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Sufficient conditions for the persistent (non-decaying) oscillations of the bounded trajectories of the 
delay difference equation 

X" = F(x".,, . . ., x ~ . ~ )  
are obtained. Applications include the Hicks equation for the trade cycle with arbitrary lag structure. 
The case rn = 2 of second order equations is discussed in greater detail with applications to certain 
rational recursive sequences and to a generic extension of the Hicks equation with a one-period lag. 

Keywords: persistent oscillations; boundedness; repelling fixed points; Hicks equation 

1 INTRODUCTION 

In a classic 1950 monograph [7], the Nobel Prize-winning economist J.R. Hicks 
proposed a model for the business or trade cycle that was based on a nonlinear 
delay difference equation. Widely recognized as a classic in macroeconomics, 
the Hicks model is perhaps the oldest application of nonlinear difference equa- 
tions of order greater than l outside of mathematics. Hicks claimed (and so 
believed) that his hypotheses on the various economic parameters in his equation 
implied persistent oscillation of the output trajectories. However, Hicks never 
gave a proof of his claim thal was independent of the delay pattern (see [18] and 
the Historical Remarks below). The autonomous Hicks equation for relative out- 
put is an instance of the m-th order equation 

x , , = F ( x ~ - , , x ~ . ~  ,..., xnJ, n = 1 , 2 , 3  ,... (1) 
with initial values x,,, ..., xo€[O,~). We assume throughout this paper that F: 
[O,m)*-.[O,co) is continuous, and obtain sufficient conditions for the persistent 
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32h HASSAN SEDAGHA?' 

and bounded oscillation of non-trivial solutions of (1) and some of its special 
cases. In particular, we prove the oscillatory character of Hicksian output trajec- 
tories regardless of the investment-consumption lag structure. 

Another significant instance of (1) occurs in the mathematical literature in the 
form of the following general equation 

x,,=x, tf(x,, ,.x,.? ..., x ,,-,, ), n =  1 , 2 , 3  , . . .  (2) 
whose permanence and global attractivity are analyzed in [ l l ,  pp. 35-45] under 
certain conditions on the function f (see Lemma 1 below with regard to perma- 
nence). The study of this equation is motivated in part by the growing effort in 
analyzing the dynamical behavior of rational recursive sequences; the latter 
sequences and the equations which generate them are seen in several biological 
models (see, e.g., [ I  1 ,  Chapters 3. 41). 

Concerning Eq.(2); we supplement the existing permanence and glnbal attrac- 
tivity results by furnishing conditions that imply oscillatory behavior. The oscil- 
lation results discussed here are not of the linearized type analyzed in. e.g., [6. 
Sec. 7.41 or [ l o ] .  For instance, the iinearization of the Hicks equation at its 
unique fixed point yields monotonically divergent solutions for a notable range 
of legitimate parameter values. 

2 GENERAL OSCILLATION RESULTS 

Definitions and Notations. Define the vector form or the siatzdard represenia- 
lion uL ( i  j as a first order system in the usuai way: 

1' z 1,' , r' \ ,o = I 
i L N  ,\-l,, 1,. r l  1 .  2 ,  3. . . .  (3) 

~ h e l e  \',.lO,;i)"'-[O,;i)!'! is &[ined ax 

V X ;  F( , X - ,  . . . , xU'j = [b'(xi,  . . . , XI") ,  XI, . . . , Y'-I j 

We assume that FEC [[O,mjm, [O,m)], so that I/ ,EC [[O,m)", [O,m)"']. Clearly a 
fixed point of (3) takes the form X = (x, . . ., x) where x is a real solution of 

F(x,  ..., x )  = x  

and a fixed point of (I). Note that V, is continuously differentiable at X if and 
only if k. i s  in particular, this is the case if all partial derivatives of F are contin- 
uous at X. Then the fixed point X is said to be linearly repelling (or a "source") if 
all the eigenvalues of the derivative (or Jacobian) DI$(X) of 11, have modulus 
greater than 1. Specifically, given the definition of V, this means that all the roots 
of the jcharactcri\ticj polynomial equalion 
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HICKS BUSINESS CYCLE MODEL 327 

have modulus greater than 1 (see, e.g., [ l l ,  p.141). Under these differentiable cir- 
cumstances, the familiar Hartman-Grobman linearization theorem (see, e.g., 
[I ,  p. 681) implies that if VF is locally a C1 diffeomorphism, then X is repelling 
for V, if and only if the origin is repelling for the linearization D V ~ Q .  

We say that a bounded solution (x,) of (1) oscillates persistently if the 
sequence {x,,} has at least two distinct limit points. Notice that not every oscillat- 
ing sequence oscillates persistently. 

Finally, we call Eq.(l) permanent if there is a positive number M such that for 
each solution {x,} we have x, E [O, M] for all n larger than some positive integer 
no. Further, if there is L E [O. M] such that x, E [L, for all n 2 n,,, then we say 
that (1) ispositivelypermanent. Note that the numbers L, M do not depend on the 
initial conditions. The intervals [0, M] or [L, M] may be called absorbing inter- 
vals for Eq.(l ). 

We now state the basic result of this paper on which are based several persist- 
ent oscillation results for permanent systems and other systems possessing 
non-trivial bounded solutions. 

THEOREM 1. Assume that the following conditions hold: 
- 

a. The equation F(x,. . ., x)  = x has a finite number of solutions 0 < x, <. . .< xk em; 

h. For i = I, . . . , m, ill;/ an' exist continuously at 4. = ((;,,-. . . , xj), 3nd evely root 
of the characteristic po(ynornia1 Am - , ~F/~x'(x,)A* - ' has modulus 
grruler than 1 for each j = ! , . . . , .G;; - - - - 

C. For every j = 1, . . ., k, F(x,, . . ., xi, X) * xJ if x # xj. 

Then all hounded solutions of (1) except the trivial solutions i,, j = 1, . . ., k ,  
oscillate persistently. 

Proof: Let {x,) be a bounded solution of (1); then due to a compact range, {x , )  

must have limit points. Suppose that {x,) has a unique limit point i .  Then 

2 = lirn x, = lim F(xn- ,, ..., xn-,) = F ( i ,  ..., i) 
n- lo  n --. m 

so by (a) we have 2 = i, for some j; i.e., if the solution {x,) converges, it must 
converge to some one of the fixed points xi, 1 s j s k. 

Next, suppose that x, =il for ail n larger than some positive integer r. Then 
- - - 

X. I = xr+,,, = F(X,+~, .  . . ., x,+,, xr) = F(x,, . . ., xj, xr) 

so that by (c), x, = xi. Repeating this argument inductively shows that x, = i, for 
all n r 1 - m. Therefore, the only solution of (1) which is constantly equal to in 
a finite number of iterations is the trivial solution T. 

The preceding argument shows that if {x,) is not a trivial solution, then x,, is 
approaching some fixed point in the sense that -;,I -. 0 as n -. 03, but b,- 
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328 HASSAN SEDAGHAT 

- 
;,I s 0 for infinitly many n. Now (b) in particular implies that ~ F / ~ x " ( x )  # 0 ,  so 
that by the implicit function theorem there is an open neighborhood of & on 

which V, is a C' diffeomorphism, and Ti $Z U, if i * j. Defining X, = (x,, . . ., x,- 
,+,) for n r 0, we see that {X,) is a bounded solution of (3) that is eventually in 
U, and X, -+ &. However, this is prevented by (b) and the Hartman-Grobman the- 
orem. To avoid this contradiction we conclude that every non-trivial solution of 

(1) must have more than one limit point; i.e., they must oscillate persistently. 

COROLLARY 1. The autonomous piecewise linear Hicks Equation: 

where y, is the output in period n and: 

a. d 5 O, c, + d > 0, Yc > 0; 
b. via 0 for i = 1, ..., m-1; 

rn 
c. c i z O f o r i = l ,  ..., mand 2 i = I c i < 1 ;  

j 

Zf in addition: 
e. d<Oandcrn=O: 
f. Every root of the polynomial Am - (c ,  + v,)A"' - 

vm-, has modulus greater than 1; 

then every non-trivial solution of (4) oscillates persistently within [c,, + d, YJ. 

Proot The statement about y is easy to verify, so that in particular, (a) in Theo- 
rem 1 holds. To prove the rest of the corollary, assume d < 0 and define the Hicks 
function H E  C([O,w)", [co + d Y,]) as 

rn 
1 

~ ( y  . . . . ,yrn~ = min!yc, c,, + 2 ciyi + k'vi(yi-yi+ I ) ] }  

i =  l i =  l 

Then H(Q =y, 
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and 

Thus, (b) in Theorem 1 holds by (f) here. We show next that Theorem l(c) is 
also true. We note that 

m-I 

~ ( j ,  ..., j , y )  = min ~ ~ r m a x { d , v , , ( ~ - ~ ) }  

so if ~ ( j ,  ..., y, y )  = j ,  then we have 

From the definition of )I it follows that the right hand side of preceding equa- 
tion is zero, so that the only solution of the equation is y = y. Hence (c) in Theo- 
rem 1 is also satisfied. Now, observing that for every solution of (4), y, E [c,; + d, 
Y,]) for all n 2 1, Theorem 1 may be applied to conclude the proof. 

Remarks 

It may be noticed that with H having a compact range in the positive reals, the 
Hicks equation is trivially positively permanent. The problem of permanence 
is more difficult in generic extensions of the Hicks equation where the "ceil- 
ing" term Y, does not appear. See Lemma 4 below. 

Hicks did not explicitly require that c, = 0. This condition is necessary for 
Theorem l(c) and for local invertibility in (b); without them non-trivial, non- 
oscillating trajectories can arise. For instance, let m = 2 in (4) and suppose 
that v, > 1, c, > 0. If (y ,-,, yk) = C;-dlcz, y) for some k, then y, = y for n 2 k; 
hence, the set of all initial pairs (y.,,y,) for which such a k exists, leads to 
eventually constant solutions for the second order Hicks equation. This 
example also shows that while condition (b) implies (c) locally in Theorem 1, 
we need (c) globally there. 

If m = 1 in Theorem 1, then condition (c) of the theorem is to be interpreted as 
F(x) ir x if x z x. This condition requires that k = 1 a h  well; i.e., the fixed point 
must be unique in the first order case for Theorem 1 to apply. The existence 
of additional fixed points gives rise to eventually constant solutions which 
need not be rare in general. 
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330 HASSAh' SEDAGHAT 

4. It is not enough for the to be unstable; if some eigenvalue of DV,(T) has 
modulus less than or equal to 1 for any j, then the stable set of 7 complicates 
the situation as seen in Remark 2 above. Still, if the instability is of linear or 
hyperbolic type, Theorem 1 might hold under additional restrictions. 1f is 
unstable in a nonlinear way for some j (i.e., DVAT) is either undefined or 
else has eigenvalues of unit modulus), then Theorem 1 may be false, as dem- 
onstrated by the following example. 

Example. (An unstable global point attractor in the Hicks equation) Consider 
the special second order, boundary equation (d = 0 )  of Hicks 

y, = min f Y,, co + cy,., + v max b,, - Y , - ~ , O )  1 (5) 
obtained from (4) by setting rn = 2, d = 0 ,  c ,  = c E [0,1), c ,  = 0, and v 2 
(1 + K c  ):. Then the fixed point y = c, J(1-c) is unique and every solution of 
the linear equation 

V, = Cii + Cy,q-l + ! , ' ( Y ~ . ~  -y,,-J . .. 
- 

is monotonically divergent. So if y-,= ): and y, = y + E for any E > 0, then y, 
increases monotonically until it reaches Y,; it follows that y is unstable. Note, 
however, that the Hicks function in this case, namely, 

H(xl ,  x2) = min{Y,, c, + exL + 11 max{xl-x2, 0)) 

is not differentiable at G,:), so that the instablility of y is of nonlinear type. We 
now show that every solution of (5) converges t o y  so that Theorem 1 fails. Let 
{y,} be any solution of (S), and note that because of Y, and the instability of j, 
there is a k 2 2 such that Ayk-, = yk-  yk-, s 0. If also Ayk-Z s 0, then using (5 )  and 
subtracting, we have 

) I~+~ - J  - Av.=~.Av:  . < f l  k - ,K - - , K - t  - - 

which implies Ay,,, = CAY,. Applying this argument inductively, we find that 

A-v,, = C"-~A-V~ n 2 k. (6) 

Now suppost: that Ayk-2 > 0 2 Ayk-, ; then the trajectory has turned around 
because of Y,. Thus either yk-l = Yc or yk = Yc, but yk-2 < Yc. In either case, yk,, 5 y, 
so that Ayk 5 0 s d and thus Ayk+: = cAyk. Again, using induction we obtain (6). In 
particular, for all n 2 k, (6 )  implies that Ay,, 5 0, so that (5 )  reduces to the first 
order equation 

yn = cy,-: + co n 2 k 
whose solution y,, = pen" + !, where p is a constant, converges to y. This shows 
that the fixed point; is an unstable global attractor. Such fixed points have been 
noted before in the literature for general planar systems; see [4, p. 1091, [13, p.901 
and for a continuous time example, see [19, p. 651 (although the last one has 
actually two fixed points). Our example here displays a globally attracting, 
unstable fixed point in a second order equation, which is, of course, a very spe- 
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cia1 type of planar system. The sensitivity of solutions of (5) to slight external 
perturbations is discussed in [18]. 

Historical Remarks 

The theory of the "business cycle," namely, the observed and well-documented 
tluctuations in employment, total output (or the GNP), investment, etc. which are 
responsible for recurrent recessions and changing levels of inflation and unem- 
ployment has been and continues to be an important source of significant mathe- 
matical problems in economic dynamics. Mathematical models analyzing the 
economic mechanisms capable of producing steady oscillations in the total out- 
put of an economy date back to the 1930's. One of the earliest discrete nlodels is 
the second-order, linear model of P. Samilelson which appeared in a 1939 paper 
1151 and was influenced by the work of the economist A. Hansen. This model 
attracted some attention because with its aid, Samuelson was able io show the 
emergence of cycles simply and rigorously as a consequence of the interaction 
between the Aftalion-Clark "acceleration principle" and the famous Keynesian 
''m~iltiplier effect." 

It was soon noticed that the linear model had fundamental defects, namely, 
exempting the exceptional periodic case, the oscillations in output were either 
damped or explosive; even the periodic case was questioned since its arnpli~ude: 
depended on the initial conditions. These criticisms highlighted the need for the 
introduction of nonlinear stablizing effects that could give rise to bounded and 
persistent oscillations. With the exception of one additional, though largely 
igmrr:!! cffort by Samurlwn [I  61. all well-known nonlinear modek before 1050 
were proposed in continuous time (the most prominent of which is Kaldor'> 
rnodei; see [9] or the more rigorous mathematical exposition in 131,). Thcn, iii 

1950. Hicks formulated his model in terms of a noniiizear deluy difirencc cquu- 
tion. At its core, Hicks's oscillator is essentially Samuelson's linear accelera- 
tor-multiplier mechanism, although Hicks adds on some of the nonlinear , 

stablizers that one observes in the econoiiiji (i.e., a growth ceiling due t:: fu!! uti- 
lization of existing labor and natural resources, as well as a minimum or "floor" 
level of net investment). The Hicks niodel has since appearcd in iwious sirnpli- 
fied (and occasionally erroneous) forms throughout the economic liter, n 1 urc. 
Other discrete models of the business cycle were proposed after 171 debuted. 
some of which included economic parameters that were either ignored or not 
properly treated by Hicks whi!e others considered non-accelerator type mecha- 
nisms: a sampling of some of these works (as well as several past and recent con- 
tinuous time models such as Goodwin's classic accelerator-hased nonlinear 
model [S]) may be found in 181. 
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132 HASSAN SEDAGHA? 

The model proposed by Hicks is based on a non-autonomous, piecewise linear 
delay difference equation which generates oscillations about an exponentially 
increasing "equilibrium path" (which represents economic growth in the modcl). 
Hicks shows that the ratio of the amplitudes of these oscillations over the rising 
equilibrium value satisfies (in the uniform limit) an a~ltotzornous delay difference 
equation of the same order as the original equation; then he argues (relying on 
piecewise linearity) that all non-trivial solutions of the autonomous equation exe- 
cute bounded, persistent oscillations when the stationary equilibrium is unstable. 

From a strictly mathematical point of view, Hicks's arguments are rather diffi- 
cult to follow as they are blended with economics and scattered all over his 
290-page monograph, not just in the "Mathematical Appendix" (which is con- 
cerned primarily with a detailed though incon~plete analysis of the various lineur 

components of his equation). Equation (4) is a distillation of Hicks's ideas; the 
middle linear section which represents the lagged (or delay) version of Samuel- 
son's accelerator-multiplier mechanism, is listed explicitly by Hicks as Eq.(19.1) 
;- 1 7  ., 1 Q < l  The tevmr --A -1 /the -,.-l:-n,,v:t;nc. :"t-nA..pn.-l h.. U ; - l 7 ~ \  c...,>Af., 
1 1  1 ,  . .  b b ( ( L I I U  U \ L 1 1 L  I I \ I I I I I I I L U I I L I L l l  I I I L I V U U L L U  VJ I11LRJ) JpbLllJ 

the output ceiling and the investment floor, respectively. Our Corollary 1 gives 
~ . . . f f ; ~ ; ~ . ~ t  prrnri;t;r\nc. fr\,. t h e  r ~ c . p ; l l ~ . t ; r \ n c  -f U ; P ~ , ~ ; ~ -  tr.r;eptr\r;er . . , ; t h  -rh; tr - lrrr  
O U L I I b I b I I I  bVIIUIII\III.> L U I  L 1 1 b  VabIIILIIIVIIa V I  L l l C R ~ l l L L l l  L L U J L C L I I I I L L I  V I L l l l  UlV l l lU lJ  

lag structure. 

We now turn to Eq.(2). Befare applying Theorem 1 to this equation, we state a 
fundamental permanence theorem due to G. Ladas and V.L. Kocic [I  1 ,  p.35) as a 
!exma. Permanecce and other bcu~dedne:,:; re:;u!t:; ::re ofte:: aeeded i:: conjuc- 
tion with Theorem 1 since the conditions in the latter do not necessarily imply 
!hc ext~tence uf nun-!r!'visl buunded solutia:?s. 

LEMMA 1 .  Assume that thr.finction f in (2) satisfies the following conditions for 

NZ 2 2: 

a. f tC[(0,m) x [0,m)"-', (O,m)] and + x ' f ( x l ,  x2, . . ., PI) z 0 exists; 

b. f (x i ,  x2, . . ., P) is nonincreasing in x2, . . ., x'"; 

c. The equation fix, . . ., x j  = i has a unique positive soiution i; 
d .  For every x > 0, und u 2 0:  

- - 
ijyx, ii, ..., ii) -/"ix, ii, ..., ii)j(xx ) I 0  

~71th 
- - - - - - - V(X, X ,  . . .J )  f l x , . ~ ,  . . . ,  x)](x - . Y )  4 for x * x .  

Then (2) is positively permanen: with an absorbing itztcrval [i,, MI wizerc: 
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HICKS BUSINESS CYCLE MODEL 

and: 

L = min (5  [f(?r, M, . . . , M)]" in f - xf(x. 0, . . .. 0)) .  
2 05xS.x  

PROPOSITION 1. In addition to (a)-(d) in Lemma I ,  assume that f satisfies the 
following condition: 
e. For i = 1 ,  . . ., m, df/dxi exist contiiguously at = (2, . . ., 3;) and all roots of - rn 

the polynomial hm -x[l + df /ax ' (x)]hrn - -*Ci = 2 df/dxi(X)hm-' have 
modulus greater than 1 .  

Then every non-trivial solution of (2 )  eventually oscillates persistently in the 
absorbing interval [L, M] of Lemma I .  

Proof: We need only verify Condition (c) in THEOREM I .  Condition (el in this 
proposition in particular implies that af/dxm (3 + 0 which together with (b) in 
Lemma 1 yields f (i ,..., 2, x) * 1 for x * 2. 0 

We close this section with the following special case of Eq.(l). 

COROLLARY 2. Let k EC[[O, x),[O,=)] and consider the equation: 

x, = h(x,,) (m 2 1 ) (7) 
Assume that the following conditions hold: 

a. The equation /z(x) = x has a unique solution i > 0; 
b. h-'(i) ={i} ; 

c. The derivative h ' exists continuously at 2 with Ih '(;;)I > 1. 

Thrtr acepi for the triviul solution 2, all snhtions of (7) eventually oscillate 
persistently in the absorbing interval [0, M] where M = sup,, s x  .;h(x). 

Proof: If we define F E C[[O,w)", [O,w)] by F(xl, ..., fl) = h(Y) ,  then X = 
(i, ..., i) are the fixed points of V, and the conditions of Theorem 1 are all satis- 
fied. To show that (7) is permanent, observe that since each solution of (7) is 
obtained by interlacing m solutions of the same equation in first order form, we 
need only consider the first order case m = 1 .  

Let M be as defined in the statement of the corollary. Due to (a)-(c) and the 
continuity of h, we have h(0) > 0 and 

h(x) <x  for x > i (8) 
Also due to continuity of h 'at  2, we have h'(x) < -1 for all x in some sufficiently 
small interval (i - E, i + E). Now the mean-value theorem implies that 

M - x z h ( x ) - h ( T ) > x - x > ~  
for each x E (2 - E, 2). Hence, M > 2 and therefore, h(M) < M. Furthermore, 

x 5 M implies h ( ~ )  5 M. (9) 
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334 HASSAN SEDAGHAT 

The preceding statement is true because if x s x, then h(x) s M by the definition 
of M, while if x < x s M, then h(x) < x 5 M. 

Now let {x,) be an arbitrary solution of (7) with m = 1. From (8) it follows thal 
there is an integer r 21 such that x,. s M. Thus by (9) x, s M for all n 2 r. 

Remarks 

The preceding corollary in particular gives a persistent oscillation result for 
first order equations. Its conditions can be considerably weakened if we allow for 
solutions that are constant in a finite number of iterations; however, additional 
conditions will then be required to ensure that the stable sets of fixed point(s) are 
not too large. Note that if inf,,, h(x) > 0 then (7) is positively permanent. On the 
other hand, if h EC[(O,a), (O,m)] then (7) need not be permanent; a counterexam- 

2 
ple would be x, = llx, - , whose only bounded solution is the trivial one x = 1. 

Requiring that lim,,,+ h(x) > 0 exist would, of course, be equivalent to defining 

h(0) as the limit. 

3 OSCILLATIONS OF SECOND-ORDER EQUATIONS 

In this section, we consider some second-order special cases of the results of the 
preceding section. We begin with the next lemma that gives the necessary and 
sufficient restrictions on parameters for thi fixed point t c ~  be repelling. 

LEMMA 2. The following statements are equivalent: 

a. The origin is a repelling fixedpoint ofthe linear equation: 

X, = pxn-1 + qx,.? 

b. Both roots of the polynomial: 

A2-PA-q=O 

have modulus greater than 1 .  

c. (q l> 1 a n d J q - l ) > b ( .  

ProuJ: We need only show that condition (c) is equivalent to both roots of (10) 
having modulus greater than 1. These roots are 

A [ p - p q ]  and A2= ; [ J I + ~ = ~ ] .  
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CASE 1. Both roots are complex: p2 + 4q c 0; in this case lhiI2 = -q, i = 1, 2 SO 

Ih,) > 1 if and only if q c -1. Also note that since q < -p2/4 we have q < 1-bl in 
this case. 

CASE 2. p2 + 49 2 0 so that both roots are real and 
h, sp /2  s ?Q (1) 

Now h, > 1 if and only if p2 + 49 c ( p  - 2)2, i.e., q c 1 -p.  Because of (11) we 
also havep > 2 and A, > 1. Similarly, A, c -1 if and only if q < 1 +p, withp < -2 
and A, < -1 due to (11). Together with Case 1,  we have now shown that when 
q < - 1, then both roots have modulus greater than I if and only if q < 1 - kl. 

Finally, it remaines to consider the possibility that h, > 1 and A, < -1. This is 
easily seen to be equivalent to the inequality q > 1 + k(. Since this implies q > I ,  
we have completed the proof. 0 

The next result is the second-order version of Theorem 1. 

PROPOSITION 2. Consider Eq.(l) with m = 2 and F = F(x,y). Assume that the 
following conditions hold: 

- 
a. The equation F(x, x) = x has a finite number of solutions 0 c xl c . . . < xk; 
b. Foreveiyj = 1, ..., k ,  F(xj,y) P L ~ , ;  i fy  #;,; 
c. aFldx and aFlay both exist continuously at (xi, i,) for all j = 1 ,  . . ., k, with: 

Then all non-trivial bounded solutions oscillate persistently. 

P K o ~ o s r n o ~  3. Consider Eq.(2) with rn = 2 and f = AX, y). Assume that the fol- 
lowing condition holds in uddition to (a)-(d) in Lemma 1 .. 
e. @'dx and ilfldy both exist continuously at (ij), i = 1.2, with: 

Then all non-trivial solutions of (2) with m = 2 eventually oscillate persistently in 
the absorbing interval [L,  M j  defined in Lemma 1.  

Proposition 3 is easily applicable, as demonstrated by the following. 

COROLLARY 3. The rquation: 

has a unique positive fured point 2. If also: 
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then all  non-trivial solutions of (12) eventually oscillate persistently in the inter- 
val [L, MI where: 

M = m a x ( 5 ,  $1 + 2 1 ~ ) ~ )  L = min(il2, $1 + $/c)[(c + 2)l(c + Md)I2). 

Proof: The fixed points of (12) are zeros of the function 

@(XI = xd+l - (b - C)X - a. 

Since @(O) = -a < 0 and @ is twice continuously differentiable, using elementary 
calculus it can be easily seen that @(x) has precisely one positive zero x for d > 1 
and all positive a ,  b, c; x is thus the unique positive fixed point of (12). If (13) 
also holds, then we have the following bounds on i :  

( b  - c)l/d<x (b  - C)l/d+ al/(d+ll, (14) 
The lower bound is easy to see as @ ((b - c)Iid) = -a < O; as for the upper bound, 
define P = (b  - c)'" and y =  and note that if b = c then $(P + y) = O while if 

b > c then 

$(P + y) = a[(l +PI y)d- I ]  + ((3 + y)(b - c)[(l f?l/Pjd- I -- I] > O 

so that @@ + y) 2 0. 
Next, define 

and note that conditions (a)-(d) of Proposition 3 are easily verified. It remains to 
..-- :c ( - \  n:---+ -- 
V U U ~  ( ~ 1 .  U L I G C L  Luiilputaiian gives 

so that 

By (14) 2 > (b - c) 2 (b - c)l(d + I), so we have the second inequality in (e). Fur- 
ther, from (13) and (14) we see that 

a > ( u ~ - h ) ( P + y ) 2 ( u c - b ) x  

which implies that 

i s . ,  xu > (u - 1)c 2 ci(d- 1). This readily implies the other inequality in (e). The 

bounds L and M of the absorbing interval are easily computed using the formulas 

in Lemma 1. 0 
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Remark 

The results in [1 1, Section 3.41 show that x in Corollary 3 may be globally 
asymptotically stable when d = 1, even if the inequalities concerning a, b, c hold 
for some a 2 1 in (13). In such a case, persistent oscillations obviously do not 
arise; however, decaying oscillations could exist, and their existence may be 
established using linearized oscillation results. 

The next boundedness result, proved in [2],  is similar to Lemma 1 although the 
conclusion is not as strong. 

LEMMA 3. Consider the equation: 

xn= dxv- I Mxn-2) 

and assume that the following conditions hold: 

g EC[[O,co),(O,~)l andf W P ) ,  [OPJ)~; 

g is increasing and f nonincreasing; 

There exist 1, p, q 2 0 and A, S > O such that g(xj 5 A 9  and flx) s Bx-7 !or d l  
x z k  

Eitherp = 00rO <$ < 4q; 
- - - 

The equation g(x)flx) = x has precisely k + 1 solutions 0 s xo < X ,  <. . . < xk c m, 

k 2 0. 

Then every solution of ( 1  5 )  is hounded. 

PROPOSITION 4. Awume that the following conditions hold in addition to 
:a)-($ tr: Lemma 3: 

e. The equation g(x)f(x) = x has a,finite number ofsolutions 0 < xl< . . . < ik < m; 

f. f and g are continuously differentiuble at ;,.for every j = 1 ,  . . . , k and 

Then every non-trivial solution of ( 1  5)  is bounded and oscillating persistently. 

Pro05 Inequalities (16) being just restatements of those in (c) of Proposition 2, 
we need only show that condition (b) in Proposition 2 holds. with 
F(x,y)=g(x)fi). Note for each j that if g(x,)Kv) = <, then since f is nonincreasing 
and by condition ( f )  of this corollary, f'(x) * 0 for all x in some small neighhor- 
hood of xi, we must have y = <. 0 

Proposition 4 may be used, in particular, to establish persistent oscillatory 
behavior where Proposition 3 does not apply. The next result is a case in point. 
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COROILARY 4. Consider the equation: 

and assunze that the Jbllowing conditions hold: 

h2 5 3c, a > max {bc,  ( 2 h  - b)c, (6 - b13} (8) 

Then ( 1  7 )  has a unique fixedpoint x > 0 and all non-trivial solutions of (17) are 
bounded and persistently oscillating. 

Proof: The fixed points of (1 7 )  are the roots of the cubic polynomial 

P(x) = x3- bx2 + cx - a 

Under the restriction b2 - 3c s 0 in (18), P(x) has a non-negative derivative eve- 
rywhere, and hence, oniy one reai root. Since P(U) = -a < O, this real root must be 
positive and it is thus x. Also note that due to (18)? h+ all3 >c'" and 

~ ( b ) = b c - a < 0 ,  ~ ( $ c ) = 2 c &  -bc-a<O,P(b+ 3&)>0. 

Therefore, 

Now to apply Proposition 4, define g(x) = a + bx2 and Ax) = ll(c+x2). Clearly (a), 
(b)  and (e) of Proposition 4 hold; also withp = q = 2, B = 1, A = b + 1 conditions 
( c )  and (d) of Proposition 4 hold with I = all2. We now verify (f). Note that 

since .? >c by (1  9). Further, 

so that the second inequality in (16) holds if 

which is true by (19). Now the application of Proposition 4 completes the proof. 0 
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We close with a direct application of Proposition 2 in the form of an oscillation 
result for a generic extension of the second-order Hicks equation called the 
Goodwin-Hicks equation. namely, 

x,, == u I CX,,. , + g(x ,,-I .x,,.2). (10) 
The background on this equation is given in 1181. The next result, proved in 1171. 
states sufficient conditions for the permanence of (20). We note that if c + 1 then 

is the unique fixed point of (20). 

LEMMA 4. Assume that a, d ure real numbers with d < u urid k t  0 5 c < 1. I f g :  
(-m, m) 4 [ d , ~ )  is nondecreasing und if there is b E (0, l )  and u,, > O such thut 
gjuj 5 bu - u jur u:l ii 2 ii,, theiifo; al! !urge n e?wy  so!utlor! (x,} oF(20) i s  even- 
tuully in the interval [L,Mj, where: 

C~ROLLAKY 5. Assunir thlr following conditions: 

a. g E C[(-m, m), Id, m)j , d < 0; 
b. u + d > O a n d O s c <  1; 
c. g is nondc,creasing t ~ ~ e r y w h t w  and g(0)  = 0; 

d. g cs continuously d$ferc.ritzohlr rrt the o r l p  with g ( i j j  > i ; 
e. There are constants u,, > 0, 0 < b < 1 such lhul gju) I, bu - LC fur u I I  u ;r q,, 

Then :r!! non-t.r!'?G!r! w!!!tio.nv rtf (20)  wi~lr initial vulucr x ,. x,, 2 0 r~wztually 

o.scillulc per.si.stently 1t1 thr intervui [u + d, u,j( i-- e j  + i j. 

Yroctf: Given (a) and (h) above. define l - E C [ [ O , ~ ) Z , [ a  + d, m)l  as 
F(,r,y)=u + c . r + g ( x - y ) ;  x.y 2 0  

and observe that x = u/(l  - c)  is now the unique positive fixed point of (20). Note 
2!sc! !hat !! = g(0) 5 g(uJ SO 

implying that x is in the interior of the ahsorbing interval in thc statement of the 
corollary. Further, if i = F(;, y )  = x + g(.g-y), then (c)  and (d) abovc imply that 
y = i. Hence conditions (a) and (b) of Proposition 2 are satisfied. Since 

condition (c) of Proposition 2 is also easily seen to hold. Thc p o o l  may now be 
completed upon applying Proposition 2 and Lemma 4. With regard to the absorb- 
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340 HASSAN SEDAGHAT 

ing interval, we note that if {x,,) is any solution of (20), then the definition of F 
above shows that x, 2 a + d for all n 2 1. Thus we may set L = 0 in Lemma 4 and 
obtain M = ud(1- c) + 1. 0 

4 CONCLUSION 

We derived above sufficient conditions implying persistent oscillatory behavior 
for many types of difference equations. From the stand-point of the theory, if it is 
known that a particular difference equation possesses non-trivial bounded solu- 
tions and a strongly unstable fixed point, then the results of this paper can 
quickly establish the oscillatory behavior, when it exists. Therefore, extensions 
of Lemmas 1, 3 and 4 would be desirable. In applications (such as the Hicks 
equation) one often has grounds for assuming the existence of non-trivial 
bounded solutions, although as Lemma 4 shows, sometimes it is necessary to 
give a proof of such a fact. 
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