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Global behaviour of the Riccati difference equation of order two
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The second order rational difference equation

xnþ1 ¼ aþ
b

xn
þ

c

xnxn21

; x0; x21 [ R

is associated with a linear third order difference equation in the same way that the first
order Riccati equation (c ¼ 0) is associated with a linear second order equation. This
association and other features are used to study the global behaviour of solutions. If
a; b $ 0 and aþ b; c . 0 then the above equation has a unique positive fixed point that
is stable and attracts all orbits with initial points outside a set M of Lebesgue measure
zero in the plane. However, within M there is an invariant subset containing periodic
orbits of all possible periods.

Keywords: rational; Riccati; global asymptotic stability; forbidden set; periodic
solutions

2000 Mathematics Subject Classification: 39A10; 39A11

1. Introduction

Consider the rational difference equation

xnþ1 ¼ aþ
b

xn
þ

c

xnxn21

: ð1Þ

If c ¼ 0 then (1) reduces to the first order Riccati rational equation which has been

studied thoroughly; see Refs. [1–4]. In particular, these references show that the discrete

Riccati equation of order one can be transformed into a linear difference equation of order

two. The linear equation is then used to obtain detailed information about the solutions of

the first order Riccati equation.

In this paper, we generally assume that

a; b $ 0; c . 0; x0; x21 [ ð21;1Þ: ð2Þ

Equation (1) is not an arbitrary generalization of the first order Riccati rational

equation (c ¼ 0). Similarly to the latter equation, equation (1) is associated with a linear

difference equation as follows: Define a new variable xn ¼ yn=yn21 where xn is a solution
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of (1) and change variables in (1) to obtain the following linear homogeneous equation of

order 3

ynþ1 ¼ ayn þ byn21 þ cyn22: ð3Þ

If we define the initial values for (3) as

y0 ¼ x0y21; y21 ¼ x21y22 and set

y22 ¼ 1ðor any fixed nonzero real numberÞ;
ð4Þ

then we obtain a one to one correspondence between the solutions of (1) and those

solutions of (3) that do not contain zero; i.e. each solution of (1) uniquely defines a solution

of (3) that does not pass through the origin and vice versa. If {yn} is a solution of (3) with

yk ¼ 0 for some least k then xkþ1 ¼ ykþ1=yk is not defined. Under conditions (4), the

correspondence between solutions of (3) that pass through the origin and those of (1) that

become undefined is also one to one.

In Section 2, we find the solutions of the linear equation (3) and use them to determine

the forbidden set F of (1), i.e. the set of all initial values in R2 that lead to a zero in the

denominator of (1) after a finite number of iterations. In Section 3, we prove that the

unique positive fixed point of (1) under conditions (2) is globally asymptotically stable for

initial points ðx0; x21Þ outside a set M of Lebesgue measure zero in the Euclidean plane

that contains F. In Section 4, we show that equation (1) is more complicated than the first

order Riccati equation (c ¼ 0) because there are exceptional solutions of (1) that originate

in M and which do not converge to the positive fixed point under conditions (2), i.e. with

non-negative parameters. These solutions include periodic solutions of all possible periods

as well as oscillatory nonperiodic solutions.

2. The forbidden set

The characteristic equation of (3) is

PðlÞ ¼ l3 2 al2 2 bl2 c ¼ 0: ð5Þ

Note that the real solutions of (5) also give the fixed points of equation (1). The cubic

polynomial P has at least one real root. The next two results give more precise information

about the roots of P.

Lemma 1. Assume that conditions (2) hold. Then the polynomial P has precisely one

positive real root r that satisfies

r $ max
ffiffiffi
c3

p
;
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b

p

2

( )
ð6Þ

with equality holding if and only if a ¼ b ¼ 0.

Proof. By the Descartes rule of signs P has only one positive root r under conditions (2).

Further

PðlÞ ¼ lðl2 2 al2 bÞ2 c

M. Dehghan et al.468

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
C

om
m

on
w

ea
lth

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
9:

47
 0

2 
Ju

ly
 2

01
4 



and the roots of l2 2 al2 b are ða^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b

p
Þ=2. If l0 is the non-negative root then

since Pðl0Þ ¼ 2c , 0 it follows that r . l0. Next, from PðrÞ ¼ 0 we obtain

r2 2 ar2 b ¼
c

r
; ð7Þ

which implies c=r # r2, i.e. r $
ffiffiffi
c3

p
. Finally, if equality holds in (6) then r ¼

ffiffiffi
c3

p
– l0

since Pðl0Þ ¼ 2c – 0. But then Pð
ffiffiffi
c3

p
Þ ¼ 0 implies that a

ffiffiffi
c3

p
þ b ¼ 0 which implies

a ¼ b ¼ 0 because a; b $ 0. Conversely if a ¼ b ¼ 0 then l3 2 c ¼ 0 so r ¼
ffiffiffi
c3

p
and

equality holds in (6). A

It is possible to find a formula for r in terms of radicals (see Ref. [5]) but we omit it

since that information is not particularly useful here.

Lemma 2. Assume that conditions (2) hold and let r be the positive root of (5).

(a) Equation (5) has two other roots that can be calculated in terms of r as

r^ ¼ 2
r2 a

2
^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ a

2

� �2

2r2 þ b

s
: ð8Þ

(b) If ðrþ aÞ2 $ 4ðr2 2 bÞ then the real roots r^ are negative and

2r , r2 # 2
r2 a

2
# rþ , 0:

(c) If ðrþ aÞ2 , 4ðr2 2 bÞ (e.g. if b ¼ 0) then the complex roots r^ satisfy

r^
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 2 ar2 b
p

¼

ffiffiffi
c

r

r
: ð9Þ

Proof.

(a) Dividing PðlÞ by l2 r gives the quadratic polynomial QðlÞ ¼ l2 þ ðr2 aÞlþ

r2 2 ar2 b. The two roots r^ of Q are given by (8).

(b) In this case,

r2 . 2r iff r2
r2 a

2
.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ a

2

� �2

2r2 þ b

s
iff r2 . b:

The last inequality is true by (7) in the proof of Lemma 1. Similarly,

rþ , 0 iff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ a

2

� �2

2r2 þ b

s
,

r2 a

2
iff r2 2 ar2 b . 0:

The last inequality is true again by (7).

(c) In this case, the moduli of r^ are easily found to be given by (9). If b ¼ 0 then since

by (6) r . a it follows that ðrþ aÞ2 , ð2rÞ2 ¼ 4r2 and roots r^ are complex.

A
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Based on Lemma 2, the next result summarizes the standard facts about the solutions

of the linear equation (3). Of particular interest to us is the fact that the coefficients of

solutions all have the same general formula.

Lemma 3. Suppose that conditions (2) hold.

(a) If ðrþ aÞ2 . 4ðr2 2 bÞ then for all n $ 0

yn ¼ C1r
n þ C2ðr

þÞn þ C3ðr
2Þn;

where the coefficients Cj, j ¼ 1; 2; 3 are given by

Cjðx0; x21Þ ¼ a1jx0x21 þ a2jx21 þ a3j ð10Þ

for suitable constants aij, i; j ¼ 1; 2; 3 that do not depend on the initial values.

(b) If ðrþ aÞ2 ¼ 4ðr2 2 bÞ then for all n $ 0

yn ¼ C1r
n þ ðC2 þ C3nÞr

n where r ¼ rþ ¼ r2 ¼ 2
r2 a

2
;

where the coefficients Cj are given by (10) with constants aij, i; j ¼ 1; 2; 3 appropriate
to this case.

(c) If ðrþ aÞ2 , 4ðr2 2 bÞ then for all n $ 0

yn ¼ C1r
n þ ðr2 2 ar2 bÞn=2ðC2 cos nuþ C3sin nuÞ

where u [ ðp=2;pÞ is a constant and the coefficients Cj are given by (10) with

constants aij, i; j ¼ 1; 2; 3 appropriate to this case.

Proof. The solutions {yn} in each case are obtained routinely from the basic linear theory

so we only explain about (10) and the range of u in (c).

(a) The coefficients Cj satisfy the system

C1 þ C2 þ C3 ¼ x0x21; C1=rþ C2=ðr
þÞ þ C3=ðr

2Þ ¼ x21; and

C1=r
2 þ C2=ðr

þÞ2 þ C3=ðr
2Þ2 ¼ 1:

This system which is linear in the Cj can be easily solved to obtain

C1 ¼
r2½x0x21 2 ðrþ þ r2Þx21 þ rþr2�

ðr2 rþÞðr2 r2Þ
ð11Þ

from which we can read off the values of the constants a1j. Further,

C2 ¼
2ðrþÞ2½x0x21 2 ðrþ þ r2Þx21 þ rþr2�

ðr2 rþÞðrþ 2 r2Þ

gives the constants a2j and

C3 ¼ x0x21 2 C1 2 C2 ¼ ð12 a11 2 a12Þx0x21 2 ða21 þ a22Þx21 2 ða31 þ a32Þ

which gives a3j.
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(b) In this case, the coefficients Cj satisfy

C1 þ C2 ¼ x0x21; C1=r2 2ðC2 2 C3Þ=ðr2 aÞ ¼ x21; and

C1=r
2 þ 4ðC2 2 2C3Þ=ðr2 aÞ2 ¼ 1:

From these, we obtain

C1 ¼
4r2ðr2 aÞ

ð3r2 aÞ2
x0x21 þ

4r2

ðr2 aÞð3r2 aÞ
x21 þ

r2ðr2 aÞ2

ð3r2 aÞ2
ð12Þ

from which we can read off the values of the constants a1j. Further,

C2 ¼ x0x21 2 C1 ¼ ð12 a11Þx0x21 2 a21x21 2 a31

gives the constants a2j for this case and

C3 ¼
r2 a

2
x21 2

r2 a

2r
C1 þ C2

from which a3j can be calculated.

(c) In this case, the coefficients Cj satisfy

C1 þ C2 ¼ x0x21; C1=rþ ðC2 cos u2 C3 sin uÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 2 ar2 b

p
¼ x21;

and C1=r
2 þ ðC2 cos 2u2 C3 sin 2uÞ=ðr

2 2 ar2 bÞ ¼ 1
ð13Þ

where u is defined by the equalities

cos u ¼ 2

ffiffiffi
r

c

r
r2 a

2
; sin u ¼

ffiffiffi
r

c

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 2 b2

rþ a

2

� �2
s

ð14Þ

which also show that u [ ðp=2;pÞ. From (13), we obtain using r2 2 ar2 b ¼ c=r,

C1 ¼
r2c

r3 þ c2 2
ffiffiffiffiffiffi
r3c

p
cos u

r

c
x0x21 2 2

ffiffiffi
r

c

r
ðcos uÞx21 þ 1

� �
ð15Þ

from which we can read off the values of the constants a1j. Further,

C2 ¼ x0x21 2 C1; C3 ¼
c sin 2u

r3
C1 þ

cos 2u

sin 2u
C2 2

c

r
sin 2u

from which aij, i ¼ 2; 3 can be calculated. A

Since each of the coefficients Cj depends on the two initial values, each solution of the

linear equation (3) is a function ynðu; vÞ of two variables, all other parameters being fixed.

Thus the forbidden set F of equation (1) can be written as

F ¼ <
1

n¼21
{ðu; vÞ : ynðu; vÞ ¼ 0}:

Journal of Difference Equations and Applications 471
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We note that F , R2nð0;1Þ2 because under conditions (2) each solution {xn} of (1)

with ðx0; x21Þ [ ð0;1Þ2 satisfies xn . 0 for all n $ 21 and thus there are no undefined

values. Now the next result is an immediate consequence of Lemma 3.

Theorem 4. Suppose that conditions (2) hold. Then the forbidden set of equation (1) is the

following sequence of hyperbolas

F ¼ <
1

n¼21
{ðu; vÞ : b1nuvþ b2nvþ b3n ¼ 0} , R2nð0;1Þ2;

where the sequences bin are defined as follows:

(a) If ðrþ aÞ2 . 4ðr2 2 bÞ then

bin ¼ ai1 þ ai2ðr
þ=rÞn þ ai3ðr

2=rÞn;

where aij are the constants in Lemma 3(a).

(b) If ðrþ aÞ2 ¼ 4ðr2 2 bÞ then

bin ¼ ai1 þ ð21=2Þnð12 a=rÞnðai2 þ ai3nÞ;

where aij are the constants in Lemma 3(b).

(c) If ðrþ aÞ2 , 4ðr2 2 bÞ then

bin ¼ ai1 þ ðc=r3Þn=2ðai2 cos nuþ ai3 sin nuÞ

where aij are the constants in Lemma 3(c).

3. Global asymptotic stability

In this section, we use the preceding results to show that under conditions (2) almost all

solutions of equation (1) converge to the positive fixed point r if at least one of the

parameters a or b is positive.

Lemma 5. Under conditions (2), r is the unique positive fixed point of (1) and if aþ b . 0

then r is locally asymptotically stable.

Proof. Define

f ðu; vÞ ¼ aþ
b

u
þ

c

uv
:

Since the fixed points of (1) correspond to the roots of the polynomial P in (5), the

uniqueness of r follows from Lemma 1. Next, the characteristic equation of the

linearization of (1) at the fixed point ðr; rÞ is

l2 2 f uðr; rÞl2 f vðr; rÞ ¼ 0; ð16Þ

where

f u ¼
21

u2
bþ

c

v

� �
; f v ¼

2c

uv2
:
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These and the fact that brþ c ¼ r3 2 ar2 determine equation (16) as

l2 þ
r2 a

r
lþ

c

r3
¼ 0:

The zeros of this quadratic are

l^ ¼
r2 a

2r
21^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4c

rðr2 aÞ2

s" #
:

If

rðr2 aÞ2 $ 4c ð17Þ

then the numbers l^ are real and l2 # lþ , 0. Further, a little algebra shows that

l2 . 21 if and only if ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4c

rðr2 aÞ2

s
,

rþ a

r2 a
;

which is obviously true since the left side is less than 1 and the right side greater than 1.

Thus if (17) holds then r is a stable node for (1). Next suppose that (17) is false. Then l^

are complex with jl^j ¼
ffiffiffiffiffiffiffiffiffiffi
c=r3

p
, 1 where the inequality holds by Lemma 1 when

aþ b . 0. Thus if (17) is false then r is a stable focus for (1). These cases exhaust all

possibilities so r is locally asymptotically stable. A

In considering the global behaviour of solutions of eqaution (1), the following set must

be considered:

M ¼ F < {ðu; vÞ : C1ðu; vÞ ¼ 0} ¼ F < {ðu; vÞ : a11uvþ a21vþ a31 ¼ 0}; ð18Þ

where F is the forbidden set of (1) as determined in Theorem 4 and ai1 are the constants

defined in Lemma 3.

Theorem 6. Assume that conditions (2) hold with aþ b . 0. Then the positive fixed point

r is globally asymptotically stable relative toR2nM where the set M , R2nð0;1Þ2 defined

by (18) has Lebesgue measure zero.

Proof. By Lemma 5, r is stable so it only remains to prove global attractivity. If {xn} is a

solution of equation (1) then we claim that limn!1xn ¼ r if ðx0; x21Þ � M.

First, consider the case where r^ are real and distinct. In this case, Lemma 3 implies

that

xn ¼
yn

yn21

¼
C1r

n þ C2ðr
þÞn þ C3ðr

2Þn

C1rn21 þ C2ðrþÞ
n21 þ C3ðr2Þ

n21
: ð19Þ

Since ðx0; x21Þ � M, we have C1 ¼ C1ðx0; x21Þ – 0. Now dividing by C1r
n21 yields

xn ¼
rþ ðC2r=C1Þðr

þ=rÞn þ ðC3r=C1Þðr
2=rÞn

1þ ðC2=C1Þðrþ=rÞ
n21 þ ðC3=C1Þðr2=rÞ

n21
;
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which implies, by Lemma 2(b), that limn!1xn ¼ r. Next, in the case of equal real roots a

similar calculation gives

xn ¼
rþ rðC2=C1 þ C3n=C1Þðr=rÞ

n21

1þ ½C2=C1 þ C3ðn2 1Þ=C1�ðr=rÞ
n21

:

Since by Lemma 2(b) jr=rj , 1 it follows that limn!1xn ¼ r. Next, in the case of

complex roots

xn ¼
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 2 ar2 b

p
ð12 a=r2 b=r2Þðn21Þ=2ðC2 cos nuþ C3 sin nuÞ=C1

1þ ð12 a=r2 b=r2Þðn21Þ=2½C2 cosðn2 1Þuþ C3 sinðn2 1Þu�=C1

;

so clearly limn!1xn ¼ r.

Finally, since M is a countable collection of hyperbolas it has Lebesgue measure zero

in R2. To establish that M , R2nð0;1Þ2, it remains to show that the set

{ðu; vÞ : C1ðu; vÞ ¼ 0} ¼ {ðu; vÞ : a11uvþ a21vþ a31 ¼ 0} ð20Þ

does not intersect the positive quadrant ð0;1Þ2. From expressions (11), (12) and (15)

above we see that ai1 . 0 for i ¼ 1; 2; 3 in each of the three possible cases. Thus the set

(20) cannot contain points ðu; vÞ with u; v . 0. A

In the boundary case a ¼ b ¼ 0 in (2), Theorem 6 is false; as the next proposition

shows the solutions of (1) exhibit a completely different behaviour in this case.

Proposition 7. If neither of the initial values x0; x21 is zero then the corresponding

solution of

xnþ1 ¼
c

xnxn21

; c – 0 ð21Þ

is given as

x21; x0;
c

x0x21

; x21; x0;
c

x0x21

; . . .

	 

:

In particular, every non-constant solution of (21), i.e. ðx0; x21Þ – ð
ffiffiffi
c3

p
;

ffiffiffi
c3

p
Þ has period 3.

The next result applies Theorem 6 to an equation that is similar to (1).

Corollary 8. Assume that conditions (2) hold for the following equation

znþ1 ¼
1

aþ bzn þ cznzn21

: ð22Þ

If a . 0 and z0; z21 $ 0 or if aþ b . 0 and z0 . 0, z21 $ 0 then limn!1zn ¼ 1=r
where r is defined in Lemma 1.

Proof. Since the change of variables xn ¼ 1=zn transforms (22) into (1), if z0; z21 . 0 then

Theorem 6 implies that limn!1zn ¼ limn!1ð1=xnÞ ¼ 1=r. If a . 0 and either z0 ¼ 0 or

z21 ¼ 0 then from (22) we find that z1; z2 . 0 so again Theorem 6 applies. The last case is

argued similarly. A
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4. Exceptional solutions

The proof of Theorem 6 contains information about solutions that do not converge to r.

These are exceptional solutions of (1) since they can only originate in the set MnF. They

can be either convergent or oscillatory. In the first order case (c ¼ 0), it is shown in Ref.

[1] that non-convergent solutions do not occur when a; b . 0 (i.e. cases with R # 1=4). So
the fact that they do occur in the second order case with positive parameters is an

indication of the greater complexity of the higher order Riccati equation.

Theorem 9. Assume that conditions (2) hold with aþ b . 0.

(a) The hyperbola H ¼ {ðu; vÞ : uv2 ðrþ þ r2Þvþ rþr2 ¼ 0} is an invariant subset

of M.

(b) If ðrþ aÞ2 $ 4ðr2 2 bÞ and ðx0; x21Þ [ Hn{ðrþ; rþÞ} then limn!1xn ¼ r2:
(c) Let ðrþ aÞ2 , 4ðr2 2 bÞ. If u ¼ pq=p satisfies (14) for positive integers p, q that are

relatively prime then for each ðx0; x21Þ [ H the corresponding solution {xn} of (1)

has period p. If u is an irrational multiple of p then the corresponding solution of (1)

is oscillatory but not periodic and the orbit {ðxn; xn21Þ} is dense in H.

Proof. Notice from (11), (12) and (15) that the expression for C1 is real even if r^ are

complex and that C1ðx0; x21Þ ¼ 0 if and only if

x0x21 2 ðrþ þ r2Þx21 þ rþr2 ¼ 0: ð23Þ

Indeed, from (15) we obtain C1 ¼ 0 if and only if

x0x21 2 2

ffiffiffi
c

r

r
ðcos uÞx21 þ

c

r
¼ 0;

which is identical to (23) if r^ are complex. Thus C1 ¼ 0 in all cases if it is shown that

C1ðxnþ1; xnÞ ¼ 0 for all n $ 0 whenever x0 and x21 satisfy (23).

Now

C1ðx1; x0Þ ¼ x1x0 2 ðrþ þ r2Þx0 þ rþr2

¼ x0 aþ
b

x0
þ

c

x0x21

� �
2 ðrþ þ r2Þx0 þ rþr2

¼ ax0 þ bþ
c

x21

þ ðr2 aÞx0 þ r2 2 ar2 b

¼
c

x21

þ rx0 þ r2 2 ar: ð24Þ

If (23) holds then

x0 ¼ 2ðr2 aÞ2
r2 2 ar2 b

x21

¼ 2ðr2 aÞ2
c

rx21

which if inserted into (24) yields C1ðx1; x0Þ ¼ 0. The proof of (a) can now be easily

completed by induction.
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(b) In this case, the roots r^ are real. First suppose that ðrþ aÞ2 . 4ðr2 2 bÞ. If

ðx0; x21Þ [ H then C1 ¼ 0 in (19) and thus

xn ¼
yn

yn21

¼
C2ðr

þÞn þ C3ðr
2Þn

C2ðrþÞ
n21 þ C3ðr2Þ

n21
:

If C3 ¼ 0 then xn ¼ rþ for all n which can occur only if x1 ¼ x0 ¼ rþ. If C3 – 0 then

dividing by C3ðr
2Þn21 and taking the limit gives

lim
n!1

xn ¼ lim
n!1

ðC2=C3Þðr
þ=r2Þn �rþ r2

ðC2=C3Þðrþ=r2Þ
n21 þ 1

¼ r2:

The argument for the case ðrþ aÞ2 ¼ 4ðr2 2 bÞ is similar but using Lemma 3(b); we

omit the straightforward details.

(c) In this case, the roots r^ are complex and if C1 ¼ 0 then from Lemma 3 we obtain

xn ¼
ðr2 2 ar2 bÞðC2 cos nuþ C3 sin nuÞ

C2 cosðn2 1Þuþ C3 sinðn2 1Þu

¼
c

r
cos uþ

c

r
sin u

C3 cosðn2 1Þu2 C2 sinðn2 1Þu

C2 cosðn2 1Þuþ C3 sinðn2 1Þu
:

Define cosf ¼ C2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2 þ C2

3

q
and sinf ¼ C3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2 þ C2

3

q
. Then

xn ¼
c

r
cos uþ

c

r
sin u

sinf cosðn2 1Þu2 cosf sinðn2 1Þu

cosf cosðn2 1Þuþ sinf sinðn2 1Þu

¼
c

r
cos u2

c

r
sin u

sin½ðn2 1Þu2 f�

cos½ðn2 1Þu2 f�

¼
c

r
cos u2

c

r
sin u tan½ðn2 1Þu2 f�: ð25Þ

Now if u ¼ pq=p is a rational multiple of p then it follows from (25) that xn is periodic

(with period p if q=p is in reduced form). If u is not a rational multiple of p then the angles

ðn2 1Þu2 f form a dense subset of the circle as n!1. Given that tan x is a

homeomorphism from ð2p=2;p=2Þ to R we conclude from (25) that the sequence {xn} is

dense in R: It follows that the orbit {ðxn; xn21Þ} is dense in H. A

5. Concluding remarks

In the preceding sections, we examined the global behaviour of equation (1) subject to

conditions (2). The natural question to ponder is what kinds of behaviours are possible for

the solutions of (1) if conditions (2) do not hold. Numerical simulations suggest that

oscillatory solutions (periodic or not) occur non-exceptionally so a greater variety of

behaviours are observable. We leave further exploration of equation (1) with a; b; c [ R,

c – 0 to future studies but note that for certain negative parameter values the

cases discussed in the preceding sections are revisited in disguise as the next corollary

shows.

Corollary 10. Assume that a; c , 0 # b in equation (1). If x0; x21 � 2M where M is

the set defined in (18) then limn!1xn ¼ 2r.
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Proof. Since setting wn ¼ 2xn gives

wnþ1 ¼ 2xnþ1 ¼ 2a2
b

xn
2

c

xnxn21

¼ 2aþ
b

wn

2
c

wnwn21

it follows that wn satisfies (1) subject to conditions (2). The proof is completed by applying

Theorem 6. A

Riccati difference equations of order greater than 2 can also be defined. Moreover,

these equations can be defined on arbitrary algebraic fields including finite fields. For

additional facts, conjectures and issues pertaining to higher order, discrete Riccati

equations we refer to the web site: http://www.discretedynamics.net/Articles/articles.htm.
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