþ6j ¼
ab2

g2
jaxkþ2 2 bxkþ1j ¼

ab2

g2
xkþ3;

xkþ9 ¼ jaxkþ8 2 bxkþ7j ¼
ab2

g2
jaxkþ3 2 bxkþ2j ¼

ab2

g2
xkþ4;

xkþ10 ¼ jaxkþ9 2 bxkþ8j ¼
ab2

g2
jaxkþ4 2 bxkþ3j ¼

ab2

g2
xkþ5 ¼ 0:
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Now induction on n proves Eq. (22). The assertion about periodicity

follows immediately. The proofs of Eqs. (23) and (24) being similar to the above, are

omitted. A

For period-5 solutions of Eq. (1) that pass through the origin, Lemma 8 shows that they do

not all occur at the parameter value b ¼ 1; 5 is evidently the least period with this property.

However, for b ¼ 1 Lemmas 7 and 8 do show that eventually periodic solutions of Eq. (1) of

periods 2–5 exist that pass through the origin. In fact, if ap denotes the value of a at which

a period-p solution of Eq. (1) occurs with b ¼ 1; then

0 ¼ a2 , a3 ¼ 1 , a4 , a5 , 2:

In particular, ap seems to be an increasing function of p and periods greater than 3 occur

when 1 , a , 2: In the remainder of this section, we see why this happens on the line

b ¼ 1 and further, we establish the remarkable fact that periodic solutions of Eq. (1) for all

p . 3 exist when 1 , a , 2 and b ¼ 1: We proceed by introducing a linear equation

corresponding to Eq. (1) that plays an important role in the proof of the existence of

periodic solutions

znþ1 ¼ azn 2 zn21; for n ¼ 0; 1; . . .

z21; z0 [ ð0;1Þ; a [ ð1; 2Þ

(
ð25Þ

In particular, in the sequel we consider Eq. (25) with initial conditions

z21 ¼ 1 and z0 ¼ a: ð26Þ

Next, let g1; g2; . . . : ½1; 2
 ! R be recursively defined by

gnþ1ðxÞ ¼ xgnðxÞ2 gn21ðxÞ; n ¼ 0; 1; . . .; ð27Þ

where
g21ðxÞ ¼ 1 and g0ðxÞ ¼ x: ð28Þ

Then, we define two more collections of functions.

For n ¼ 0; 1; . . .; let Gn : Dn ! R be defined by

GnðxÞ ¼
gnðxÞ

gn21ðxÞ
; ð29Þ

where
Dn ¼ {x [ ½1; 2
 : gkðxÞ – 0; 0 # k # n}: ð30Þ

For n ¼ 0; 1; . . . and Dn(x) as defined in Eq. (30), let Hn : Dn ! R be defined by

HnðxÞ ¼ GnðxÞ2
1

x
; n ¼ 0; 1; . . .: ð31Þ

Observe that the particular solution {zn}1n¼21 of Eqs. (25) and (26) is also the sequence of

values {gnðaÞ}
1
n¼21:

Lemma 9 Consider the sequence of polynomials {gnðxÞ}
1
n¼21; as defined by Eqs. (27)

and (28), and the sequence of rational functions, {GnðxÞ}
1
n¼21; together with their

sequence of domains {Dn}1n¼21 as defined by Eqs. (29) and (30). Then {gnðxÞ}
1
n¼21 and
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{GnðxÞ}
1
n¼21 satisfy the following properties:

(P1) For all n $ 0; Gn is strictly increasing on its domain, Dn.

(P2) If, for some N [ {1; 2; . . .}; there exists aðNÞ
0 [ ½1; 2
 such that gNða

ðNÞ
0 Þ ¼ 0; then aðNÞ

0

is the unique zero of gNðxÞ in the interval ½1; 2
 and gNðxÞ . 0 for all x [ aðNÞ
0

�
; 2
:

(P3) For every n $ 1; there exists aðnÞ
0 [ ½1; 2
 such that gnða

ðNÞ
0 Þ ¼ 0: Furthermore,

1 ¼ að1Þ
0 , að2Þ

0 , · · · , 2:

Proof We first establish Property (P1). For each integer n $ 0; let PðnÞ be the

proposition that

GnðxÞ , Gnð yÞ; for x; y [ Dn and x , y:

We will show by induction that PðnÞ is true for all n $ 0: Clearly, Pð0Þ is true, where,

for x; y [ D0 ¼ ½1; 2
 and x , y;

G0ðxÞ ¼ x , y ¼ G0ð yÞ:

Next suppose that n $ 0 is an integer such that P(n) is true. We will show that Pðn þ 1Þ is

true. Now, let x; y [ Dnþ1 and x , y: Then x; y [ Dn; since Dnþ1 , Dn by Eq. (30). Thus,

we have GnðxÞ, Gnð yÞ – 0 and by assumption, GnðxÞ , Gnð yÞ: We then can write

x 2 y , 0 ,
1

GnðxÞ
, y 2

1

Gnð yÞ
:

It then follows that

x 2
1

GnðxÞ
, y 2

1

Gnð yÞ
;

which, in turn, implies that

xgnðxÞ2 gn21ðxÞ

gnðxÞ
,

ygnð yÞ2 gn21ð yÞ

gnð yÞ

by Eq. (29). From Eq. (27), we then have

gnþ1ðxÞ

gnðxÞ
,

gnþ1ð yÞ

gnð yÞ
;

and, so, from Eq. (29) Gnþ1ðxÞ , Gnþ1ð yÞ: Therefore, Pðn þ 1Þ is true and Property (P1) is

established.

To prove Property (P2), suppose that for some N [ {1; 2; . . .}; there exists aðNÞ
0 ; bðNÞ

0 [

½1; 2
 such that gNða
ðNÞ
0 Þ ¼ 0 and gNðb

ðNÞ
0 Þ ¼ 0: Without loss of generality, we assume that

aðNÞ
0 # bðNÞ

0 Then, from Eq. (27), we have

gN aðNÞ
0

� �
¼ aðNÞ

0 gN21 aðNÞ
0

� �
2 gN22 aðNÞ

0

� �
¼ 0

and

gN bðNÞ
0

� �
¼ bðNÞ

0 gN21 bðNÞ
0

� �
2 gN22 bðNÞ

0

� �
¼ 0:
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From these and the fact that aðNÞ
0 # bðNÞ

0 it follows that

gN21 aðNÞ
0

� �
gN22 aðNÞ

0

� � $ gN21 bðNÞ
0

� �
gN22 bðNÞ

0

� � ; while aðNÞ
0 # bðNÞ

0 : ð32Þ

On the other hand, note that

gN21ðxÞ

gN22ðxÞ
¼ GN21ðxÞ;

and GN21 is strictly increasing on DN21, by Property (P1). Hence, in Eq. (32), we must have

aðNÞ
0 ¼ bðNÞ

0 ;

and, so, gN(x) has a unique zero in the interval ½1; 2
:

Moreover, we claim that gNðxÞ . 0 for all x [ ðaðNÞ
0 ; 2
: For we have gNð2Þ . 0 by the

observation before this lemma and the fact that the particular solution of Eqs. (25) and (26)

with a ¼ 2 is
zn ¼ 2 þ n; n ¼ 21; 0; 2; . . .: ð33Þ

Hence, Property (P2) is established.

Given Properties (P1) and (P2), we can now show that Property (P3) is true. For each

integer n $ 1; let P(n) be the proposition that there exists aðnÞ
0 ; aðnþ1Þ

0 [ ½1; 2
 such that for

i ¼ n; n þ 1; giða
ðiÞ
0 Þ ¼ 0 and aðiÞ

0 is a unique zero of gi(x) in the interval [1,2] and

1 # aðnÞ
0 , aðnþ1Þ

0 , 2:

We show by induction that P(n) is true for all n $ 1:

Clearly, P(1) is true, where, in the interval [1,2], g1ðxÞ ¼ x2 2 1 has the unique zero

að1Þ
0 ¼ 1; g2ðxÞ ¼ x3 2 2x has the unique zero að2Þ

0 ¼
ffiffiffi
2

p
; and að1Þ

0 ¼ 1 , að2Þ
0 ¼

ffiffiffi
2

p
:

Next suppose that n $ 1 is an integer such that P(n) is true. We will show that P(n þ 1) is

true. By assumption, we have that, in the interval [1,2], gn(x) has the unique zero aðnÞ
0 ; gnþ1(x)

has the unique zero aðnþ1Þ
0 ; and aðnÞ

0 , aðnþ1Þ
0 : From Property (P2), we also have that gn(x),

gnþ1ðxÞ . 0 for all x [ ðaðnþ1Þ
0 ; 2
: Thus, for some aðnþ1Þ

0 , a # 2; gnðxÞ . gnþ1ðxÞ for all

x [ ðaðnþ1Þ
0 ;a
: On the other hand, by the observation before this lemma and Eq. (33), we

have gnð2Þ , gnþ1ð2Þ: Therefore, since gn(x) and gnþ1(x) are continuous, there exists

~a [ ðaðnþ1Þ
0 ; 2Þ such that

gnð~aÞ ¼ gnþ1ð~aÞ: ð34Þ

So, we have the following:

(i) Gnþ1ða
ðnþ1Þ
0 Þ ¼ 0; by Eq. (29).

(ii) Gnþ1ð~aÞ ¼ 1; by Eqs. (29) and (34).

(iii) Gnþ1(x) is defined and continuous on the interval ½aðnþ1Þ
0 ; 2
; by Eq. (30) and Property

(P2), where aðnÞ
0 is the unique zero of gn(x) and aðnÞ

0 , aðnþ1Þ
0 :

Therefore, from Statements (i), (ii) and (iii), Eqs. (30) and (31), and the fact that

1 , aðnþ1Þ
0 , ~a , 2; we have the following:

(i) Hnþ1 aðnþ1Þ
0

� �
, 0:

(ii) Hnþ1ð~aÞ . 0; by Eqs. (29) and (34).

(iii) Hnþ1(x) is defined and continuous on the interval ½aðnþ1Þ
0 ; 2
.
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Hence, by the intermediate value theorem, there exists �a [ ðaðnþ1Þ
0 ; ~aÞ such that

Hnþ1ð�aÞ ¼ 0

which, in turn, implies that
gnþ2ð�aÞ ¼ 0 ð35Þ

by Eq. (27). Let aðnþ2Þ
0 ¼ �a: Then, by Eq. (35) and Property (P2), aðnþ2Þ

0 is the unique zero of

gnþ2ð�aÞ ¼ 0 and 1 # aðnþ1Þ
0 , aðnþ2Þ

0 , 2: So, P(n þ 1) is true and Property (P3) is

established. A

Lemma 10 Consider the sequence of polynomials {gnðxÞ}
1
n¼1; as defined by Eqs. (27)

and (28), together with the sequence of their unique zeros in the interval [1,2], {aðnÞ
0 }

1

n¼1: Then

n!1
lim aðnÞ

0 ¼ 2:

Proof From Lemma 9, Property (P3), and the fact that að2Þ
0 ¼

ffiffiffi
2

p
for g2ðxÞ ¼ x3 2 2x;

we infer that

(i)
n!1
lim aðnÞ

0 exists;

(ii) aðnÞ
0 #

n!1
lim aðnÞ

0 for all n $ 21;

(iii)
ffiffiffi
2

p
,

n!1
lim aðnÞ

0 # 2:

Let

n!1
lim aðnÞ

0 ¼ L

and for the sake of contradiction, assume that L [ ð
ffiffiffi
2

p
; 2Þ: Observe that the particular

solution {un}1n¼21 of the initial value problem

unþ1 ¼ Lun 2 un21; for n ¼ 0; 1; . . .;

u21 ¼ 1; u0 ¼ L;

(
ð36Þ

is also the sequence of values {gnðLÞ}
1
n¼21: Also observe that the particular solution of

Eq. (36) is given by

un ¼ L cos nuþ
L2 2 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 2 L2

p sin nu; n $ 21;

where

(i)
ffiffiffiffiffiffiffiffi
42L2

p

L
[ ð0;

ffiffiffi
3

p
Þ for L [ ð

ffiffiffi
2

p
; 2Þ , ð1; 2Þ; so that u ¼ arctan

ffiffiffiffiffiffiffiffi
42L2

p

L

� �
[ 0; p

3

� �S
p; 4p

3

� �
(ii) L; L222ffiffiffiffiffiffiffiffi

42L2
p . 0

since L [ ð
ffiffiffi
2

p
; 2Þ: Therefore,

gnðLÞ ¼ Lcos nuþ
L2 2 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 2 L2

p sin nu; n $ 21

and, if for some N $ 1; we have Nu [ ½p; 3p=2
; then gNðLÞ , 0: Indeed, we have the

following, given that u [ ð0;p=3Þ< ðp; 4p=3Þ:

(i) If u [ p; 4p
3

� �
; then for N ¼ 1; we have gNðLÞ , 0:

(ii) If 0 , u , p
6
; then there exists k $ 2 such that p

3ðkþ1Þ
, u , p

3k
; which, in turn, implies

that for N ¼ 3ðk þ 1Þ; we have gNðLÞ , 0:

(iii) If p
6
# u , 2p

9
; then for N ¼ 6; we have gNðLÞ , 0:
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(iv) If 2p
9
# u , 5p

18
; then for N ¼ 5; we have gNðLÞ , 0:

(v) If 5p
18

# u , p
3
; then for N ¼ 4; we have gNðLÞ , 0:

Hence, there exists N $ 1 such that

gNðLÞ , 0;

a result which contradicts Property (P2) of Lemma 9 since

aðnÞ
0 # L for all n $ 21:

Therefore, our original assumption that L [ ð
ffiffiffi
2

p
; 2Þ is false and we have L ¼ 2: A

Note that Eq. (25) can be written as

zn21 ¼ azn 2 znþ1 ð37Þ

and that with initial conditions z21, z0, we can determine not only the “future terms”,

z1; z2; . . .; but the “past terms”, z22; z23; . . .: We will refer to Eq. (37) as the backwards-in-

time version of Eq. (25). We also note that for a difference equation

xnþ1 ¼ f ðxn; xn21Þ; n ¼ 0; 1; . . .; ð38Þ

and each integer N $ 21; we refer to {xn}N
n¼21 as the partial solution of Eq. (38).

We now make several observations with respect to Eq. (25) and its backwards-in-time

version. Although these observations might be considered trivial in nature, we list them

explicitly in order to facilitate any references made to them in the proof of the main result of

this paper in the next section.

Remark 3 Let {zn}1n¼21 be a solution of Eq. (25). Let N $ 0; and consider the equation

wmþ1 ¼ awm 2 wm21; for m ¼ 0; 1; . . .;

w21 ¼ zN ;w0 ¼ zN21; a [ ð1; 2Þ

(
ð39Þ

Then the solution, {wm}1m¼21; of Eq. (39) is equivalent to the solution, {zn}21
n¼N ; of the

backwards-in-time version of Eq. (25),

zn22 ¼ azn21 2 zn; for n ¼ N;N 2 1; . . .

zN ¼ w21; zN21 ¼ w0; a [ ð1; 2Þ

(

In particular, the partial solution {wm}N
m¼21 of Eq. (39) is such that

{wm}N
m¼21 ¼ zN ; zN21; . . .; z0; z21; ð40Þ

where

wm ¼ zN2m21; for m ¼ 21; 0; . . .;N 2 1;N: ð41Þ

Remark 4 Let {~zn}1n¼21 be a particular solution of Eq. (25) with initial conditions z̃21 and

~z0. Let {�zn}1n¼21 be another particular solution of Eq. (25) with

�z21 ¼ l~z21 and �z0 ¼ l~z0:

Then it is easy to show that �zn ¼ l~zn; for all n $ 21:
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Remark 5 Let {xn}1n¼21 be a solution of Eq. (1), and suppose there exists N $ 1 such that

axn 2 xn21 $ 0; for n ¼ 21; 0; . . .;N:

Let {zn}1n¼21 be a solution of Eq. (25) with

z21 ¼ x21 and z0 ¼ x0

and let {wm}1m¼21 be a solution of Eq. (39) in which we have

w21 ¼ zN and w0 ¼ zN21:

Then xn ¼ zn ¼ wN2n21; for n ¼ 21; 0; . . .;N:

Remark 6 Let {zn}1n¼21 be a solution of Eq. (25) and let {wm}1m¼21 be a solution of

wmþ1 ¼ awm 2 wm21; for m ¼ 0; 1; . . .

with w21 ¼ z21 and w0 ¼ z0: Then {wm}1m¼21 ¼ {zn}1n¼21:

We now state the main result of this section.

Theorem 7 Let b ¼ 1 in Eq. (1). There exists a strictly increasing sequence of values

{ap}1p¼3 with

a3 ¼ 1 and
p!1
lim ap ¼ 2

such that for each p ¼ 3; 4; . . .; the particular solution {xn}1n¼21 of Eq. (1) with b ¼ 1; a ¼ ap

and initial values x21 ¼ 1; x0 ¼ ap; is periodic with period p.

Proof The proof is a consequence of the following two lemmas. A

Lemma 11 Let ~a [ ½1; 2Þ and let {xn}1n¼21 be a particular solution of Eq. (1) with a ¼ ~a and

x21 ¼ 1 and x0 ¼ ~a:

Suppose there exists N $ 0 such that

xNþ1 ¼ 0 and xn – 0 for n ¼ 21; 0; 1; . . .;N:

Then {xn}1n¼21 is periodic with period N þ 3:

Proof Let ~a [ ½1; 2Þ and let {xn}1n¼21 be a particular solution of Eq. (1) with a ¼ ~a and

x21 ¼ 1 and x0 ¼ ~a :

Suppose there exists N $ 0 such that

xNþ1 ¼ 0 and xn – 0 for n ¼ 21; 0; 1; . . .;N:

Then, from Lemma 9 and the observation preceding it, and from Property (P2), we have

~axn 2 xn21 . 0; for n ¼ 0; 1; . . .;N 2 1: ð42Þ

Therefore, if we let {zn}1n¼21 be a particular solution of Eqs. (25) and (26), then it follows

from Remark 6 that

x21 ¼ z21 ¼ 1; x0 ¼ z0 ¼ ~a; x1 ¼ z1; . . .; xN ¼ zN ; xNþ1 ¼ zNþ1 ¼ 0: ð43Þ
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From Eq. (43) and the fact that xNþ1 ¼ 0; we have xN21 ¼ ~axN 2 xNþ1 ¼ ~axN : Let xN ¼ l;

where l . 0 since xN . 0: Then

xN ¼ l and xN21 ¼ l~a; l . 0: ð44Þ

Thus, from Eqs. (43) and (44), we have

zN ¼ l and zN21 ¼ l~a; l . 0: ð45Þ

Now, let {wn}1n¼21 be the particular solution of

wmþ1 ¼ awm 2 wm21; for m ¼ 0; 1; . . .

with w21 ¼ l and w0 ¼ l~a. Then we have the following:

1. From Eq. (45) and Remark 3,

w21 ¼ zN ;w0 ¼ zN21; . . .;wN21 ¼ z0;wN ¼ z21: ð46Þ

2. On the other hand, from Eq. (45) and Remarks 4 and 6 we have

w21 ¼ lz21;w0 ¼ lz0; . . .;wN21 ¼ lzN21;wN ¼ lzN : ð47Þ

Therefore, from Eqs. (43), (45), (46) and (47), we have

1 ¼ x21 ¼ z21 ¼ wN ¼ lzN ¼ l2:

Hence, l ¼ 1; and this, in turn, implies that

xN21 ¼ ~a and xN ¼ 1:

Therefore,
xNþ2 ¼ j~axNþ1 2 xN j ¼ j~a · 0 2 1j ¼ 1;

xNþ3 ¼ j~axNþ2 2 xNþ1j ¼ j~a · 1 2 0j ¼ ~a:

Clearly, then, {xn}1n¼21 is periodic with period N þ 3: A

Lemma 12 Let b ¼ 1 in Eq. (1). There exists a strictly increasing sequence of values

{ap}1p¼3 with
a3 ¼ 1 and

p!1
lim ap ¼ 2;

such that for each p ¼ 3; 4; . . .; the particular solution {xn}1n¼21 of Eq. (1) with b ¼ 1 and

initial values x21 ¼ 1; x0 ¼ ap; is characterized by the following:

(i) xp ¼ 0:

(ii) xn – 0 for n ¼ 21; 0; 1; . . .; p 2 1:

(iii) apxn 2 xn21 . 0 for n ¼ 21; 0; 1; . . .; p 2 2:

Proof The result follows from Lemma 9, Properties (P2) and (P3) and Lemma 10. A

OPEN PROBLEMS AND CONJECTURES

It is fitting to close this paper with a section on what remains to be done, which is

considerable. The preceding results clearly indicate that the two-parameter absolute

difference equation (1) is a simple equation exhibiting complex behavior over ranges that
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cover much of its parameter plane. The following is a partial list of open questions and

problems:

Conjecture 1 For every integer p $ 2 there is an open subset Up of the parameter plane

such that for all ða; bÞ [ Up there are p-periodic points of f.

Lemma 6 shows Conjecture 1 to be true for p ¼ 2; 3 and gives

U2 ¼ {ða; bÞ : a; b . 0}; U3 ¼ {ða; bÞ : a2 . b . 0}:

For p ¼ 2; 3 the points ðap; 1Þ where ap is as defined in the previous section, are on the

boundaries ›U2, ›U3 respectively. Such boundaries are obviously bifurcation curves in

the parameter plane, and Lemmas 6, 7 and 8 show that these boundaries are related to the

existence of periodic solutions of Eq. (1) that pass through the origin. Since in the preceding

section we found that p-periodic solutions of Eq. (1) for all values of p $ 2 do occur when

b ¼ 1; the following problem presents itself.

Open Problem 1 Determine the sets Up and their boundary curves in the parameter plane

for periods p $ 4:

Conjecture 2 For each p $ 4 the point ðap; 1Þ is on the boundary of Up.

Open Problem 2 For p ¼ 6; computations similar to those in Theorem 4 give a6 ¼
ffiffiffi
3

p
: Find

the values of ap for all p $ 7; or alternatively, give a formula for ap in terms of p.

In general, the instability of solutions of Eq. (1) is a matter that is related to the non-

smoothness of f at its critical or minimum point r ¼ b=a: This makes the following problem

interesting.

Open Problem 3 Determine the backward sets of b/a under f 21 for a; b . 0; i.e. determine

the sets

Ba;b ¼
[1
n¼0

f2n b

a

� �

and specify parameter values a, b for which Ba,b is dense in the half line ½0;1Þ:

By Theorem A, B1,1 is the set of all non-negative rationals; see Ref. [9]. For additional related

ideas, see Ref. [8]. It is possible to determine the backward sets for the simpler monotonic maps

f L and f R by solving a linear second order difference equation, similarly to what was done

in the proof of Lemma 4 and Theorem 7; see Ref. [2] for similar ideas. Recall also that since

f ðb=aÞ ¼ 0; it follows that if {xn} is a nonzero solution of Eq. (1) that hits zero, i.e. if xk ¼ 0

for some k $ 1 then the ratio xk=xk21 [ Ba;b because xk21=xk22 ¼ b=a: Therefore, the

existence and orbit-density of the set of solutions of Eq. (1), periodic or otherwise, that pass

through the origin are issues that are closely related to the nature of the sets Ba,b.

Next, we consider chaotic solutions. In Corollary 3 a solution of Eq. (1) may have chaotic

ratios of consecutive terms without itself being chaotic (the solution may converge or be

unbounded). Hence the following problem is of evident interest.

Open Problem 4 Find parameter values/ranges for which all solutions of Eq. (1) are

bounded. These parameter values evidently include the unit square ½0; 1
2: Among parameter

values that generate bounded solutions, determine those for which Eq. (1) has chaotic

solutions or show that there are no chaotic solutions for Eq. (1).
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There are other regions and curves of interest in the parameter plane. The following are

samples.

Conjecture 3 If a ¼ b . 1; then except for a countable set of initial conditions,

all solutions of Eq. (1) are unbounded and oscillatory.

Conjecture 4 If 1 , a , 2 and a2=4 , b , 1 then every solution of Eq. (1) converges

to zero.
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