A note: Every homogeneous difference equation of degree one admits a reduction in order

Hassan Sedaghat

To cite this article: Hassan Sedaghat (2009) A note: Every homogeneous difference equation of degree one admits a reduction in order, Journal of Difference Equations and Applications, 15:6, 621-624, DOI: 10.1080/10236190802201453

To link to this article: http://dx.doi.org/10.1080/10236190802201453

Published online: 22 Jun 2009.

Submit your article to this journal

Article views: 40

View related articles

Citing articles: 6 View citing articles Vol. 15, No. 6, June 2009, 621-624

A note: Every homogeneous difference equation of degree one admits a reduction in order

Hassan Sedaghat*
Department of Mathematics, Virginia Commonwealth University, Richmond, VA, USA

(Received 15 January 2008; final version received 8 May 2008)

Abstract

Every difference equation $x_{n+1}=f_{n}\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)$ of order $k+1$ with each mapping f_{n} being homogeneous of degree 1 on a group G is shown to be equivalent to a system consisting of an equation of order k and a linear equation of order 1 .

Keywords: order reduction; homogeneous; degree 1; non-autonomous

Let G be a nontrivial group and consider the non-autonomous difference equation of order $k+1$

$$
\begin{equation*}
x_{n+1}=f_{n}\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $x_{n} \in G$ and $f_{n}: D \rightarrow G$ for every n. The domain $D \subset G^{k+1}$ is such that the projection of D into each of the $k+1$ coordinates equals G and that $F_{n}(D) \subset D$ i.e. D is invariant under the unfolding $F_{n}\left(u_{0}, \ldots, u_{k}\right)=\left(f_{n}\left(u_{0}, \ldots, u_{k}\right), u_{0}, \ldots, u_{k-1}\right)$ of f_{n} for every n. Equation (1) recursively generates a solution or orbit $\left\{x_{n}\right\}_{n=-1}^{\infty}$ in G from a set of initial values $x_{0}, x_{-1}, \ldots, x_{-k}$ in G.

The group structure provides a suitable context for our main result, but in most applications G is a substructure of a more complex object such as a vector space or an algebra possessing a metric topology relative to which the mappings f_{n} are continuous. In such cases, each f_{n} may be defined on the ambient structure as long as the invariance condition $f_{n}(D) \subset G$ holds for all n.

We call a function $f: D \rightarrow G$ homogeneous of degree 1 (or HD1) on D relative to G if

$$
\begin{equation*}
f\left(t u_{0}, \ldots, t u_{k}\right)=t f\left(u_{0}, \ldots, u_{k}\right) \text { for all } t, u_{i} \in G, i=0, \ldots, k \tag{2}
\end{equation*}
$$

If each f_{n} in (1) is HD1 on D then we say that equation (1) is homogeneous of degree 1.
The case $k=1$ for equation (1) is discussed in [3] where the second-order equation $x_{n+1}=f_{n}\left(x_{n}, x_{n-1}\right)$ with HD1 maps f_{n} is seen to be equivalent to a system of two first-order equations

$$
u_{n+1}=h_{n}\left(u_{n}\right), \quad v_{n+1}=v_{n} u_{n+1}
$$

The next theorem extends this result to an arbitrary integer $k \geq 1$. For further comments on homogeneous functions and their abundance on groups we refer to [3]; these comments extent to any number of variables.

[^0]TheOrem. Let G be a nontrivial group. If f_{n} is HD1 relative to G for $n \geq 1$ then equation (1) is equivalent to the following system of equations

$$
\begin{aligned}
& r_{n+1}=f_{n}\left(1, r_{n}^{-1},\left(r_{n-1} r_{n}\right)^{-1}, \ldots,\left(r_{n-k+1} \cdots r_{n-1} r_{n}\right)^{-1}\right) \\
& s_{n+1}=s_{n} r_{n+1}
\end{aligned}
$$

Note that the first difference equation above has order k and the second is linear of order one in s_{n}.

Proof. For each solution $\left\{x_{n}\right\}_{n=-k}^{\infty}$ of (1) define $r_{n}=x_{n-1}^{-1} x_{n}$ for each $n=-k+1,-k+2, \ldots$ Then $x_{n+1}=x_{n} r_{n+1}$ and

$$
\begin{aligned}
r_{n+1} & =x_{n}^{-1} x_{n+1}=x_{n}^{-1} f_{n}\left(x_{n}, x_{n-1}, x_{n-2}, \ldots, x_{n-k}\right)=f_{n}\left(1, x_{n}^{-1} x_{n-1}, x_{n}^{-1} x_{n-2}, \ldots, x_{n}^{-1} x_{n-k}\right) \\
& =f_{n}\left(1, x_{n}^{-1} x_{n-1},\left(x_{n}^{-1} x_{n-1}\right)\left(x_{n-1}^{-1} x_{n-2}\right), \ldots,\left(x_{n}^{-1} x_{n-1}\right)\left(x_{n-1}^{-1} x_{n-2}\right) \cdots\left(x_{n-k+1}^{-1} x_{n-k}\right)\right) \\
& =f_{n}\left(1, r_{n}^{-1},\left(r_{n-1} r_{n}\right)^{-1}, \ldots,\left(r_{n-k+1} \cdots r_{n-1} r_{n}\right)^{-1}\right) .
\end{aligned}
$$

It follows that $\left\{r_{n}\right\}_{n=-k+1}^{\infty}$ is a solution of the first equation so that $\left\{\left(r_{n}, s_{n}\right)\right\}_{n=-k+1}^{\infty}$ is a solution of the system with $s_{n}=x_{n}$ for $n=-k+1,-k+2, \ldots$

Conversely, let $\left\{\left(r_{n}, s_{n}\right)\right\}_{n=-k+1}^{\infty}$ be a solution of the system. Then, $\left\{r_{n}\right\}_{n=-k+1}^{\infty}$ is a solution of the first equation. Choose $x_{-k} \in G$ and set $x_{n}=s_{n}$ for $n=-k+1,-k+2, \ldots$ Then, $x_{n+1}=s_{n+1}=x_{n} r_{n+1}$ so that

$$
\begin{aligned}
x_{n+1} & =x_{n} f_{n}\left(1, r_{n}^{-1},\left(r_{n-1} r_{n}\right)^{-1}, \ldots,\left(r_{n-k+1} \cdots r_{n-1} r_{n}\right)^{-1}\right) \\
& =f_{n}\left(x_{n}, x_{n}\left(x_{n-1}^{-1} x_{n}\right)^{-1}, x_{n}\left(x_{n-2}^{-1} x_{n}\right)^{-1} \ldots, x_{n}\left(x_{n-k}^{-1} x_{n}\right)^{-1}\right) \\
& =f_{n}\left(x_{n}, x_{n-1}, x_{n-2}, \ldots, x_{n-k}\right) .
\end{aligned}
$$

It follows that the sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is a solution of (1).

Remarks 1. (a) The system in the above Theorem can be solved explicitly in terms of a solution $\left\{r_{n}\right\}_{n=-k+1}^{\infty}$ of the first equation as follows:

$$
\begin{equation*}
s_{n}=s_{0} r_{1} r_{2} \cdots r_{n} \quad n=1,2,3, \ldots \tag{3}
\end{equation*}
$$

Thus for HD1 functions, the above theorem essentially reduces the study of equation (1) with order $k+1$ to that of the first equation of the system which has order k. In the additive case, (3) takes the form

$$
\begin{equation*}
s_{n}=s_{0}+r_{1}+r_{2}+\cdots+r_{n} \tag{4}
\end{equation*}
$$

(b) We can quickly construct the first equation of the system in the above Theorem directly from (1) in the HD1 case by making the substitutions

$$
\begin{equation*}
1 \rightarrow x_{n}, \quad\left(r_{n-i+1} \cdots r_{n-1} r_{n}\right)^{-1} \rightarrow x_{n-i} \text { for } i=1,2, \ldots, k \tag{5}
\end{equation*}
$$

Recall that 1 represents the group identity. In the additive case, (5) takes the form

$$
\begin{equation*}
0 \rightarrow x_{n}, \quad-r_{n}-r_{n-1} \cdots-r_{n-i+1} \rightarrow x_{n-i} \quad \text { for } i=1,2, \ldots, k \tag{6}
\end{equation*}
$$

The number of different types of HD1 equations is unlimited. Previous studies involving HD1 equations implicitly use the idea behind the theorem above to reduce second-order equations to first-order ones; see e.g. [1]. Here, we discuss a few equations with orders >2 to illustrate the theorem above and some associated concepts.

Example 1. Consider the autonomous rational difference equation

$$
\begin{equation*}
x_{n+1}=x_{n}\left(\frac{a x_{n-k+1}}{x_{n-k}}+b\right), \quad a, b>0, a+b \neq 1 \tag{7}
\end{equation*}
$$

With positive initial values, this equation is clearly HD1 relative to the multiplicative group G of positive real numbers $(0, \infty)$. The Theorem above states that equation (7) which has order $k+1$ can be reduced to an equation of order k using (5) as follows:

$$
\begin{equation*}
r_{n+1}=1\left(\frac{a\left(r_{n-k+2} \cdots r_{n-1} r_{n}\right)^{-1}}{\left(r_{n-k+1} \cdots r_{n-1} r_{n}\right)^{-1}}+b\right)=a r_{n-k+1}+b \tag{8}
\end{equation*}
$$

Using the linear (non-homogeneous) equations (8) and (3) it can be shown easily that if $a+b<1$ then all solutions of equation (7) converge to zero, eventually monotonically and that if $a+b>1$ then all solutions of equation (7) converge to ∞, eventually monotonically.

Remarks 2. (a) Example 1 can be extended to the non-autonomous equation

$$
x_{n+1}=x_{n}\left(\frac{a_{n} x_{n-k+1}}{x_{n-k}}+b_{n}\right)
$$

whose order-reduced form is $r_{n+1}=a_{n} r_{n-k+1}+b_{n}$. In particular, if $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ with a, b as above, then the conclusions of example 1 are essentially unchanged.
(b) Note that an HD1 equation on a group G cannot have any isolated fixed points in G. But after reduction of order, the resulting equation is usually not HD1 and often has isolated fixed points. This is seen both in examples 1 and 2 below. Thus, the theorem above is a necessary 'starter' for analyzing HD1 equations, because conventional methods of analysis (e.g., linearization, semicycles, etc.) can often be applied only to the lower order, non-HD1 equation.
(c) System (2) is a special type of semiconjugate factorization; see [4].

Example 2. The difference equation

$$
\begin{equation*}
x_{n+1}=x_{n}+\frac{b}{a+x_{n-j}-x_{n-k}}, \quad a, b>0, \quad k \geq 1, \quad 0 \leq j \leq k-1 \tag{9}
\end{equation*}
$$

is HD1 relative to the additive group \mathbb{R}. Using (6) we order-reduce it to

$$
\begin{equation*}
r_{n+1}=\frac{b}{a+r_{n-j}+r_{n-j+1}+\cdots+r_{n-k+1}}, \quad r_{n}=x_{n}-x_{n-1} . \tag{10}
\end{equation*}
$$

Initial values satisfying $x_{0}>x_{-1}>\ldots>x_{-k}$ result in $r_{0}, \ldots, r_{-k+1}>0$. This implies that $r_{n}>0$ for $n \geq 1$, so the corresponding solution x_{n} of (9) is increasing and eventually positive since by (4) $x_{n}=x_{0}+\sum_{j=1}^{n} r_{j}$. Equation (10) has known properties; substituting $t_{n}=b / r_{n}$ transforms (10) into the more familiar $t_{n+1}=a+b \sum_{i=j}^{k-1} 1 / t_{n-j}$. It is shown in [2] that all positive solutions of this version of (10) converge to its unique positive fixed point $L=\left(a+\sqrt{a^{2}+4 b(k-j)}\right) / 2$. Thus a straightforward argument shows that $x_{n} / n \rightarrow b / L$ as $n \rightarrow \infty$; i.e. x_{n} converges to ∞ asymptotically as $(b / L) n$.

Example 3. This example illustrates a situation where (1) and its order-reduction are both HD1, although with respect to different groups. We examine the third order equation

$$
\begin{equation*}
x_{n+1}=x_{n}+\frac{a\left(x_{n}-x_{n-1}\right)^{2}}{x_{n-1}-x_{n-2}}, \quad a>0 \tag{11}
\end{equation*}
$$

Relative to the additive group \mathbb{R}, this equation is HD1 and reducible to $r_{n+1}=$ $a r_{n}^{2} / r_{n-1}$ with $r_{n}=x_{n}-x_{n-1}$. Note that $r_{n} \neq 0$ for $n \geq 1$ if initial values satisfy

$$
\begin{equation*}
x_{0}, x_{-2} \neq x_{-1} \tag{12}
\end{equation*}
$$

Relative to the multiplicative group of all nonzero real numbers, the second-order equation above is HD1 and reducible to the first-order linear equation $t_{n+1}=a t_{n}$ with $t_{n}=r_{n} / r_{n-1}$. Now using (3) and (4) we obtain the following formula for solutions of (11) subject to (12):

$$
x_{n}=x_{0}+r_{0} \sum_{k=1}^{n} t_{0}^{k} a^{k(k+1) / 2}, \quad t_{0}=\frac{r_{0}}{r_{-1}}=\frac{x_{0}-x_{-1}}{x_{-1}-x_{-2}} .
$$

This representation and standard analysis establish the following types of behavior for (11): given the increasing nature of x_{n}, if $a>1$ then all positive solutions subject to (12) converge to ∞; if $a<1$ then all positive solutions subject to (12) converge to a finite limit that depends on the initial values. If $a=1$ then bounded and unbounded solutions coexist: if $x_{0}+x_{-2}<2 x_{-1}$ then $\lim _{n \rightarrow \infty} x_{n}=x_{0}+\left(x_{0}-x_{-1}\right)^{2} /\left(2 x_{-1}-x_{-2}-x_{0}\right)$ but if $x_{0}+x_{-2} \geq 2 x_{-1}$ then $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

References

[1] M. Dehghan, C.M. Kent, R. Mazrooei-Sebdani, N. Ortiz, and H. Sedaghat, Monotone and oscillatory solutions of a rational difference equation containing quadratic terms, J. Difference Eq. Appl. (2008), In press.
[2] Ch.G. Philos, I.K. Purnaras, and Y.G. Sficas, Global attractivity in a nonlinear difference equation, J. Appl. Math. Comput. 62 (1994), pp. 249-258.
[3] H. Sedaghat, All homogeneous second order difference equations of degree one have semiconjugate factorizations, J. Difference Eqs. Appl. 13 (2007), pp. 453-456.
[4] -, Order reducing form symmetries and semiconjugate factorizations of difference equations, http://arxiv.org/abs/0804.3579 (2008).

[^0]: *Email: hsedagha@vcu.edu
 ISSN 1023-6198 print/ISSN 1563-5120 online
 © 2009 Taylor \& Francis
 DOI: 10.1080/10236190802201453
 http://www.informaworld.com

