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Asymptotic stability for difference equations
with decreasing arguments
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We consider general, higher order difference equations of type

xn ¼ f ðxn21; . . .; xn2mÞ

in which the function f is non-increasing in each coordinate. We obtain sufficient conditions for the
asymptotic stability of a unique fixed point relative to an invariant interval. We also discuss various
applications of our main results.
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1. Introduction

Consider the higher order difference equation

xn ¼ f ðxn21; . . .; xn2mÞ; n ¼ 1; 2; . . . ð1Þ

where m is a non-negative integer and f : Rm ! R is a given function. In the literature on

difference equations and their applications, problems involving the asymptotic stability of

fixed points of equation (1) in the case in which f is monotonic (non-increasing or non-

decreasing) in each of its arguments or coordinates arise frequently. In the sections that

follow our main results, we discuss several examples along with appropriate references.

For the non-decreasing case the following was established in [10] (also see [13] or [18] for

proofs).

Theorem A In equation (1) assume that f : I m ! I is continuous and non-decreasing in

each coordinate (with all other coordinates kept fixed), where I is a nontrivial interval in R:

If the function gðuÞ ¼ f ðu; . . .; uÞ has a fixed point x* [ I and

gðuÞ . u if u , x* ; gðuÞ , u if u . x* ; u [ I ð2Þ

then x* attracts all solutions of equation (1) with initial values in I.
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There is also the following general result involving mixed monotonicity in coordinates

from [9]. Though a proof of this result is not given in [9], the argument seems to be similar to

those given for the second-order case (m ¼ 2) in [14].

Theorem B In equation (1) assume that f : ½a; b�m ! ½a; b� is continuous and satisfies the

following conditions:

(i) For each i [ {1:; . . .;m} the function f ðu1; . . .; umÞ is monotone in the coordinate ui
(with all other coordinates kept fixed);

(ii) If ðm; nÞ is a solution of the system

f ðm1;m2; . . .;mmÞ ¼ m

f ðn1; n2; . . .; nmÞ ¼ n

then

m ¼ n

where for i [ {1; . . .;m} we set

mi ¼
m if f is non–decreasing in ui

n if f is non–increasing in ui

(

and

ni ¼
n if f is non–decreasing in ui

m if f is non–increasing in ui

(

Then there is a unique fixed point x* [ ½a; b� for equation (1) that attracts every

solution of equation (1) with initial values in ½a; b�:

In this paper we consider the case where f is non-increasing in each of its arguments or

coordinates over some interval. Our main result, Theorem 1, complements Theorem A and

extends or complements previously known results about the non-increasing case. Theorem 1

also extends a special case of Theorem B (where f is non-increasing in all coordinates)

without assuming that f is continuous, and without requiring the domain of f be a compact

interval; see the Remarks following Corollary 1. Further, Theorem 1 establishes the stability

of the fixed point without requiring differentiability. A practical advantage of this is that we

do not need to examine the eigenvalues of possibly very large matrices.

2. The main results

We assume the following:

There exist r0; s0 with 21 # r0 , s0 # 1 such that:

(H1) f ðu1; . . .; umÞ is non-increasing in each u1; . . .; um [ I0 where I0 ¼ ðr0; s0�

if s0 , 1 and I0 ¼ ðr0;1Þ otherwise;

(H2) gðuÞ ¼ f ðu; . . .; uÞ is continuous and strictly decreasing for u [ I0;
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(H3) There is r [ ½r0; s0Þ such that r , gðrÞ # s0: If r0 ¼ 21 or limt!rþ
0
gðtÞ ¼ 1

then we assume that r [ ðr0; s0Þ:

Lemma 1 If (H2) and (H3) hold then Equation (1) has a unique fixed point x * in the open

interval ðr; gðrÞÞ.

Proof. Each fixed point of equation (1) is a solution of the equation u ¼ gðuÞ: Define

hðuÞ ¼ gðuÞ2 u so that the fixed points of equation (1) are zeros of h. Note that hðrÞ . 0 by

(H3) and

hðgðrÞÞ ¼ gðgðrÞÞ2 gðrÞ , 0

because g is decreasing by (H2). Since h is continuous and decreasing by (H2) it follows that

h has a unique zero x* [ ðr; gðrÞÞ: A

Next, consider the additional hypothesis:

(H4) There is s [ ½r; x*Þ such that g2ðsÞ $ s, where g2ðsÞ ¼ gðgðsÞÞ:

Lemma 2 Let I ¼ ½s; gðsÞ�. If (H1)–(H4) hold then I is an invariant interval for equation

(1) and x* [ I:

Proof. Note that by (H2)–(H4)

gðsÞ . gðx* Þ ¼ x* . s

so that x* [ I. Let x0; x21; . . .; x2mþ1 [ I: Then by (H1)

x1 ¼ f ðx0; x21; . . .; x2mþ1Þ # f ðs; s; . . .; sÞ ¼ gðsÞ

and also by (H1) and (H4)

x1 ¼ f ðx0; x21; . . .; x2mþ1Þ $ f ðgðsÞ; gðsÞ; . . .; gðsÞÞ ¼ g2ðsÞ $ s:

Thus x1 [ I: Now inductively assume that x1; . . .; xk [ I for some k $ 1: Then an

argument similar to the one above for x1 shows that xkþ1 [ I: Hence I is invariant. A

We now introduce the following stronger version of (H4).

(H5) There is s [ ½r; x*Þ such that g2ðuÞ . u for all u [ ðs; x*Þ:

Theorem 1 If (H1)–(H3) and (H5) hold then x* is stable and attracts all solutions of

equation (1) with initial values in ðs; gðsÞÞ:

Proof. First we establish the attracting nature of x*: Let x0; . . .; x2mþ1 be in the interval

ðs; gðsÞÞ, and define

m1 ¼ min {x* ; x0; . . .; x2mþ1}; m2 ¼ max {x* ; x0; . . .; x2mþ1}:
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Since g is continuous, we have gðuÞ! gðsÞ as u! s. Thus we can find q [ ðs;m1Þ

sufficiently close to s that gðqÞ [ ðm2; gðsÞÞ: Next, observe that since x0; . . .; x2mþ1 . q,

x1 ¼ f ðx0; x21; . . .; x2mþ1Þ , f ðq; q; . . .; qÞ ¼ gðqÞ

Similarly, x0; . . .; x2mþ1 , gðqÞ implies

x1 ¼ f ðx0; x21; . . .; x2mþ1Þ $ f ðgðqÞ; gðqÞ; . . .; gðqÞÞ ¼ g2ðqÞ:

If (H5) holds, then g2ðqÞ . q so that x1 [ ðg2ðqÞ; gðqÞÞ , ðq; gðqÞÞ: Repeating a similar

calculation for x2; . . .; xm we conclude that

xk [ ðg2ðqÞ; gðqÞÞ , ðq; gðqÞÞ; k ¼ 1; . . .;m: ð3Þ

Next, we move on to the next cycle and look at xmþ1. Since by equation (3)

x1; . . .; xm . g2ðqÞ,

xmþ1 ¼ f ðxm; . . .; x1Þ , f ðg2ðqÞ; . . .; g2ðqÞÞ ¼ g3ðqÞ;

further, x1; . . .; xm , gðqÞ gives

xmþ1 ¼ f ðxm; . . .; x1Þ . f ðgðqÞ; gðqÞ; . . .; gðqÞÞ ¼ g2ðqÞ:

Since by (H5) g3ðqÞ , gðqÞ; this argument can be repeated for xmþ2; . . .; x2m to yield

xk [ ðg2ðqÞ; g3ðqÞÞ , ðg2ðqÞ; gðqÞÞ; k ¼ mþ 1; . . .; 2m:

Continuing this argument inductively leads to the conclusion that

xk [ ðg2nðqÞ; g2n21ðqÞÞ; k ¼ mð2n2 2Þ þ 1; . . .;mð2n2 1Þ

ð4Þ

xk [ ðg2nðqÞ; g2nþ1ðqÞÞ; k ¼ mð2n2 1Þ þ 1; . . .; 2mn:

From these relations and the following claim it is easy to see that xk converges to x* as

k!1:

Claim For every x0 [ ðs; x*Þ

s , x0 , g2ðx0Þ , · · · , x* , · · · , g3ðx0Þ , gðx0Þ , gðsÞ ð5Þ

and

lim
n!1

g2nðx0Þ ¼ lim
n!1

g2nþ1ðx0Þ ¼ x* : ð6Þ

To prove the claim, note that g is decreasing, so if x0 [ ðs; x*Þ then gðx0Þ . gðx*Þ ¼ x*

and gðx0Þ , gðsÞ: Thus

x* , gðx0Þ , gðsÞ: ð7Þ

Applying g to equation (7) in the above fashion gives

g2ðsÞ , g2ðx0Þ , x* :

Now equation (5) follows by simple induction. Statements (6) follow from (5) because g

has no fixed points in ðs; gðsÞÞ other than x* to which the odd and even iterates of g can

converge. The claim is proved.
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It remains to show that x* is stable (dynamically in the sense of Liapunov). Let 1 . 0 be

such that ðx*2 1; x*þ 1Þ , ðs; gðsÞÞ and use the continuity of g to pick d [ ð0; 1Þ small

enough that gðx*2 dÞ , x*þ 1: If x0; . . .; x2mþ1 [ ðx*2 d; x*þ dÞ then it follows from

equations (5) and (4) that

xk [ ðx* 2 d; gðx* 2 dÞÞ , ðx* 2 1; x* þ 1Þ; k $ 1:

Hence x* is stable. A

Condition (H5) is equivalent to x* being an asymptotically stable fixed point of the

function g relative to the interval ðs; gðsÞÞ; see Theorem 2.1.2 in [18]. Hence, Theorem 1 may

alternatively be stated as follows.

Theorem 2 If (H1)–(H3) hold then x* is an asymptotically stable fixed point of equation

(1) if it is an asymptotically stable fixed point of the mapping g.

An obvious corollary of Theorem 2 is the following.

Corollary 1 Let (H1)–(H3) hold and assume that g is continuously differentiable with

g0ðx*Þ . 21: Then x* is an asymptotically stable fixed point of equation (1).

Remarks.

(i) The converse of Theorem 2 (or of Corollary 1) is not true; see, e.g. the Remarks

following Corollary 2 below for an example where equation (1) is known to have an

asymptotically stable fixed point x* but g0ðx*Þ ¼ 21.

(ii) By way of analogy, we note that since g in Theorem A is non-decreasing on I,

conditions (2) are equivalent to x* being an asymptotically stable fixed point of g; see

[18].

(iii) If f is continuous and (H5) holds, then the attractivity portion of Theorem 1 follows

immediately from Theorem B. By (H5), the system in Theorem B(ii), namely,

f ðn; n; . . .; nÞ ¼ gðnÞ ¼ m;

f ðm;m; . . .;mÞ ¼ gðmÞ ¼ n

can have only one solution within the invariant interval ½s; gðsÞ�; namely, x* so that

m ¼ x* ¼ n: If (H4) holds but not (H5), then the smallest invariant interval containing

x* is the one bounded by the points s and gðsÞ of the smallest 2-cycle. But for this

invariant interval, the system of Theorem B yields distinct numbers m ¼ s and n ¼

gðsÞ so Theorem B does not apply in this case, as might be expected.

It may be pointed out that (H5) may hold even if f is not continuous on ½s; gðsÞ�m. In that

case, Theorem B is not applicable but Theorem 1 can still be applied. As an example, let g be

continuous and strictly decreasing on ð21;1Þ and suppose that g has a fixed point x* such

that gðuÞ . x* if u , x* (note that x* is necessarily unique). Now define f as follows:

f ðu1; u2Þ ¼
gðx* Þ; if u1 . x* and u2 , x*

gðu2Þ; otherwise

(
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Then f has the following properties:

f(u, u) ¼ g(u) when u1 ¼ u2 ¼ u;

x* is the only fixed point of f;

f is non-increasing on (21,1)2;

f is not continuous at points (x*, u2) for all u2 , x*;

f is continuous at (x*, x*) but it has points of discontinuity in every neighborhood

of (x*, x*).

If (H5) holds for g, then Theorem 1 shows that the fixed point x* is asymptotically stable

for the difference equation

xn ¼ f ðxn21; xn22Þ:

However, Theorem B cannot be applied to this equation.

3. Rational difference equations

Difference equations that involve rational functions are among the most persistently studied

among non-linear difference equations. Theorem 1 can be used in the study of asymptotic

stability in certain difference equations of this type regardless of their order. In this section,

we apply the results of the preceding section to establish the global asymptotic stability of the

positive fixed points of the following difference equations:

xn ¼
Xm
i¼1

ai

x
pi
n2i

 !p

; n ¼ 1; 2; . . . ð8Þ

and

xn ¼
1Pm

i¼1aix
pi
n2i

� �p ð9Þ

where for i ¼ 1; . . .;m,

x2iþ1; p . 0; ai; pi $ 0;
Xm
i¼1

ai . 0: ð10Þ

Note that the substitution

yn ¼
1

xn
ð11Þ

transforms (9) into (8), and conversely. The asymptotic stability of the unique positive

equilibrium of a special case of equation (9) in which pi ¼ 1 and ai . 0 for all i is proved in

[1]; also see [12, Section 3.3]. We need only equation (8) here. Equations similar to (8) have

been studied extensively in the literature. For instance, results concerning the global

asymptotic stability of the positive fixed point of equations of this type (with p ¼ 1) appear in

[7,13,15–17,19]. In [17] a particularly detailed account of equation (8) and its
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non-autonomous extension is given for p ¼ 1 using general methods applicable in metric

spaces. In [16] the case with all powers pi ¼ 1 is studied with the aid of the “full limiting

sequences” method discussed in [12]. Equation (11) in particular relates the work in [16] to

that in [1] and indicates that the hypothesis ai . 0 for all i in [1] is essential in this case; see

the remarks following the next corollary.

In addition to extending existing published work to a more general combination of powers,

our next result presents a new and completely different approach to the study of asymptotic

stability in equation (8) that is based on Theorem 1 above.

Corollary 2 Assume that equation (10) holds and further, we have

(a) aq . 0 and 0 , pqp , 1 for at least one q [ {1; 2; . . .;m};

(b) pip # 1 for i ¼ 1; . . .;m.

Then equation (8) has a unique positive fixed point x* which is stable and attracts all

positive solutions of equation (8).

Proof. Define the functions

f u1; u2; . . .; um
� �

¼
def

Xm
i¼1

ai

u
pi
i

 !p

and

gðuÞ ¼
def

f ðu; u; . . .; uÞ ¼
Xm
i¼1

ai

upi

 !p

:

We show that f and g defined here satisfy Hypotheses (H1)–(H5). Clearly f u1; u2; . . .; um
� �

is

non-increasing in each of its coordinates with positive values, and because of aq; pq; the

function gðuÞ is continuous and decreasing for u . 0. Therefore, f and g satisfy (H1) and

(H2) respectively with r0 ¼ 0 and s0 ¼ 1.

Next, since

lim
x!0þ

gðxÞ ¼ 1

we see that (H3) is satisfied for any value of r ¼ 1 for 1 sufficiently close to zero. Hence, it

follows from Lemma 1 that equation (8) has a unique fixed point x* . 0. Note further that

g½ð0;1Þ� , ð0;1Þ since g is continuous and decreasing on ð0;1). It follows that g 2 is

continuous and increasing on ð0;1Þ. We now show that (H5) also holds. Using the definition

of g above, we obtain

g2ðuÞ ¼
Xm
i¼1

aiPm
j¼1aju

2pj

� �ppi
2
64

3
75
p

:
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To establish (H5) it is more convenient to consider the function G defined as

GðuÞ ¼
def g2ðuÞ

u
¼

Xm
i¼1

ai

u1=p
Pm

j¼1aju
2pj

� �pip
2
64

3
75
p

:

We first show that G is decreasing on ð0;1Þ. Let fi be the function in the denominator, i.e.

fiðuÞ ¼ u1=p
Xm
j¼1

aj

upj

 !pip

; i ¼ 1; . . .;m:

Then for each i, the derivative of fi after routine calculation is seen to be

fi
0ðuÞ ¼ u ð1=pÞ21

Xm
j¼1

aj

upj

 !pip21Xm
j¼1

1

p
2 pipjp

� �
aj

upj
:

Condition (b) implies that fi
0ðuÞ $ 0 and by Condition (a), the qth term of the last sum

above is positive for every i. Thus, fi
0ðuÞ . 0 for u . 0 and each i. Therefore, fi is

increasing for every i, which implies that G is decreasing on ð0;1Þ. From this we may

conclude that for u [ 0; x*
� �

,

GðuÞ . G x*ð Þ ¼ 1:

But for u . 0, GðuÞ . 1 if and only if g2ðuÞ . u so (H5) is satisfied with s ¼ r ¼ 1. Thus

by Theorem 1 the fixed point x* is stable and attracts all solutions of equation (8) that start in

ð1; gð1ÞÞ: Since 1 was chosen arbitrarily, we may let 1! 0þ to conclude that x* will attract

all solutions starting in ð0;1Þ; as required. A

Remarks

(i) Condition (a) or some other restriction is necessary in Corollary 2 for ensuring

asymptotic stability. For example, consider the case where pm ¼ p ¼ 1 and ai ¼ 0 for

all i – m (in particular, if m ¼ 1) which would violate (a). In such a case (b) holds, but

gðuÞ ¼
am

u
) g2ðuÞ ¼ u

and (H5) cannot hold. Indeed, in this case equation (8) reduces to

xn ¼
am

xn2m

whose positive solutions all have period 2m: In [15], Corollary 2 is proved (with p ¼ 1)

under the hypotheses ai . 0 for all i and pi , 1 for at least one i. They use a direct

argument pertaining to equation (8) that is different from that used in the proof of

Corollary 2.

(ii) Although Theorem 1 does not apply when pi ¼ p ¼ 1 for i ¼ 1; . . .;m, it does

apply when pi [ {0; 1} for all i; i.e. in the following situation: p ¼ 1 and there is
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a nonempty, proper subset K,
–

{1; . . .;m} such that pj ¼ 0 for all j [ K with ak . 0 for

some k [ K; and pi ¼ 1 for all i � K with al . 0 for some l � K: In this case,

Condition (a) in Corollary 2 does not hold, but equation (8) reduces to

xn ¼ cþ
X
i�K

ai

xn2i

¼ cþ
Xm
i¼1

bi

xn2i

; c . 0; bi ¼ ai if i � K and bi ¼ 0

if i [ K

to which Theorem 1 applies; see [19]. Of course, if pi ¼ 1 for all i but with p , 1; then

Corollary 2 ensures the asymptotic stability of x*:

The next variation of Corollary 2 shows that under suitable hypotheses, x* may be

asymptotically stable if p ¼ 1 and pi . 1 for some i. We note the restrictions involving the

coefficients ai:

Corollary 3 Assume that equation (10) holds and further, we have the following

conditions:

(a) aq; pq . 0 for some q [ {1; 2; . . .;m};

(b) amax . 1, where amax¼
def
max{ai : i ¼ 1; 2; . . .;m}

(c) If pmin¼
def
min{pi : i ¼ 1; 2; . . .;m} then

Xm
i¼1

piai , max a
1

1þpi

i : i ¼ 1; 2; . . .;m

	 
1þpmin

:

Then equation (8) has a unique positive fixed point x* that is asymptotically stable.

Proof. The existence and uniqueness of x* is proved similarly to Corollary 2. The asymptotic

stability follows from Corollary 1 if we show that g0ðx*Þ . 21 where g is the function

defined in the proof of Corollary 2 with p ¼ 1. Note that

x* ¼ gðx* Þ ¼
Xm
i¼1

ai

ðx* Þ pi

so dividing by x* gives

Xm
i¼1

ai

ðx* Þ piþ1
¼ 1:

Thus each term of the above sum is bounded above by 1 which implies that

x* $ a
1=ðpiþ1Þ
i ; i ¼ 1; . . .;m:
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From this and assumption (b) it follows that

x* $ max a
1

1þpi

i : i ¼ 1; 2; . . .;m

	 

. 1:

For convenience, let us define

m ¼ max a
1

1þpi

i : i ¼ 1; 2; . . .;m

	 


and note that for i ¼ 1; . . .;m

1

ðx* Þ piþ1
#

1

ðx* Þ pminþ1
#

1

mpminþ1
:

Hence, by assumption (c),

g0ðx* Þ ¼ 2
Xm
i¼1

aipi

ðx* Þ piþ1
$ 2

1

mpminþ1

Xm
i¼1

aipi . 21

as required. A

For a further application of Theorems 1 and A to difference equations of rational type, see

[6] where the equation

xn ¼
aþ

Pm
i¼1 aixn2i

bþ
Pm

i¼1 bixn2i

; n ¼ 1; 2; . . .

is studied in some detail.

4. Models from biology and medicine

The generality of Theorem 1 makes it applicable to a wide range of applied problems. In this

section, we present applications of Theorem 1 to two different equations taken from

mathematical models in the fields of biology and medicine.

4.1 A single reproductive age class model

Consider a single species that has multiple age classes or stages. Assume that only one of

these age classes or stages are capable of reproduction. Define xn to be the nth age class or

generation of the species. In order to predict the population of the next age class we use a

Kolmogorov-type equation where the generation that is capable of reproducing is multiplied

by a growth function. In particular, we will examine

xn ¼ axn2ke
2ðb1xn21þb2xn22þ...þbmxn2mÞ ð12Þ

where 1 # k # m, a is a measure of the fecundity of generation n 2 k, and the coefficients bi
are a measure of how age class k consumes the available resources. It may be inferred from

the context of the model that

a . 0; bi $ 0; i ¼ 1; . . .;m; with bk . 0: ð13Þ
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This model limits the growth of the species by restricting the amount of resources available

to the species. As the population of the species increases the growth function, g decreases

toward 0. If bi . 0 for all i, then each age class is competing for the available resources.

Similar models have been used in [3,4,8]. We use Theorem 1 to show that equation (12) has a

positive, attracting solution for certain conditions on the parameters.

Corollary 4 Let b ¼
Pm

i¼1bi and note that b $ bk . 0 by equation (13). If

Xm
i¼1;i–k

bi , bk and eb=bk , a , e2; ð14Þ

then x* ¼ ðln aÞ=b is a stable fixed point of equation (12) that attracts all solutions with

initial conditions in the interval 1=bk; e
2b=bka=bk

� �
.

Proof. Define f ðu1; u2; . . .; umÞ : ½0;1Þm ! ½0;1Þ as

f ðu1; u2; . . .; umÞ ¼ auke
2ðb1u1þb2u2þ...þbmumÞ

Then the partial derivatives of f are

›f

›uk
¼ ða2 bkaukÞe

2ðb1u1þb2u2þ...þbmumÞ; ð15Þ

and

›f

›ui
¼ 2biauke

2ðb1u1þb2u2þ...þbmumÞ; 1 # i # m; i – k: ð16Þ

From equations (15) and (16) it follows that f is decreasing for uk . 1=bk and for ui . 0

with i – k. In particular, Hypothesis (H1) is satisfied on the interval ð1=bk;1Þ. Next, we

define

gðuÞ ¼ aue2bu; u $ 0:

Solving the equation gðuÞ ¼ u easily gives the fixed point x* of g and also of equation (12)

as stated above. Note that g is not monotonic but it is decreasing beyond its maximum point

at u ¼ 1=b. Since 1=bk $ 1=b; Hypothesis (H2) is satisfied on the same interval as (H1).

Further, we may take r0 ¼ r ¼ 1=bk and note that (H3) is satisfied because

gðrÞ ¼ g
1

bk

� �
¼

a

bkeb=bk
.

1

bk
¼ r

where the inequality holds by equation (14) since a . eb=bk : Note that this inequality also

assures us that x* . 1=bk: At this stage, we can apply Corollary 1. Since

g0ðuÞ ¼ ae2buð12 buÞ

it follows that g0ðx*Þ ¼ 1 2 bx* ¼ 1 2 ln a . 21 because ln a , 2, a fact that follows from

(14) where a , e2: Thus by Corollary 1, x* is asymptotically stable for (12). Note that the

first inequality in equation (14) is necessary to assure that b=bk , 2 and hence the stated

range for a is not empty.
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To obtain the interval of attractivity, we examine (H5). Let s ¼ 1=bk and consider

g2ðuÞ ¼ a2ue2buð1þae2buÞ; u $ 0:

It is necessary to show that g2ðuÞ . u for u [ ðs; x*Þ: Let bu ¼ y so that

g2 y

b

� �
¼

a2y

beyð1þa=e yÞ
:

Now note that

d

d y
eyð1þa=e yÞ ¼ eyð1þa=e yÞ 1þ

a

ey
2

ay

ey

h i
:

For e , a , e2 and 1 , y , ln ðaÞ, it is true that 1 þ a=ey 2 ay=ey
� �

. 0 since

d

d y
1 þ

a

ey
2

ay

ey

h i
¼ 2

að12 yÞ

ey
2

a

ey

and the right hand side above is zero when y ¼ 2. This is a minimum and since a , e 2,

y , ln ðaÞ , 2 and 1þ
a

ey
2

ay

ey

h i
. 0:

This imples that eyð1þa=e yÞ has a positive derivative and so

eyð1þa=e yÞ , e ln ðaÞð1þa=e ln ðaÞÞ ¼ a2

which implies that g2 y=b
� �

. y=b
� �

a2=a2 ¼ y=b:Thus (H5) holds for ðs; gðsÞÞ where gðsÞ ¼

e2b=bka=bk and the proof is complete. A

Although the ranges on the parameters are restrictive in Corollary 4, the method is

quite general and applies easily to other types of growth functions. For instance, the proof

of the following result is sufficiently similar to the proof of Corollary 4 that we may

omit it.

Corollary 5 Assume that equation (13) holds and let b ¼
Pm

i¼1bi so that

b $ bk . 0. If

Xm
i¼1; i–k

bi , bk and e
b=2bk , a , e; ð17Þ

then x* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln aÞ=b

p
is a stable fixed point of the difference equation

xn ¼ axn2ke
2ðb1x

2
n21

þb2x
2
n22

þ...þbmx
2
n2mÞ

that attracts all solutions starting in the interval 1=
ffiffiffiffiffiffiffi
2bk

p
; e2b=2bka=

ffiffiffiffiffiffiffi
2bk

p� �
.

See [2] for additional results involving the applications of Theorems 1 and A to the more

general exponential type model of population dynamics

xn ¼ ða1xn21 þ · · ·þ amxn2mÞ e
2ðb1x

k
n21

þb2x
k
n22

þ...þbmx
k
n2mÞ
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4.2 Pulse circulation in a ring of cardiac tissue

In [20] it is shown that the circulation of a reentrant action potential pulse in a homogeneous

ring of cardiac tissue (or more generally, a ring of excitable media) may be modelled by the

higher order non-linear difference equation

xn ¼
Xm
i¼1

Cðxn2iÞ2 Aðxn2mÞ ð18Þ

where A : ð0;1Þ! ð0;1Þ is a continuous and increasing function called the “restitution of

action potential” and C : ð0;1Þ! ð0;1Þ is a non-increasing continuous function that

represents the “restitution of conduction time”. The integer m represents the number of

cardiac units (usually aggregates of cells) in the ring and xn represents the “diastolic interval”

or the recovery period of each cardiac unit in cycle (or beat) n. Equation (18) holds when an

action potential pulse reenters the ring and causes abnormal fast beating of the heart

(tachyarrhythmia) that may lead to cardiac arrest. For additional background information on

the ring model and equation (18) see [5,11,20].

Equation (18) which provided the initial motivation for Theorem 1, was shown in [20] to

have an asymptotically stable fixed point x* under certain conditions on A and C. This result

may now also be stated as a corollary of Theorem 1. We define

f ðu1; . . .; umÞ ¼
Xm
i¼1

CðuiÞ2 AðumÞ

and

gðuÞ ¼ f ðu; . . .; uÞ ¼ mCðuÞ2 AðuÞ:

The following is an immediate consequence of Theorem 1.

Corollary 6

(a) Assume that there is r . 0 such that mCðrÞ . AðrÞ þ r (i.e. gðrÞ . r). Then equation

(18) has a unique fixed point x* [ ðr; gðrÞÞ:

(b) If the hypothesis in (a) is satisfied and there is s [ ½r; x*Þ such that g2ðuÞ . u for all

u [ ðs; x*Þ then x* is a stable fixed point of equation (18) that attracts every solution

starting in the inverval ðs; gðsÞÞ:

The physical interpretation of Corollary 6 is that the period of the circulating pulse

approaches the fixed value x* that in cardiac physiology is usually measured in milliseconds.

Often exponential type functions are used to representA andC in the cardiac ring literature, e.g.

AðtÞ ¼ a2 be2st; CðtÞ ¼ cþ de2vt

where the parameters a; b; c; d;s;v . 0. Over certain ranges of these parameters the

hypotheses of Corollary 6 are satisfied and thus every solution of

xn ¼ d
Xm
i¼1

e2vxn2i þ be2sxn2m þ mc2 a

Asymptotic stability for difference equations 121



that starts in a suitable invariant interval converges to a unique fixed point x*: See [20] for

examples and more details.

5. Conclusion

The preceding corollaries indicate a range of different problems that can be studied with the

aid of Theorems 1 and 2. However, it is clear that we cannot give a full indication of the range

of applicability of Theorems 1 and 2 and their mirror image version Theorem A in a single

paper. Other applications have appeared in the literature as sited above and additional uses of

these theorems will undoubtedly be observed again. These facts also highlight the potential

importance of the more recent Theorem B in future applications because of the high degree

of versatility of that result.

Certainly what may be known about the one dimensional map g in Theorem A or

Theorem 1 often tells us just a part of the story as far as the full behavior of the difference

equation (1) is concerned. This is especially apparent in the case of equation (12) and similar

equations that involve mappings that are not monotonic over their entire domains, though

the non-necessity exists also in the completely monotonic cases as well. On the other hand,

Theorems A, B and Theorem 1 can provide, in many cases where other tools are lacking,

a solid starting point from which a deeper study of a particular equation of higher order may

commence.
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