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 The Impossibility of Unstable, Globally
 Attracting Fixed Points for Continuous

 Mappings of the Line

 Hassan Sedaghat

 It is possible for a fixed point of a dynamical system to locally repel some

 trajectories, yet globally attract all trajectories. For example, consider the mapping

 t(x) = ( O 2x If x < a

 where a is any fixed positive real number. Then the first order difference equation

 Xn+l =fa(xn) n = 0,1,2,3,... (1)

 has a solution

 x =tn(x ) = < ( 2) xO If (-2) xO < a

 for every choice of xO E R (fan represents the n-th iterate of fa under function

 composition). Clearly, once xk 2 a for any k, then xn = 0 for all n > k. In

 particular, every solution of (1) converges to zero, regardless of the choice of xO. In

 this sense, the origin, which is the unique fixed point °f fa, is globally attracting.

 However, if xO + 0, then no matter how close xO is chosen to the origin, xn must

 first exceed a before ultimately reaching the origin. Hence, the origin is unstable

 (in fact, locally repelling).

 The preceding example shows that globally attracting fixed points that are not

 stable can easily occur in one-dimensional dynamical systems such as (1). Since fa

 is discontinuous at x = a, it is natural to ask whether a continuous example of an

 unstable global point attractor can be constructed in one dimension. As the title of

 this note suggests, this is not possible. To see why continuous maps are nice in this

 sense, we need a local or asymptotic stability result from [7, p. 47]. Complete

 definitions of all concepts and terminology used here can be found in [2] and [5].

 Criterion for asymptotic stability of fixed points: A fized point x of a continuous

 map f is asymptotically stable if and only if there is an open interval (a, b) containingx

 such thatf2(x) xfora <x <xandf2(x) <xforx <x < b.

 The preceding criterion is remarkable for not requiring any differentiability

 conditions on f. Now we are ready to demonstrate our main result:

 A continuous mapping of the real line cannot have an unstable fiJced point that is

 globally attracting.

 Suppose, on the contrazy, that a continuous mapping f of the real line has an

 unstable fixed point x that is also globally attracting. Since there can be no

 periodic solutions, the iterate f 2 crosses the identity line only at x. Hence, only
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 one of the following two cases is possible:
 (I) f 2(X) > X for x < x and f 2(X) < X for x > x;

 (II) f2(x) < x for x < x, or f2(x) > x for x > x.

 By the preceding Criterion, Case (I) implies stability and must therefore be
 ruled out; this leaves Case (II). Assume that f2(x) > x for x > x, and let xO > x.

 Then t2(Xo) > xO; as this implies t2(Xo) > x, repeated applications of f2 to xO

 generate the increasing sequence

 x < xo < t2(Xo) < f4(xo) < **f

 By continuity, t2n(Xo) °° as n oo, implying that {tn(xO)} does not converge to

 x. The case f2(x) < x for x < x reaches a similar contradiction, so we conclude
 that our original assumption on x was false.

 A natural question with regard to the preceding impossibility result is whether

 one dimensionality is necessary (in addition to continuity) in order to rule out the

 existence of unstable global point attractors. The answer is indeed affirmative, and

 examples of continuous (in fact, differentiable) planar maps having unstable,
 globally attracting fixed points exist in the literature; see, e.g., [4, p. 90], or the

 discretization of the continuous time example in [1, p: 59]. Unstable fixed points

 that are globally attracting can also arise in a continuous second order difference
 equation, which is a very special type of a two dimensional system. Generally, a

 second order difference equation has the form

 Yn+l =F(YnsYn-l) n = O,1,2,3,..., (2)

 where F: R2 R and real numbers YO, Y-1 are specified as initial conditions. A

 fixed point of (2) is a solution of F(y, y) = y. The particular F that we discuss here

 is not an artificial construct of purely theoretical interest; rather, it comes from the

 classical Hicks model of the trade cycle, an early mathematical model that aimed
 to explain well-documented fluctuations in economic output or GNP that cause
 recessions periodically; see [3]. The simplified, static Hicks model with a single-

 period lag is given by equation (2) in which F is the continuous, piecewise linear

 mapping

 F(u,v) = min{K,a + bu + cmax{u-v,d}} (3)

 with constants a, c > O, d < O, O < b < 1, and K > a/(1 - b). The ratio a/(1 - b)

 gives the unique fixed point (or equilibrium) y of the Hicks equation; for an

 explanation of the general Hicks model and the details of all derivations, see [6]. In
 particular, the negative number d is what Hicks calls the "floor level of induced
 investment." It is shown in [6] that, under these hypotheses, every non-equilibrium

 solution of (3) executes bounded, non-decaying oscillations about the unstable (and

 non-attracting) fixed point, as is expected of the "business cycle." But what
 happens when d approaches zero? It is in the limiting case d = O of the Hicks

 equation that the fixed point y turns into a global attractor, which is unstable if

 c > (1 + 21 - b )2 (4)

 To see this, choose Y-1 = Y and yO = Y + £, where £ > O iS small enough so that

 yO < K. Then the trajectory {Yn} develops according to the linear difference
 equation

 Yn+l = a + (b + C)yn-Cyn_ls

 which has exponentially divergent solutions, since condition (4) implies the exis-
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 [The tw works are] a place also for profound mathematical
 meditation. It was in the left-hand ttypot of the Pequeds with the
 soapstone diligently circling rollnd me that I 97as first indirectly
 struck by the remarkable fact? that in geometxy all bodies gliding
 along the cycloid, my soapstone for example, will descend from any
 point in precisely the same time.

 Herman MelYillts Moby Dick, Chapter XCVI, Ae T*Works
 Contr}buted by Karl Davids Wells College

 tence of eigenvalues with magnitude greater than 1. Hence, y is unstable. Upon

 reaching K, however, the trajectory bounces down and obeys the first order

 equation

 Yn+1 = a + byn,

 whose solution clearly converges to y. Generalizing this argument to arbitrary pairs

 of initial conditions is not hard, and establishes that y is globally attracting.
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