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Global attractivity in a class of non-autonomous, nonlinear, higher
order difference equations

H. Sedaghat*

Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA

(Received 28 February 2012; final version received 22 June 2012)

Non-autonomous, higher order difference equations of type

xnþ1 ¼
Xk
i¼0

aixn2i þ gn
Xk
i¼0

bixn2i

 !

with real variables and parameters have appeared frequently in the literature. These
equations are well defined on Banach algebras, and existing convergence results can be
generalized from real numbers to algebras. Through this generalization and by using a
recently obtained semiconjugate factorization of the above equation, new sufficient
conditions are obtained for the convergence to zero of all solutions of nonlinear
difference equations of the above type. Where reduction of order is possible, these
conditions extend the ranges of parameters for which the origin is a global attractor
even in the case of real variables and parameters.

Keywords: reduction of order; global attractivity; non-autonomous; higher order;
difference equation; Banach algebra

AMS Subject Classification: 39A10; 39A30

1. Introduction

Special cases of the following type of higher order difference equation have frequently

appeared in the literature in different contexts, both pure and applied:

xnþ1 ¼
Xk
i¼0

aixn2i þ gn
Xk
i¼0

bixn2i

 !
; n ¼ 0; 1; 2; . . . : ð1Þ

We assume here that k is a fixed positive integer and for each n, the function gn:X ! X

is defined on a real or complex Banach algebra X with identity. The parameters ai, bi are

fixed elements in X such that

ak – 0 or bk – 0:

Upon iteration, equation (1) generates a unique sequence of points {xn} in X (its

solution) from any given set of k þ 1 initial values x0; x21; . . . ; x2k [ X. The number

k þ 1 is the order of (1).
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The choice of a Banach algebra X is motivated by the fact that (1) is well defined on

any algebra, and further, the foundations that support such a level of generality in the

presence of a norm are already in place. Given that every normed algebra has a

completion as a normed space, taking X to be a Banach algebra is not a significant loss

of generality. On the other hand, all occurrences of (1) in the literature so far and the

existing results for it involve X ¼ R, the set of all real numbers. Thus, readers who are

not interested in algebras may simply consider all parameters and variables to be real

numbers.

Special cases of equation (1) on the set of real numbers appeared in the classical

economic models of the business cycle in the twentieth century in the works of Hicks [8],

Puu [17], Samuelson [18] and others; see [21], Section 5.1 for some background and

references. Other special cases of (1) occurred later in mathematical studies of biological

models ranging from whale populations to neuron activity; see, e.g. Clark [2], Fisher and

Goh [5], Hamaya [7] and Section 2.5 in Kocic and Ladas [11].

The dynamics of special cases of (1) with X ¼ R have been investigated by several

authors. Hamaya uses Liapunov and semicycle methods in [7] to obtain sufficient

conditions for the global attractivity of the origin for the following special case of (1)

xnþ1 ¼ axn þ a tan h xn 2
Xk
i¼1

bixn2i

 !

with 0 # a , 1, a . 0 and bi $ 0. These results can also be obtained using only the

contraction method in [20]. The results in [20] are also used in [21], Section 4.3D, to prove

the global asymptotic stability of the origin for an autonomous special case of (1) with

ai bi $ 0 for all i and gn ¼ g for all n, where g is a continuous, non-negative function. The

study of global attractivity and stability of fixed points for other special cases of (1) appear

in [6] and [9]; also see [11], Section 6.9.

The second-order case (k ¼ 1) has been studied in greater depth. Kent and Sedaghat

obtain sufficient conditions in [10] for the boundedness and global asymptotic stability of

xnþ1 ¼ cxn þ gðxn 2 xn21Þ: ð2Þ

Also see [22]. In [4], El-Morshedy improves the convergence results of [10] for (2)

and also gives necessary and sufficient conditions for the occurrence of oscillations.

The boundedness of solutions of (2) is studied in [19] and periodic and monotone

solutions of (2) are discussed in [23]. Li and Zhang study the bifurcations of solutions

of (2) in [13]; their results include the Neimark–Sacker bifurcation (discrete analogue

of Hopf).

A more general form of (2), i.e. the following equation

xnþ1 ¼ axn þ bxn21 þ gnðxn 2 cxn21Þ ð3Þ

is studied in [24] where sufficient conditions for the occurrence of periodic solutions, limit

cycles and chaotic behaviour are obtained using reduction of order and factorization of the

above difference equation into a pair of equations of lower order. See [26] for some

background on order reduction methods. These methods are used in [3] to determine

sufficient conditions on parameters for occurrence of limit cycles and chaos in those

H. Sedaghat1050
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rational difference equations of the following type

xnþ1 ¼
ax2

n þ bx2
n21 þ cxnxn21 þ dxn þ exn21 þ f

axn þ bxn21 þ g

that can be reduced to special cases of (3).

In this paper, by generalizing recent results on reduction of order, together with

generalizations of some convergence results from the literature, we obtain sufficient

conditions for the global attractivity of the origin for (1) in the context of Banach algebras.

These results also extend previously known parameter ranges, even in the case of real

numbers, i.e. X ¼ R and show that convergence may occur in some cases where the

functions gn or the unfolding map of (1) are not contractions.

Unless otherwise stated, throughout the rest of this paper X will denote a real or

complex Banach algebra with identity 1 (since there is very little likelihood of confusion,

1 also denotes the identity of the underlying field of real or complex numbers). For the

basics of Banach algebras, see, e.g. [12] or [27]. For convenience, we list a few basic

features of Banach algebras here.

Each Banach algebra is a Banach space together with a multiplication operation xy that

is associative, distributes over addition and satisfies the norm inequality

jxyj # jxkyj ð4Þ

with j1j ¼ 1. The multiplication by real or complex numbers (or more generally, elements

of an underlying field of scalars) that are inherited from the vector space structure of X is

made consistent with the main multiplication by assuming that the following equalities

hold for all scalars a:

aðxyÞ ¼ ðaxÞy ¼ xðayÞ:

Elements of type a1 for every scalar a are the constants in X. The set R (C) is a real

(complex) commutative Banach algebra with identity over the field of real (complex)

numbers with respect to the ordinary addition and multiplication of complex numbers and

the absolute value as norm. Less trivially, the Banach space C[0,1] of all continuous real-

valued functions on the interval [0,1] with the sup (or max) norm forms a commutative,

real Banach algebra relative to the ordinary multiplication of functions. The identity

element is the constant function x(r) ¼ 1 for all r [ [0,1]. The other constants in C[0,1]

are just the constant functions on [0,1].

An element x of a Banach algebra X is invertible, or a unit, if there is x 21 [ X (the

inverse of x) such that x 21x ¼ 1. The collection of all invertible elements of X forms a

group G (the group of units) that contains all constants (non-zero). For each u [ G if x [ X

satisfies the inequality

jx2 uj #
1

ju21j
;

then it can be shown that x [ G. It follows that G is open relative to the metric topology of

X and contains an open ball of radius 1/ju 21j centred about each u [ G. Since the zero

element is not invertible, G – X. If X is either R or C then G ¼ Xn{0}. In the algebra

C[0,1] units are functions that do not assume the (scalar) value 0 (i.e. their graphs do not

cross the ‘x-axis’).

Journal of Difference Equations and Applications 1051
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2. General results on convergence

Consider the non-autonomous difference equation

xnþ1 ¼ f nðxn; xn21; . . . ; xn2kÞ ð5Þ

with a given sequence of functions f n : Xkþ1 ! X. We say that the origin is globally

exponentially stable if all solutions {xn} of (5) in X satisfy the norm inequality

jxnj # cnm;

where c [ (0,1) and m . 0 are real constants such that c is independent of the initial

values x0; x21; . . . ; x2k [ X.

The next result, which is true for all Banach spaces (not just algebras), generalizes

Theorem 3 in [20].

Lemma 1. Let X be a Banach space and assume that for some real a [ (0,1) the functions

fn satisfy the norm inequality

j f nðj0; j1; . . . ; jkÞj # amax{jj0j; . . . ; jjkj}; ð6Þ

for every n and all ðj0; . . . ; jkÞ [ Xkþ1. Then every solution {xn} of (5) with given initial

values x0; x21; . . . ; x2k [ X satisfies

jxnj # an=ðkþ1Þmax{jx0j; jx21j; . . . ; jx2kj}:

Therefore, the origin is globally exponentially stable.

Proof. Let m ¼ max{jx0j; jx21j; . . . ; jx2kj}. If {xn} is the solution of (5) with the given

initial values, then we first claim that jxnj # am for all n $ 1. By (6)

jx1j ¼ j f 0ðx0; x21; . . . ; x2kÞj # amax{jx0j; . . . ; jx2kj} ¼ am

and if for any j $ 1 it is true that jxnj # am for n ¼ 1,2, . . . ,j then

jxjþ1j ¼ j f jðxj; xj21; . . . ; xj2kÞj # amax {jxjj; jxj21j; . . . ; jxj2kj} # amax{m;am} ¼ am:

Therefore, our claim is true by induction. In particular, since 0 , a , 1 we have

shown that jxnj # an=ðkþ1Þm for n ¼ 1,2, . . . ,k þ 1. Now suppose that jxnj # an=ðkþ1Þm is

true for n # m where m $ k þ 1. Then

jxmþ1j ¼ j f mðxm; xm21; . . . ; xm2kÞj # amax {jxmj; jxm21j; . . . ; jxm2kj}

# ammax am=ðkþ1Þ;a ðm21Þ=ðkþ1Þ; . . . ;a ðm2kÞ=ðkþ1Þ
n o

¼ ama ðm2kÞ=ðkþ1Þ

¼ a ðmþ1Þ=ðkþ1Þm

and the proof is complete by induction. A

The above induction argument is used by Berezansky, Braverman and Liz in [1] with

X ¼ R and by Xiao and Yang in [28] in the autonomous case ( fn ¼ f is independent of n)

for general Banach spaces. As we see above, this induction argument generalizes to

H. Sedaghat1052
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non-autonomous equations in Banach spaces. Other approaches that yield convergence

results such as Lemma 1 for X ¼ R are discussed by Liz in [14].

For X ¼ R Lemma 1 is also implied by Theorem 2 in [15] where Memarbashi uses a

contraction argument adapted from Theorem 3 in [20] (exponential stability, autonomous

case in R). Contraction arguments with their geometric flavour are intuitively appealing

and they also work for non-exponential asymptotic stability; see [20] for the autonomous

case and [16] which extends the result in [20] to certain non-autonomous equations.

For a general Banach space, the type of convergence is dictated by the given norm. For

instance, in C[0,1] with the sup, or max, norm convergence to the zero function in Lemma

1 is uniform.

Next, define the following sequence of functions on a Banach algebra X

f nðj0; j1; . . . ; jkÞ ¼
Xk
i¼0

aiji þ gn
Xk
i¼0

biji

 !
: ð7Þ

The following corollary of Lemma 1 generalizes previous convergence theorems proved

for the autonomous case with X ¼ R, e.g. the results in [7] or Theorem 4.3.9(b) in [21].

Lemma 2. Let gn:X ! X be a sequence of functions on a real or complex Banach algebra

X. Assume that there is a real number s . 0 such that

jgnðjÞj # sjjj; j [ X; ð8Þ

for all n and further, for coefficients ai, bi (real or complex) we assume that the inequality

Xk
i¼0

ðjaij þ sjbijÞ , 1 ð9Þ

holds. Then every solution {xn} of (1) with initial values x0; x21; . . . ; x2k [ X satisfies

jxnj # an=ðkþ1Þmax{jx0j; jx21j; . . . ; jx2kj}; a ¼
Xk
i¼0

ðjaij þ sjbijÞ:

Proof. If ðj0; j1; . . . ; jkÞ [ Xkþ1, then by the triangle inequality, (4) and (8)

Xk
i¼0

aiji þ gn
Xk
i¼0

biji

 !�����
����� #

Xk
i¼0

ðjaij þ sjbijÞjjij

#
Xk
i¼0

ðjaij þ sjbijÞ

" #
max{jj0j; . . . ; jjkj}:

Therefore, given (9), by Lemma 1 the origin is globally asymptotically stable. A

Condition (8) implies that the origin is a fixed point of (1) since it implies that

gn(0) ¼ 0 for all n. Except for this restriction, the functions gn are completely arbitrary.

Journal of Difference Equations and Applications 1053
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3. Reduction of order

Under certain conditions a special, order-reducing change of variables splits or factors

equation (1) into a triangular system of two equations of lower order; see [26], Theorem

5.6. The next lemma extends that result from fields to algebras.

Lemma 3. Let gn:X ! X be a sequence of functions on an algebra X with identity (not

necessarily normed) over a field F. If for ai; bi [ X the polynomials

PðjÞ ¼ j kþ1 2
Xk
i¼0

aij
k2i; QðjÞ ¼

Xk
i¼0

bij
k2i

have a common root r [ G, the group of units of X, then each solution {xn} of (1) in X

satisfies

xnþ1 ¼ rxn þ tnþ1; ð10Þ

where the sequence {tn} is the unique solution of the equation:

tnþ1 ¼ 2
Xk21

i¼0

pitn2i þ gn
Xk21

i¼0

qitn2i

 !
ð11Þ

in X with initial values t2i ¼ x2i 2 rx2i21 [ X for i ¼ 0, . . . ,k 2 1 and coefficients

pi ¼ r iþ1 2 a0r
i 2 · · · 2 ai and qi ¼ b0r

i þ b1r
i21 þ · · · þ bi

in X. Conversely, if {tn} is a solution of (11) with initial values t2i [ X then the sequence

{xn} that it generates in X via (10) is a solution of (1).

Proof. Define the functions fn as in (7) and for every j0; v1; . . . ; vk in X, define z0 ¼ j0 and

for j ¼ 1, . . . ,k and fixed g [ G define

zj ¼ ðg21Þ jj0 þ
Xj
i¼1

ðg21Þ j2iþ1vi:

Now the change of variables

tn ¼ xn 2 g xn21 ð12Þ

in equation (1) reduces its order by 1 if and only if the quantity

f nðj0; z1; . . . ; zkÞ2 gj0

is independent of j0 ([26], Theorem 5.1). In this case, the above quantity defines a

sequence of functions fnðv1; . . . ; vkÞ of k variables that yields a difference equation of

H. Sedaghat1054
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order k ([26], Section 5.5). Now, by straightforward calculation

f nðj0; z1; . . . ; zkÞ2 gj0 ¼ ða0 2 gÞj0 þ
Xk
j¼1

aj ðg21Þjj0 2
Xj
i¼1

ðg21Þ j2iþ1vi

 !

þ gn b0j0 þ
Xk
j¼1

bj ðg21Þ jj0 2
Xj
i¼1

ðg21Þ j2iþ1vi

" # !

¼ a0 2 gþ
Xk
j¼1

ajðg
21Þ j

" #
j0 2

Xk
j¼1

aj
Xj
i¼1

ðg21Þ j2iþ1vi

þ gn b0 þ
Xk
j¼1

bjðg
21Þ j

" #
j0 2

Xk
j¼1

bj
Xj
i¼1

ðg21Þ j2iþ1vi

 !
:

The last expression above is independent of j0 (for arbitrary j0) if and only if g can be

chosen such that

a0 2 gþ
Xk
j¼1

ajðg
21Þ j ¼ 0 and b0 þ

Xk
j¼1

bjðg
21Þ j ¼ 0:

Multiplying the two equalities above on the right by g k yields

0 ¼ a0g
k 2 g kþ1 þ

Xk
j¼1

ajðg
21Þ jg k ¼ PðgÞ;

0 ¼ b0g
k þ

Xk
j¼1

bjðg
21Þ jg k ¼ QðgÞ;

so that g must be a common root of the polynomials P and Q.

Now, let g ¼ r be a common root of P and Q in G and define the aforementioned

functions fn as

fnðv1; . . . ; vkÞ ¼ f nðj0; z1; . . . ; zkÞ2 rj0

¼ 2
Xk
j¼1

aj
Xj
i¼1

ðr21Þ j2iþ1vi þ gn 2
Xk
j¼1

bj
Xj
i¼1

ðr21Þ j2iþ1vi

 !

¼ 2
Xk
i¼1

Xk
j¼i

ajðr
21Þ j2iþ1vi þ gn 2

Xk
i¼1

Xk
j¼i

bjðr
21Þ j2iþ1vi

 !
:

For each i ¼ 1, . . . k, since r is a root of the polynomial P it follows that

Xk
j¼i

ajðr
21Þ j2iþ1 ¼ air

k2i þ aiþ1r
k2i21 þ · · · þ ak21rþ ak

� �
ðr21Þk2iþ1

¼ r kþ1 2 a0r
k 2 · · · 2 ai21r

k2iþ1
� �

ðr21Þk2iþ1

¼ r i 2 a0r
i21 2 · · · 2 ai21:

Journal of Difference Equations and Applications 1055
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Similarly, since r is also a root of the polynomial Q it follows that

Xk
j¼i

bjðr
21Þj2iþ1 ¼ bir

k2i þ biþ1r
k2i21 þ · · · þ bk21rþ bk

� �
ðr21Þk2iþ1

¼ 2b0r
k 2 b1r

k21 2 · · · 2 bi21r
k2iþ1

� �
ðr21Þk2iþ1

¼ 2b0r
i21 2 b1r

i22 2 · · · 2 bi21:

Now, if quantities pi and qi are defined as in the statement of this lemma, then the

preceding calculations show that

Xk
j¼i

ajðr
21Þj2iþ1 ¼ pi21 and

Xk
j¼i

bjðr
21Þj2iþ1 ¼ 2qi21:

Using these quantities the functions fn are determined as follows:

fnðv1; . . . ; vkÞ ¼ 2
Xk
i¼1

pi21vi þ gn
Xk
i¼1

qi21vi

 !
:

Identifying ni with the new variables tn2i þ 1 yields a difference equation of order k as

follows:

tnþ1 ¼ fnðtn; . . . ; tn2kþ1Þ

¼ 2
Xk
i¼1

pi21tn2iþ1 þ gn
Xk
i¼1

qi21tn2iþ1

 !

¼ 2
Xk21

i¼0

pitn2i þ gn
Xk21

i¼0

qitn2i

 !
;

which is equation (11). From (12), we obtain (10) and the proof is complete. A

Remarks.

1. The preceding result shows that equation (1) splits into the equivalent pair of

equations (10) and (11) via the change of variables (12) provided that the

polynomials P and Q have a common non-zero root r in the group of units of X.

Equation (11) which is of the same type as (1) but with order reduced by 1 is the

factor equation of (1). Equation (10) which bridges the order (or dimension) gap

between (1) and (11) is the cofactor equation. The pair of equations (10) and (11)

constitutes a semiconjugate factorization of (1). These concepts are from the

general theory discussed in [26]; a limited exposure to some of this theory may be

found in [25].

2. In the special case where bi ¼ 0 for all i (1) reduces to the linear non-homogeneous

difference equation

xnþ1 ¼
Xk
i¼0

aixn2i þ gnð0Þ ð13Þ

with constant coefficients. Since in this case Q is just the zero polynomial, Lemma

3 is applicable with r being any root of P in G. So, as might be expected, when

H. Sedaghat1056

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
C

om
m

on
w

ea
lth

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
7:

52
 2

3 
A

ug
us

t 2
01

3 



X ¼ R the reduction of order is possible if the homogeneous part of (13) has non-

zero eigenvalues. The reduction of order of general linear equations (non-

homogeneous, non-autonomous) on arbitrary fields is discussed in [26], Chapter 7.

3. Solution of polynomials by factorization is problematic in a general Banach algebra

X due to limitations of the cancellation law. Requiring all non-zero elements of X

to be units reduces X to either R or C in commutative cases and to quaternions in

non-commutative cases; see [27]. For general Banach algebras it is possible to

determine, for special cases of (1), whether P and Q have a common root in G; see

the two corollaries in the next section.

4. Equation (11) preserves another aspect of (1): if ai; bi [ {0} < G and P and Q have

a common root r in G, then the numbers pi, qi in Lemma 3 are also units (or zero).

4. Extending the ranges of parameters

The solution of equation (10) in terms of tn is

xn ¼ rnx0 þ
Xn
j¼1

rn2jtj: ð14Þ

This formula may be used to translate various properties of a solution {tn} of (11) into

corresponding properties of the solution {xn} of (1). This is done for equation (3) in [24]

for X ¼ R. Doing the same for (1) more generally yields the following natural

consequence of combining Lemmas 2 and 3.

Theorem 4. Let gn:X ! X be a sequence of functions that satisfy (8) for each n. Then

every solution {xn} of (1) converges to zero if either (a) or (b) below is true:

(a) Inequality (9) holds;

(b) The polynomials P, Q in Lemma 3 have a common root r [ G such that jrj , 1

and

Xk21

i¼0

ðjpij þ sjqijÞ , 1 ð15Þ

with the coefficients pi, qi in the factor equation (11), i ¼ 0,1, . . . ,k 2 1.

Proof.

(a) Convergence in this case is an immediate consequence of Lemma 2.

(b) By an application of Lemma 3 we obtain (11). Then, given (15), an application of

Lemma 2 to (11) implies that

jtnj # an=ðkþ1Þm;

where m ¼ max {jt0j; jt21j; . . . ; jt2kþ1j} with t2i ¼ x2i 2 rx2i21 for i ¼ 0,1, . . . ,

k 2 1 and

a ¼
Xk21

i¼0

ðjpij þ sjqijÞ;
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with pi, qi as given in Lemma 3. Since jr jj # jrj
j

for each j, taking norms in (14)

yields

jxnj # jrj
n
jx0j þ

Xn
j¼1

jrj
n2j

jtjj # jrj
n
jx0j þ mjrj

n
Xn21

j¼0

a1=ðkþ1Þ

jrj

� �j

: ð16Þ

If a1=ðkþ1Þ – jrj then

jxnj # jrj
n
jx0j þ ma1=ðkþ1Þjrj

n21 ½a
1=ðkþ1Þ=jrj�n 2 1

½a1=ðkþ1Þ=jrj�2 1

¼ jrj
n
jx0j þ ma1=ðkþ1Þ a

n=ðkþ1Þ 2 jrj
n

a1=ðkþ1Þ 2 jrj
:

Since a, jrj , 1 it follows that {xn} converges to zero. If a1=ðkþ1Þ ¼ jrj, then (16)

reduces to

jxnj # jrj
n
jx0j þ mjrj

n
n

and by L’Hospital’s rule {xn} again converges to zero. A

Corollary 5. Let gn be functions on X satisfying (8) for all n $ 0. Every solution of the

difference equation

xnþ1 ¼ axn þ gn b0xn þ b1xn21 þ · · · þ bkxn2kð Þ; ð17Þ

a [ G; bi [ X; bk – 0

converges to zero if jaj , 1 and the following conditions hold:

b0a
k þ b1a

k21 þ b2a
k22 þ · · · þ bk ¼ 0; ð18Þ

Xk21

i¼0

jb0a
i þ b1a

i21 þ · · · þ bij ,
1

s
: ð19Þ

Proof. For equation (17) the polynomials P, Q are

PðjÞ ¼ j kþ1 2 aj k; QðjÞ ¼ b0j
k þ b1j

k21 þ · · · þ bk:

Thus r ¼ a is their common root in G if (18) holds. The numbers pi, qi that define the

factor equation (11) in this case are

pi ¼ r iþ1 2 ar i ¼ 0; qi ¼ b0a
i þ b1a

i21 þ · · · þ bi:

Thus, if jaj , 1 then by Theorem 4 every solution of (17) converges to zero. A

Remarks.

1. The parameter range determined by (15) is generally distinct from that given by (9);

hence, Theorem 4 or Corollary 5 may imply convergence to 0 when Lemma 2 does
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not apply and the unfolding map is not a contraction. To illustrate, consider the

following equation on the set of real numbers:

xnþ1 ¼ axn þ an tan hðxn 2 bxn2kÞ; ð20Þ

which is a non-autonomous version of a type of equation discussed in [7]. Suppose

that the sequence {an} of real numbers is bounded by s . 0 and it is otherwise

arbitrary. Then

jantan htj ¼ janktan htj # janktj # sjtj:

for all n and (8) holds. If 0 , jaj , 1 and b ¼ a k, then by Corollary 5 every

solution of (20) converges to zero if

1

s
.
Xk21

i¼0

jaj
i
¼

1 2 jaj
k

1 2 jaj

i.e. if

s ,
1 2 jaj

1 2 jaj
k
: ð21Þ

On the other hand, applying Lemma 2 to (20) with b ¼ a k produces the range

jaj þ sð1 þ jaj
k
Þ , 1 ) s ,

1 2 jaj

1 þ jaj
k
;

which is clearly more restricted than the one given by (21). Note that a and s may

satisfy (21) but with

jaj þ sð1 þ jaj
k
Þ . 1:

2. Equality (18) in Corollary 5 imposes a reduction in the dimension of the parameter

space by permitting one variable to be determined in terms of all the others, e.g.

bk ¼ 2b0a
k 2 b1a

k21 2 · · · 2 bk21a:

This restriction is in fact due to the use of the specific substitution (12) for reduction

of order; this substitution, called the linear form symmetry in [26], need not be the

only one that leads to a semiconjugate factorization. Indeed, form symmetries are

generally not unique and for other types of difference equations, their known form

symmetries do not impose any restrictions on the dimension of their natural

parameter space; see [26] for examples and further details.

Corollary 6. Let gn be functions on X satisfying (8) for all n $ 0. For the difference

equation

xnþ1 ¼ a0xn þ a1xn21 þ · · · þ akxn2k þ gnðxn 2 bxn21Þ; ð22Þ

ai [ X; b [ G; ak – 0
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assume that jbj , 1 and the following conditions hold:

a0b
k þ a1b

k21 þ · · · þ ak ¼ bkþ1; ð23Þ

Xk21

i¼0

jbiþ1 2 a0b
i 2 · · · 2 aij , 1 2 s: ð24Þ

Then every solution of (22) converges to zero.

Proof. The polynomials P, Q in this case are

PðjÞ ¼ j kþ1 2 a0j
k 2 · · · 2 ak; QðjÞ ¼ j k 2 bj k21:

Clearly, Q(b) ¼ 0 and if equality (23) holds then P(b) ¼ 0 too, so Theorem 4 applies.

We calculate the coefficients of the factor equation (11) as q0 ¼ 1, qi ¼ 0 if i – 0 and

pi ¼ biþ1 2 a0b
i 2 · · · 2 ai:

Now, inequality (15) yields (24) via a straightforward calculation:

1 .
Xk21

i¼0

jbiþ1 2 a0b
i 2 · · · 2 aij þ s

¼
Xk21

i¼0

jbiþ1 2 a0b
i 2 · · · 2 aij þ s:

Thus, if jbj , 1 then by Theorem 4 every solution of (22) converges to zero. A

As an application of the preceding corollary, consider the case k ¼ 1, i.e. the second-

order equation

xnþ1 ¼ a0xn þ a1xn21 þ gnðxn 2 bxn21Þ; ð25Þ

which is essentially equation (3) on a Banach algebra X. By Corollary 6, every solution of

(25) converges to zero if the functions gn satisfy (8) and

b [ G; jbj , 1; a0bþ a1 ¼ b2; ja0 2 bj þ s , 1: ð26Þ

On the other hand, according to Lemma 2, every solution of (25) converges to zero if

the functions gn satisfy (8) and

ja0j þ ja1j þ sð1 þ jbjÞ , 1: ð27Þ

Parameter values that do not satisfy (27) may satisfy (26). For comparison, if a1 ¼

b2 2 a0b then (27) may be solved for s to obtain

s ,
1 2 ja0j2 jbka0 2 bj

1 þ jbj
:

This is a stronger constraint on s than s , 1 2 ja0 2 bj from (26), especially if b is

not near 0.
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To illustrate the various aspects of the preceding results in a broader context, consider

the following difference equation of order 2 on the real Banach algebra C[0,1] with given

initial functions x21ðrÞ; x0ðrÞ in C[0,1]:

xnþ1 ¼
ar

r þ 1
xn þ

bðb2 arÞ

ðr þ 1Þ2
xn21 þ

ðr
0

fn xnðsÞ2
b

sþ 1
xn21ðsÞ

� �
ds: ð28Þ

The functions fn : R! R are integrable and for each n they satisfy the absolute value

inequality

jfnðrÞj # sjrj; r [ R;

for some s . 0. Define the coefficient functions

a0ðrÞ ¼
ar

r þ 1
; a1ðrÞ ¼

bðb2 arÞ

ðr þ 1Þ2
; bðrÞ ¼

b

r þ 1

and assume that the following inequalities hold:

0 , b , 1; 3b # a , 2 þ b; s ,
2 þ b2 a

2
:

Then b [ G, b2 2 a0b ¼ bðb2 arÞ=ðr þ 1Þ2 ¼ a1 and the norms of the coefficient

functions satisfy:

ja0j ¼ sup
0#r#1

ar

r þ 1
¼

a

2
; jbj ¼ sup

0#r#1

b

r þ 1
¼ b , 1

and

ja0 2 bj ¼ sup
0#r#1

ar 2 b

r þ 1

����
���� ¼ max

a2 b

2
;b

� �
¼

a2 b

2
, 1 2 s:

It follows that the conditions in (26) are met.

Next, the functions gn : C½0; 1�! C½0; 1� in (25) may be defined as

gnðxÞðrÞ ¼

ðr
0

ðfn+xÞðsÞds;

for r [ ½0; 1� and all n. Their norms satisfy

jgnðxÞj # sup
0#r#1

ðr
0

jfnðxðsÞÞjds # sup
0#r#1

ðr
0

sjxðsÞjds # sjxj sup
0#r#1

r ¼ sjxj:

Therefore, Corollary 6 may be applied to conclude that for every pair of initial

functions x0; x21 [ C½0; 1�, the sequence of functions xn ¼ xnðrÞ that satisfy (28) in C[0,1]

converges exponentially (and uniformly) to the zero function.

It is finally worth mentioning that in the above example a0 � G and jaj $ 1 if a $ 2,

in which case (27) does not hold.
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5. Conclusion and future directions

The preceding corollaries and Theorem 4 are broad applications of the semiconjugate

factorization method to very general equations. In particular, they show that different

patterns of delays may be translated into algebraic problems about the polynomials P and

Q and their root structures.

In some cases a more efficient application of Lemma 3 yields information about the

behaviour of solutions beyond convergence. The next result offers a deeper use of order

reduction in that sense and sets the stage for possible future investigations.

Theorem 7. In equation (25) assume that b [ G with jbj , 1 and a0; a1 [ X such that

a0bþ a1 ¼ b2. If x0; x21 are given initial values for (25) for which the solution of the first-

order equation

tnþ1 ¼ ða0 2 bÞtn þ gnðtnÞ ð29Þ

converges to zero with the initial value t0 ¼ x0 2 bx21, then the corresponding solution of

(25) converges to zero. In particular, if the origin is a global attractor of the solutions of

the first-order equation (29), then it is also a global attractor of the solutions of (25).

Proof. In this case QðjÞ ¼ j2 b so there is only one root b. Now Lemma 3 gives equation

(29) if P(b) ¼ 0, i.e. if a0bþ a1 ¼ b2. Finally, we complete the proof by arguing similarly

to the proof of Theorem 4(b), using (14). A

As an application of Theorem 7, consider the following autonomous equation on the

real numbers

xnþ1 ¼ axn þ bðb2 aÞxn21 þ s tan hðxn 2 bxn21Þ; ð30Þ

where s . 0, 0 , b , 1 and a , b. Equation (29) in this case is

tnþ1 ¼ hðtnÞ; hðjÞ ¼ ða2 bÞjþ s tan hj: ð31Þ

The function h has a fixed point at the origin since h(0) ¼ 0. Furthermore, the origin is

the unique fixed point of h if jhðjÞj , jjj for j – 0. Since h is an odd function, it is enough

to consider j . 0. In this case, hðjÞ , j if and only if s tan hj , ð1 2 aþ bÞj. Since

tan hj , j for j . 0 it follows that hðjÞ , j if

s , 1 2 aþ b: ð32Þ

Given that a , b, it is possible to choose 1 # s , 1 2 aþ b and extend the range of s

beyond what is possible with (26) or (27), which require that s , 1. In particular, the

function s tan hj is not a contraction near the origin in this discussion.

Routine analysis of the properties of h leads to the following bifurcation scenario:

1. Suppose that b2 1 # a , b , 1 and (32) holds. Then b2 a # 1 and all solutions

of (31), hence, also all solutions of (30) converge to zero.

2. Now we fix b, s and reduce the value of a so that a , b2 1 , 0. Then the function

h+h crosses the diagonal at two points t . 0 and 2t and a two-cycle {2t, t}

emerges for equation (31). Note that (32) still holds when a is reduced, but the

origin is no longer globally attracting. The cycle {2t, t} is repelling and generates

a repelling two-cycle for (30); see [24] or [26], Section 5.5. The emergence of this
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cycle implies that {tn} is unbounded if jt0j . t and it converges to 0 if jt0j . t.

Therefore, the corresponding solution {xn} of (30) also converges to 0 if

jx0 2 bx21j ¼ jt0j , t;

i.e. if the initial point ðx21; x0Þ is between the two parallel lines y ¼ bjþ t and

y ¼ bj2 t in the (j, y) plane.

3. Suppose that a continues to decrease. Then the value of t also decreases and

reaches zero when

a ¼ b2 s2 1;

i.e. when the slope of h at the origin is 21. Now, the cycle {2t, t} collapses into

the origin and turns it into a repelling fixed point. In this case, all non-zero solutions

of (31) and (30) are unbounded.
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