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A note: Every homogeneous difference equation of degree one admits
a reduction in order

Hassan Sedaghat*

Department of Mathematics, Virginia Commonwealth University, Richmond, VA, USA

(Received 15 January 2008; final version received 8 May 2008 )

Every difference equation xnþ1 ¼ fn(xn, xn21, . . . , xn2k) of order k þ 1 with each
mapping fn being homogeneous of degree 1 on a group G is shown to be equivalent to a
system consisting of an equation of order k and a linear equation of order 1.

Keywords: order reduction; homogeneous; degree 1; non-autonomous

Let G be a nontrivial group and consider the non-autonomous difference equation of order

k þ 1

xnþ1 ¼ f nðxn; xn21; . . . ; xn2kÞ; n ¼ 0; 1; 2; . . . ; ð1Þ

where xn [ G and fn :D ! G for every n. The domainD , G kþ1 is such that the projection of

D into each of the k þ 1 coordinates equalsG and thatFn(D) , D i.e.D is invariant under the

unfolding Fn(u0, . . . , uk) ¼ ( fn(u0, . . . , uk),u0, . . . , uk21) of fn for every n. Equation (1)

recursively generates a solution or orbit {xn}
1
n¼21 in G from a set of initial values

x0,x21, . . . ,x2k in G.

The group structure provides a suitable context for our main result, but in most

applications G is a substructure of a more complex object such as a vector space or an

algebra possessing a metric topology relative to which the mappings fn are continuous. In

such cases, each fn may be defined on the ambient structure as long as the invariance

condition fn(D) , G holds for all n.

We call a function f :D ! G homogeneous of degree 1 (or HD1) on D relative to G if

f ðtu0; . . . ; tukÞ ¼ tf ðu0; . . . ; ukÞ for all t; ui [ G; i ¼ 0; . . . ; k: ð2Þ

If each fn in (1) is HD1 on D then we say that equation (1) is homogeneous of degree 1.

The case k ¼ 1 for equation (1) is discussed in [3] where the second-order equation

xnþ1 ¼ fn(xn, xn21) with HD1 maps fn is seen to be equivalent to a system of two first-order

equations

unþ1 ¼ hnðunÞ; vnþ1 ¼ vnunþ1:

The next theorem extends this result to an arbitrary integer k $ 1. For further

comments on homogeneous functions and their abundance on groups we refer to [3]; these

comments extent to any number of variables.
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Theorem. Let G be a nontrivial group. If fn is HD1 relative to G for n $ 1 then equation

(1) is equivalent to the following system of equations

rnþ1 ¼ f nð1; r
21
n ; ðrn21rnÞ

21; . . . ; ðrn2kþ1· · ·rn21rnÞ
21Þ

snþ1 ¼ snrnþ1:

Note that the first difference equation above has order k and the second is linear of

order one in sn.

Proof. For each solution {xn}
1
n¼2k of (1) define rn ¼ x21

n21xn for each

n ¼ 2k þ 1, 2k þ 2, . . . Then xnþ1 ¼ xnrnþ1 and

rnþ1 ¼ x21
n xnþ1 ¼ x21

n f nðxn; xn21; xn22; . . . ; xn2kÞ ¼ f n 1; x21
n xn21; x

21
n xn22; . . . ; x

21
n xn2k

� �

¼ f n 1; x21
n xn21; x21

n xn21

� �
x21
n21xn22

� �
; . . . ; x21

n xn21

� �
x21
n21xn22

� �
· · · x21

n2kþ1xn2k

� �� �

¼ f n 1; r21
n ; rn21rnð Þ21; . . . ; rn2kþ1· · ·rn21rn

� �21
� �

:

It follows that {rn}1n¼2kþ1 is a solution of the first equation so that {ðrn; snÞ}
1
n¼2kþ1 is a

solution of the system with sn ¼ xn for n ¼ 2k þ 1, 2k þ 2, . . .

Conversely, let {ðrn; snÞ}
1
n¼2kþ1 be a solution of the system. Then, {rn}1n¼2kþ1 is a

solution of the first equation. Choose x2k [ G and set xn ¼ sn for n ¼ 2k þ 1, 2 k þ 2, . . .

Then, xnþ1 ¼ snþ1 ¼ xnrnþ1 so that

xnþ1 ¼ xnf n 1; r21
n ; rn21rnð Þ21; . . . ; ðrn2kþ1· · ·rn21rnÞ

21
� �

¼ f n xn; xn x21
n21xn

� �21
; xn x21

n22xn
� �21

. . . ; xn x21
n2kxn

� �21
� �

¼ f nðxn; xn21; xn22; . . . ; xn2kÞ:

It follows that the sequence {xn}1n¼2k is a solution of (1).

Remarks 1. (a) The system in the above Theorem can be solved explicitly in terms of a

solution {rn}
1
n¼2kþ1 of the first equation as follows:

sn ¼ s0r1r2· · ·rn n ¼ 1; 2; 3; . . . ð3Þ

Thus for HD1 functions, the above theorem essentially reduces the study of equation (1)

with order k þ 1 to that of the first equation of the system which has order k. In the additive

case, (3) takes the form

sn ¼ s0 þ r1 þ r2 þ · · · þ rn: ð4Þ
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(b) We can quickly construct the first equation of the system in the above Theorem

directly from (1) in the HD1 case by making the substitutions

1 ! xn; ðrn2iþ1· · ·rn21rnÞ
21 ! xn2i for i ¼ 1; 2; . . . ; k: ð5Þ

Recall that 1 represents the group identity. In the additive case, (5) takes the form

0 ! xn; 2rn 2 rn21· · · 2 rn2iþ1 ! xn2i for i ¼ 1; 2; . . . ; k: ð6Þ

The number of different types of HD1 equations is unlimited. Previous studies

involving HD1 equations implicitly use the idea behind the theorem above to reduce

second-order equations to first-order ones; see e.g. [1]. Here, we discuss a few equations

with orders .2 to illustrate the theorem above and some associated concepts.

Example 1. Consider the autonomous rational difference equation

xnþ1 ¼ xn
axn2kþ1

xn2k

þ b

� �
; a; b . 0; aþ b – 1: ð7Þ

With positive initial values, this equation is clearly HD1 relative to the multiplicative

group G of positive real numbers (0,1). The Theorem above states that equation (7) which

has order k þ 1 can be reduced to an equation of order k using (5) as follows:

rnþ1 ¼ 1
aðrn2kþ2· · ·rn21rnÞ

21

ðrn2kþ1· · ·rn21rnÞ
21

þ b

� �
¼ arn2kþ1 þ b: ð8Þ

Using the linear (non-homogeneous) equations (8) and (3) it can be shown easily that

if a þ b , 1 then all solutions of equation (7) converge to zero, eventually monotonically

and that if a þ b . 1 then all solutions of equation (7) converge to 1, eventually

monotonically.

Remarks 2. (a) Example 1 can be extended to the non-autonomous equation

xnþ1 ¼ xn
anxn2kþ1

xn2k

þ bn

� �
;

whose order-reduced form is rnþ1 ¼ anrn2k þ 1 þ bn. In particular, if an ! a and bn ! b

with a, b as above, then the conclusions of example 1 are essentially unchanged.

(b) Note that an HD1 equation on a group G cannot have any isolated fixed points in G.

But after reduction of order, the resulting equation is usually not HD1 and often has

isolated fixed points. This is seen both in examples 1 and 2 below. Thus, the theorem above

is a necessary ‘starter’ for analyzing HD1 equations, because conventional methods of

analysis (e.g., linearization, semicycles, etc.) can often be applied only to the lower order,

non-HD1 equation.

(c) System (2) is a special type of semiconjugate factorization; see [4].

Example 2. The difference equation

xnþ1 ¼ xn þ
b

aþ xn2j 2 xn2k

; a; b . 0; k $ 1; 0 # j # k2 1 ð9Þ
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is HD1 relative to the additive group R. Using (6) we order-reduce it to

rnþ1 ¼
b

aþ rn2j þ rn2jþ1 þ · · · þ rn2kþ1

; rn ¼ xn 2 xn21: ð10Þ

Initial values satisfying x0 . x21 . · · · . x2k result in r0, . . . , r2k þ 1 . 0. This

implies that rn . 0 for n $ 1, so the corresponding solution xn of (9) is increasing and

eventually positive since by (4) xn ¼ x0 þ
Pn

j¼1rj. Equation (10) has known properties;

substituting tn ¼ b/rn transforms (10) into the more familiar tnþ1 ¼ aþ b
Pk21

i¼j 1=tn2j: It is

shown in [2] that all positive solutions of this version of (10) converge to its unique

positive fixed point L ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4bðk2 jÞ

p� �
=2. Thus a straightforward argument

shows that xn/n ! b/L as n ! 1; i.e. xn converges to 1 asymptotically as (b/L)n.

Example 3. This example illustrates a situation where (1) and its order-reduction are both

HD1, although with respect to different groups. We examine the third order equation

xnþ1 ¼ xn þ
aðxn 2 xn21Þ

2

xn21 2 xn22

; a . 0: ð11Þ

Relative to the additive group R, this equation is HD1 and reducible to rnþ1 ¼

ar2
n=rn21 with rn ¼ xn 2 xn21. Note that rn – 0 for n $ 1 if initial values satisfy

x0; x22 – x21: ð12Þ

Relative to the multiplicative group of all nonzero real numbers, the second-order

equation above is HD1 and reducible to the first-order linear equation tnþ1 ¼ atn with

tn ¼ rn/rn21. Now using (3) and (4) we obtain the following formula for solutions of (11)

subject to (12):

xn ¼ x0 þ r0

Xn
k¼1

tk0a
kðkþ1Þ=2; t0 ¼

r0

r21

¼
x0 2 x21

x21 2 x22

:

This representation and standard analysis establish the following types of behavior for

(11): given the increasing nature of xn, if a . 1 then all positive solutions subject to (12)

converge to 1; if a , 1 then all positive solutions subject to (12) converge to a finite

limit that depends on the initial values. If a ¼ 1 then bounded and unbounded solutions

coexist: if x0 þ x22 , 2x21 then lim n!1xn ¼ x0 þ ðx0 2 x21Þ
2=ð2x21 2 x22 2 x0Þ but if

x0 þ x22 $ 2x21 then xn ! 1 as n ! 1.
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