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1. INTRODUCTION

Consider the mth order nonlinear difference equation

x s f x , x , . . . , x , n s 1, 2, 3, . . . , 1Ž . Ž .n ny1 ny2 nym

w . m w . w .where f : 0, ` ª 0, ` and the initial values x , . . . , x g 0, ` .0 1ym
Ž .In studying the global behavior of the solutions of Eq. 1 , we often need

Ž .to establish that 1 is permanent, i.e., it has the property that every one of
its solutions is eventually confined within a fixed compact interval regard-
less of the initial values chosen. Permanence is needed directly or indi-
rectly in establishing other properties such as persistent bounded oscilla-

w xtions or the global attractivity of fixed points. For example, in 6 perma-
nence of the equation

x s x g x , . . . , x 2Ž . Ž .n ny1 ny1 nym

under certain conditions on the function g is used directly in the deriva-
tion of global attractivity results. More recently, the oscillations results in
w x Ž .9 require the existence of nontrivial bounded solutions to 1 . Other
instances where permanence is applied are noted in the sequel.

Ž .In this paper we obtain general sufficient conditions that imply Eq. 1 is
permanent. Our approach here utilizes the existence of linear bounds on

Ž .minimally restricted functions f i.e., when f is sublinear in the large .
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Thus we will generally not require that f be continuous or monotonic in
Ž .some of its arguments; nor is it necessary to assume that 1 possesses a

simplified fixed point structure as is commonly done when dealing with
global stability or with oscillations. One consequence of this generalization
is that the results in this paper extend and unify the existing permanence
and boundedness results in the literature. On the other hand, the restric-
tive hypotheses needed for stability or for oscillations but not assumed
here, sometimes involve parameter ranges that go beyond what is allowed
for f here. Hence, the results of this paper do not entirely subsume the
existing permanence results.

In addition to the unifying aspect mentioned above, we also obtain
completely new results concerning broad classes of difference equations of
arbitrary order. Many of these results immediately yield new bounded

w xoscillation theorems when coupled with the results in 9 .

2. PRELIMINARIES

Ž .DEFINITION 1. Equation 1 is said to be permanent if there exist
w . � 4 Ž .constants L, M g 0, ` , such that for each solution x of 1 , there is an

Ž . w xpositive integer n s n x , . . . , x such that x g L, M for all n G0 0 1ym 0 n
n . Any compact interval having this property may be called an absorbing0

Ž .inter̈ al for 1 .

Remarks.

Ž .1 Note that each absorbing interval must contain all attracting
points and limit sets, so permanence puts restrictions on trajectories that

Ž .mere boundedness does not. Indeed, boundedness of all solutions of 1
Ž .does not imply permanence see below .

Ž . Ž . Ž .2 If the function f in 1 is bounded, then 1 is trivially perma-
nent.

Ž . w x3 In 6 it is also required that L ) 0. We shall not assume this
Ž .condition, but when it does hold we may refer to 1 as positï ely perma-

nent. In any case, it is important to note that constants L, M do not
depend on the initial conditions; further, in the absence of sharpness
requirements or other considerations, we may let L s 0.

DEFINITION 2. Bold-faced letters denote vectors in the m-dimensional
m w . mspace R or the cone 0, ` , unless otherwise noted; we now list three of
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the most familiar norms on Rm for reference:

5 5 < < < < `u s max u , . . . , u the max-norm, sup-norm, or l -norm� 4 Ž .˙` 1 m

1r22 2 25 5u s u q ??? qu the Euclidean or l normŽ .˙ Ž .2 1 m

5 5 < < < < 1u s u q ??? q u the sum or l norm .Ž .˙1 1 m

An elementary fact about finite dimensional spaces is that all norms on
Ž w x.them are equivalent see, e.g., 7, p. 75 . In particular, this means that for

5 5any norm ? , there are constants C, C9 ) 0 such that

5 5 5 5 5 5C9 u F u F C u` `

m Ž . Žfor all u g R . In the sequel we refer to C and C9 as the upper and
. 5 5lower, respectï ely max-norm coefficients of ? . Clearly C s 1 for the

max-norm itself, and it is easily verified that C s m for the sum norm and
'that C s m for the Euclidean norm. For both of the last two norms,

C9 s 1.
We use the notation u ? v to define the familiar scalar product in Rm:

m

u ? v s u ¨ .Ý i i
is1

Ž w x.The following variation on a rather familiar result see, e.g., 8, p. 20 is
needed in the sequel.

w . m w .LEMMA 1. Let f , g : 0, ` ª 0, ` , and assume that for all u g
w . m Ž . Ž .0, ` , f u F g u . If g is nondecreasing in each of its m arguments and
the equation

z s g z , . . . , z 3Ž . Ž .n ny1 nym

Ž . Ž .is permanent, then Eq. 1 is permanent. Also, if all solutions of 3 are
Ž .bounded, then so are all solutions of 1 .

w x Ž .Proof. We may assume that 0, M is an absorbing interval for 3
where M is some positive real number. Suppose that x , . . . , x is an0 1ym

Ž .arbitrary set of initial values for 1 and define z s x for i s 1 y m, . . . , 0.i i
Note that

x s f x , . . . , x F g z , . . . , z s zŽ . Ž .1 0 1ym 0 1ym 1

and by induction

x s f x , . . . , x F g z , . . . , z s z .Ž . Ž .n ny1 nym ny1 nym n
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Since there is an integer n G 1 such that z F M for all n G n , it0 n 0
w x Ž .follows that 0, M is also an absorbing interval for 1 . The final assertion

about boundedness is similarly proved.

3. THE MAIN RESULTS

w . w . Ž .LEMMA 2. Let a g 0, 1 and b g 0, ` . Then x s br 1 y a is the
unique fixed point of

� 4x s a max x , . . . , x q b 4Ž .n ny1 nym

and x is globally asymptotically stable.

� 4Proof. Since x is the only solution of the equation x s a max x, . . . , x
Ž .q b, it follows that x is the unique fixed point of 4 and also that

ax q b s x. To show that x is globally attracting, we consider two cases:

Case 1. x F x for all k s 1 y m, . . . , 0. Definek

� 4M s max x , . . . , x .˙ 0 1ym

Note that M F x, which implies that

M F aM q b F ax q b s x .

Since x s aM q b, it follows that M F x F x. Therefore,1 1

� 4 2x s a max x , x , . . . , x q b s a aM q b q b s a M q b 1 q aŽ . Ž .2 1 0 2ym

and

M F aM q b F a aM q b q b F ax q bŽ .

so that

M F x F x F x .1 2

Proceeding in this manner, we find inductively that

ny1
n ix s a M q b aÝn

is0

is a nondecreasing sequence which clearly approaches x as n ª `.

Case 2. x ) x for some k s 1 y m, . . . , 0. Defining M as above, wek
see that M ) x so that

M ) aM q b ) x .
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Thus

x - x s aM q b - M1

implying

ax q b F x F aM q b.1 2

Therefore, x - x F x - M. Since x , x are both present in2 1 0 1
� 4max x , . . . , x for n s 1, . . . , m, it is evident that for these valuesny1 nym

of n,

x - x F aM q b - M 1 F n F m .Ž .n

However,

� 4x s a max x , x , . . . , x q b F a aM q b q b - aM q bŽ .mq 1 m my1 1

� 4and x is present in max x , . . . , x for n s m q 1, . . . , 2m. Itm ny1 nym
follows that

2x - x F a M q b 1 q a - aM q b - M m q 1 F n F 2m .Ž . Ž .n

Continuing inductively, for j s 1, 2, 3, . . . , we have

jy1
j ix - x F a M q b a j y 1 m q 1 F n F jm .Ž .Ž .Ýn

is0

Once again, it is clear that x ª x as n ª `.n
Finally, the monotonic nature of the convergence of x to x in both ofn

the above cases implies that x is in fact stable, thus completing the
proof.

Remarks.

Ž . Ž .1 When a s 1, Eq. 4 is not permanent. In this case, when b s 0,
Ž .4 has the trivial solution x s M, n s 1, 2, 3, . . . with M as defined inn
the proof of Lemma 2. Clearly all such solutions are bounded, although

Ž .the dependence of M on the initial values that define it means that 4 is
not permanent. When a s 1 and b ) 0, then it is easily seen that solutions

Ž .of 4 are all of the unbounded variety x s M q bn.n

Ž .2 It may be worth noting that in Lemma 2, x is not a hyperbolic or
linearly stable fixed point when m G 2 and a ) 0, since the partial
derivatives of the max function

� 4f u , . . . , u s a max u , . . . , u q bŽ .1 m 1 m

Ž . Ž .do not exist at any point x, . . . , x for x g 0, ` .
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w . m w .LEMMA 3. Let f : 0, ` ª 0, ` , and assume that there exist a g
w . w .0, 1 and b g 0, ` such that

5 5f u F a u q bŽ . `

w . m Ž .for all u g 0, ` . Then Eq. 1 is permanent.

Ž . 5 5Proof. If we define g u s a u q b, then g is clearly nondecreasing˙ `

Ž .in each coordinate of u s u , . . . , u . Hence, an application of Lemmas 11 m
and 2 completes the proof.

w . m w .THEOREM 1. Let f : 0, ` ª 0, ` . If either of the following two
Ž .sublinearity conditions hold, then 1 is permanent.

Ž . w . mI f is bounded on the compact subsets of 0, ` and

f u 1Ž .
lim sup - ,

5 5u C5 5u ª`

where C is the upper max-norm coefficient.
Ž . w . m 5 5 w .II There is a g 0, ` with a - 1 and b g 0, ` such that for1

w . mall u g 0, ` ,

f u F b q a ? u. 5Ž . Ž .

Ž . Ž .Proof. First, we show that I implies Eq. 1 is permanent. The func-
tion

f uŽ .
5 5h x s sup : u ) xŽ . ˙ ½ 55 5u

Ž . w .is nonincreasing and lim h x - 1rC. Thus there is a g 0, 1 andx ª`

Ž .r ) 0 such that h r s arC. It follows that

f u aŽ .
5 5F for all u ) r

5 5u C

which implies that
r

5 5 5 5f u F a u for all u ) ,Ž . ` ` C9

5 5where C9 is the lower max-norm coefficient. Now, u ) rrC9 if and only`

� 4 w xmif max u , . . . , u ) rrC9 if and only if u f 0, rrC9 . Define1 m

mw xb s sup f u : u g 0, rrC9 - `Ž .� 4
w . m Ž . 5 5and note that for all u g 0, ` it is true that f u F a u q b. Lemma`

Ž .3 now establishes the permanence of 1 .
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Ž .Now suppose that condition II holds. Then
m

5 5 5 5� 4f u F b q a ? u F b q a max u , . . . , u s b q a uŽ . Ý 1 `i 1 m
is1

so that once again Lemma 3 applies.

Remarks.

Ž . Ž .1 Theorem 1 I is false if 1rC is replaced by 1 for norms other
than the max-norm. Indeed, the function

u q ¨
f u , ¨ s b qŽ .

2

results in a non-permanent second order equation, as may easily be
checked. Note that f has the property that

f u , ¨ b 1 1Ž .
s q G

5 5u , ¨ u q ¨ 2 2Ž . 1

Ž . Ž .2 5Ž .5 Žfor all u, ¨ g 0, ` . But when u q ¨ s u, ¨ is large enough, br u1
.q ¨ q 1r2 - 1.
Ž .2 Theorem 1 may be false if f cannot be properly defined on the

w . mboundary of the cone 0, ` . For example, consider the first order
equation

1
x s , 6Ž .n pxny1

Ž . yp Ž .where p, x ) 0. Here, f u s u is continuous on 0, ` and strictly0
Ž .decreasing, approaching 0 as u ª `. The general solution of 6 is given by

x s x Žyp.n
.n 0

For 0 - p - 1, the unique fixed point x s 1 is globally asymptotically
Ž .stable, so in particular, 6 is permanent. However, for p s 1, while every

Ž . Ž .solution is bounded and of period 2 if x / 1 , 6 is no longer permanent;0
Ž .and if p ) 1, then every solution of 6 with x / 1 is unbounded.0

4. APPLICATIONS

With the aid of the results of the preceding section, we obtain in this
section general permanence and boundedness theorems for various classes
of nonlinear difference equations. The first result concerns a generaliza-

Ž .tion of Eq. 2 .
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w . m w .COROLLARY 1. Let g : 0, ` ª 0, ` be bounded and assume further
that

lim sup g u - 1.Ž .
5 5u ª``

Then the equation

x s x g x , . . . , x , 1 F k F m 7Ž . Ž .n nyk ny1 nym

is permanent.

Proof. Defining

f u , . . . , u s u g u , . . . , u 8Ž . Ž . Ž .˙1 m k 1 m

we see immediately that

f uŽ .
lim sup F lim sup g u - 1Ž .

5 5u `5 5 5 5u ª` u ª`` `

so the proof concludes by applying Theorem 1.

Remarks.

Ž . Ž . Ž .1 With regard to Eq. 2 , or when k s 1 in 7 , the simple condi-
tions imposed on g in Corollary 1 are quite different from hypotheses
Ž . Ž . w xH ] H stated in 6, p. 36 , although there is a significant overlap. The1 4

Ž .latter hypotheses imply that 2 is permanent without requiring that g be
bounded. The same hypotheses, however, also put several restrictions on g
Ž Ž .e.g., that g be continuous and nonincreasing in u , . . . , u , that 2 have a2 m

.unique positive fixed point x, etc. that we do not assume in Corollary 1.
Ž . Ž . Ž .2 Do the aforementioned H ] H imply the hypotheses of The-1 4

Ž .orem 1 I ? It turns out that they do imply the boundedness of the function
Ž .f in 8 on the compact sets and the finiteness of the limit supremum in

Theorem 1; however, the said limit supremum may exceed 1 under the
Ž .max-norm since the following finite quantity

my 1w xlim sup g u : u g x , ` = 0, xŽ . Ž .� 4
xª`

Ž . Ž .may exceed 1 under H ] H . Evidently, utilizing the particular product1 4
Ž . w x Ž .form of 2 as is done in 6 i.e., more substantially than in Corollary 1 is

Ž . Ž .required for proving permanence under H ] H .1 4

Ž . w x3 The Baumol]Wolff model of ‘‘productivity growth’’ 1, p. 355 , if
generalized by introducing additional lags or delays into the basic first

Ž .order model, represents an interesting economic application of Eq. 2 .



HASSAN SEDAGHAT504

w xThe hypotheses in Corollary 1 as well as those in 6 are both general
Ž . w xenough to be admissible; hence, the attractivity results for 2 in 6 and

w xthe oscillation results in 9 provide immediate insights into the global
behavior of the extended Baumol]Wolff equations.

w . w .COROLLARY 2. Let functions f : 0, ` ª 0, ` , i s 1, . . . , m, be gï eni
w . w .and assume that there exist constants a g 0, 1 and b g 0, ` such thati i

Ž .f x F a x q b for all x G 0. Then the equationi i i

x s max f x , . . . , f x� 4Ž . Ž .n 1 ny1 m nym

is permanent.

Ž . Ž .Proof. Let a s a , . . . , a , b s b , . . . , b , and define1 m 1 m

f u , . . . , u s max f u , . . . , f u .� 4Ž . Ž . Ž .˙1 m 1 1 m m

Note that

5 5 5 5 5 5 5 5 5 5� 4f u F a max u , . . . , u q b s a u q b .Ž . ` ` ` ` `1 m

Now Lemma 3 may be applied to conclude the proof.

w . w .COROLLARY 3. Let functions f : 0, ` ª 0, ` , i s 1, . . . , m, be gï eni
� 4 w .and assume that for some j g 1, 2, . . . , m , there are constants a g 0, 1

w . Ž .and b g 0, ` such that f x F ax q b for all x G 0. Then the equationj

x s min f x , . . . , f x� 4Ž . Ž .n 1 ny1 m nym

is permanent.

Ž . � Ž . Ž .4Proof. Define f u , . . . , u s min f u , . . . , f u and note that˙1 m 1 1 m m

f u , . . . , u F f u F au q b.Ž . Ž .1 m j j j

Ž .The proof now concludes by applying Theorem 1 II .

w . w .COROLLARY 4. Let functions f : 0, ` ª 0, ` , i s 1, . . . , m, satisfyi
the following conditions:

Ž . w . w .a There are nondecreasing functions g : 0, ` ª 0, ` such thati
Ž . Ž .f x F g x for all x G 0;i i

Ž . y1 m Ž .b lim sup x Ł g x - 1.x ª` is1 i

Then the equation
m

x s f x 9Ž . Ž .Łn i nyi
is1

is permanent.
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Ž . Ž . m Ž .Proof. Define f u s f u , . . . , u s Ł f u and note that˙1 m is1 i i

m m

5 5f u F g u F g u ,Ž . Ž . Ž .Ł Ł `i i i
is1 is1

5 5where the last inequality holds because u F u and g is nondecreasing`i i
Ž .for every i s 1, . . . , m. Now condition b implies that

f uŽ .
lim sup - 1.

5 5u `5 5u ª``

Ž .Hence, by Theorem 1, Eq. 9 is permanent.

w . w .COROLLARY 5. Let functions f : 0, ` ª 0, ` , i s 1, . . . , m, satisfyi
the following conditions:

Ž . Ž . pia f x F a x q b for all x G 0, where a ) 0, b G 0, and 0 Fi i i i i
p F 1;i

Ž . m mb Either p s Ý p - 1, or p s 1 and Ł a - 1.˙ is1 i is1 i

Ž .Then Eq. 9 is permanent.
pi w .Proof. The functions a x q b are increasing on 0, ` andi i

m m
p pia x q b s x a q r x ,Ž .Ž .Ł Łi i i

is1 is1

Ž .where r x consists of a sum of powers of x with each power strictly less
Ž . Ž .than p. Since either of the conditions in b implies condition b in

Corollary 4, the proof is completed by an application of the latter bound-
ary.

Remark. Under suitable restrictive hypotheses, Corollary 5 may hold
even if some of the exponents p are negative while others may exceed 1;i

w xsee Theorem 4.1 in 2 for a second-order example.

w . w .COROLLARY 6. Let f : 0, ` ª 0, ` , i s 1, . . . , m, be functions fori
w . Ž .which there are constants a , b g 0, ` , such that f x F a x q b oni i i i i

w . m0, ` . If Ý a - 1, then the equationis1 i

m

x s f xŽ .Ýn i nyi
is1

is permanent.
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Proof. Observe that

m m m

f u , . . . , u s f u F b q a u , b s bŽ . Ž .˙ ˙Ý Ý Ý1 m i i i i i
is1 is1 is1

and apply Theorem 1 to complete the proof.

Ž .The omitted proof of the next corollary is similar to the proof of
Corollary 6.

w . w . Ž . w .COROLLARY 7. Let g : 0, ` ª 0, ` satisfy g x F a x q b on 0, `
w .for constants a , b g 0, ` . The equation

m m

x s a x q g b x , a , b g 0, ` 10. Ž .Ý Ýn i nyi i nyi i iž /
is1 is1

m Ž .is permanent if Ý a q a b - 1.is1 i i

Ž . wRemarks. Stability of the fixed points of Eq. 10 has been studied in 4,
x Ž w x.5 or see 6 . This type of equation appears in a model of whale

w xpopulations 3 .
Ž . w xPermanence of 10 is proved in 6 under several specialized hypotheses,

then used in establishing global stability of a positive fixed point x whose
unique existence is guaranteed by the same hypotheses that are used in
proving permanence. These latter hypotheses, in particular, imply the

Ž . Ž .following: g x F a x q b with b s sup g x and a s 1 y a, where0 F x F x
m m Ž .a s Ý a - 1; also implied is Ý a q a b s 1. The last equality˙ is1 i is1 i i

shows that under additional hypotheses on f , Corollary 7 holds even if the
m Ž .sum Ý a q a b equals 1. On the other hand, when the last sum is lessis1 i i

than 1, Corollary 7 shows that permanence exists without additional
restrictive hypotheses.

Ž . w . Ž . � 4COROLLARY 8. Let g : y`, ` ª 0, ` satisfy g x F a max x, 0 q b
Ž . w .on y`, ` for constants a , b g 0, ` . Then the equation

m

x s a x q g bx y cx , c, b , a g 0, ` , 1 F i , j, k F m.Ž .Ýn i nyi nyj nyk i
is1

11Ž .

is permanent if a b q Ým a - 1.is1 i
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Proof. Define the function

m

f u , . . . , u s a u q g bu y cuŽ . ˙ Ž .Ý1 m i i j k
is1

and observe that

m

f u , . . . , u F a u q a max bu y cu , 0 q b� 4Ž . Ý1 m i i j k
is1

m

F b q a bu q a u .Ýj i i
is1

Ž . mTherefore, Theorem 1 implies that 11 is permanent if a b q Ý a - 1.is1 i

Remark. Like Corollary 7, in special cases it is possible to improve the
parameter range in Corollary 8. For instance, the second order equation

x s ax q g x y x 12Ž . Ž .n ny1 ny1 ny2

Ž .is a special case of 11 , so according to Corollary 8 permanence obtains
Ž . w x Ž .for 12 if, in particular, a q a - 1. However, it was shown in 10 that 12

Žis permanent if only a , a - 1. This increase in parameter range known so
.far only for the second order case came at the price of requiring g to be

nondecreasing in addition to satisfying the linear bound of Corollary 8.
Ž . Ž .Generalizations of 12 and variants of 11 provide natural mathemati-

cal settings for discussing the global behavior of ‘‘accelerator-based’’
w xmodels of the macroeconomic business cycle; see 9, 10 .

w . w .COROLLARY 9. Assume that f , g : 0, ` ª 0, ` , i s 1, . . . , m, arei i
functions satisfying

f xŽ .i F a x q bi ib q g xŽ .i

w . w . Ž . mon 0, ` for constants a , b g 0, ` and b g 0, ` . If Ý a - 1 theni i is1 i
the equation

Ým f xŽ .is1 i nyi
x s 13Ž .n mb q Ý g xŽ .is1 i nyi

is permanent.
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Proof. Note that

Ým f uŽ .is1 i i
f u , . . . , u sŽ . ˙1 m mb q Ý g uŽ .is1 i i

m m mf uŽ .i iF F b q a uÝ Ý Ýi i ib q g uŽ .i iis1 is1 is1

so that once again Theorem 1 applies.

Ž .Remark. If the functions f , g are polynomials, then solutions of 13i i
are called rational recursive sequences. In particular, if the f , g arei i
polynomials of degree 1 or 0, then Corollary 9 proves a theorem of Ladas

w xand Kocic 6, p. 61 , who also use the methodology presented in Lemma 1
Ž .and Theorem 1 II , though not at as general a level as we have done here.

One advantage of the generalization is that the second part of the
aforementioned Kocic]Ladas Theorem need not be proved independently,
as both parts of that theorem are included in Corollary 9.

We close with an application of the results obtained here to the
w xoscillation theory. For convenience, we quote the main result in 9 as a

� 4 Ž .lemma here. We state for reference that a bounded solution x of 1 isn
� 4said to oscillate persistently if the sequence x has at least two distinctn

limit points.

w . m w .LEMMA 4. Assume that the function f : 0, ` ª 0, ` is continuous
and satisfies the following conditions:

Ž . Ž .a The equation f x, . . . , x s x has a finite number of solutions 0 -
x - ??? - x - `;1 k

Ž . Ž .b For e¨ery j s 1, . . . , k, f x , . . . , x , x / x if x / x ;j j j j

Ž .c For i s 1, . . . , m, the partial derï atï es ­ fr­ x exist continuouslyi
mŽ .at x , . . . , x , and e¨ery root of the characteristic polynomial l yj j

m myiŽ .Ý ­ fr­ x x , . . . , x l has modulus greater than 1 for each j s 1, . . . , k.is1 i j j

Ž .Then all bounded solutions of 1 except the trï ial solutions x , j s 1, . . . , kj
oscillate persistently.

The next corollary gives a sufficient condition for the nontrivial applica-
bility of Lemma 4.

COROLLARY 10. In addition to the assumptions of Lemma 4, suppose
that f satisfies one of the sublinearity conditions in Theorem 1. Then all

Ž .nontrï ial solutions of 1 e¨entually oscillate persistently within a fixed
absorbing inter̈ al.
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Ž .In the second order case, the linearized instability condition c in
Lemma 4 is somewhat easier to characterize. Once again, using a result

w xfrom 9 , we have the following.

w . 2 w .COROLLARY 11. Assume that f : 0, ` ª 0, ` is continuous and
satisfies the following conditions:

Ž . Ž .a The equation f x, x s x has a finite number of solutions 0 - x -1
??? - x - `;k

Ž . Ž .b For e¨ery j s 1, . . . , k, f x , x / x if x / x ;j j j

Ž . Ž .c Both ­ fr­ x and ­ fr­ y exist continuously at x , x for allj j
j s 1, . . . , k with

­ f ­ f ­ f
x , x ) 1, x , x y 1 ) x , x .Ž . Ž . Ž .j j j j j j­ y ­ y ­ x

Ž .d Either there are constants a, b, c G 0 with a q b - 1 such that
Ž .f x, y F ax q by q c for all x, y G 0, or

f x , y 1Ž .
lim sup - .

x q y 2xqyª`

Then the second order nonlinear equation:

x s f x , x , n s 1, 2, 3, . . . , x , x g 0, `Ž . .n ny1 ny2 y1 0

is permanent and all of its nontrï ial solutions e¨entually oscillate persistently
in a fixed absorbing inter̈ al.
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