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Folding, cycles and chaos in planar systems

H. Sedaghat*

Department of Mathematics, Virginia Commonwealth University Richmond, Richmond,
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(Received 25 June 2014; accepted 6 October 2014)

A typical planar systemof difference equations can be folded or transformed into a scalar
difference equation of order two plus a passive (non-dynamic) equation.We discuss this
method and its application to identify and prove the existence or nonexistence of cycles
and chaos in systems of rational difference equations with variable coefficients. These
include some systems that converge to autonomous systems and some that do not, e.g.
systems with periodic coefficients.
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1. Introduction

It is broadly known that in discrete systems periodic and chaotic behaviour may occur for

maps of the interval and other one-dimensional manifolds. Planar difference systems,

which generalize interval maps to two dimensions are also known to have this feature but

they are not as well understood. It is by no means simple to prove whether a given planar

map has cycles or exhibits chaos. Certain global results, e.g. the Sharkovski ordering of

cycles, are not true for planar maps in general (e.g. the occurrence of a three-cycle does not

imply the existence of any other cycle). There are comparatively few methods (e.g.

Marotto’s snap-back repeller criterion in [9]) that are applicable widely to the study of

cycles and chaos in planar systems.

In this article, we use the new method of folding to explore planar systems and their

orbits. This method has been in use (though not by this name) in different contexts in the

literature. Folding linear systems in both continuous and discrete time is seen in control

theory; the ‘controllability canonical form’ is precisely the folding of a controllability

matrix into a linear higher order equation, whether in continuous or discrete time; see e.g.

[5,7]. In an entirely different line of research, in [4] a variety of nonlinear differential

systems displaying chaotic behaviour are studied and classified by converting them to

ordinary differential equations of order 3 that define jerk (or jolt) functions, i.e. time rates

of change of acceleration.

These ideas in control theory and in chaotic differential systems are special instances

of the same concept, namely, folding systems to equations. In [12], these and similar

notions are unified by means of a new algorithmic process for folding difference or

differential systems to scalar equations.

In the case of planar systems, folding yields a second-order scalar difference equation

whose analysis provides useful information about the orbits of the original system in cases

where standard methods are unavailing. We establish the existence or nonexistence of

cycles and chaos for various rational planar systems. Furthermore, since in principle
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folding applies to non-autonomous systems in the same way that it does to the autonomous

ones, time-dependent parameters are considered in this study. But the systems that we

study here exhibit cycles and chaos even with constant parameters.

2. Folding difference systems

The material in this section comes from [12]. A (recursive, or explicit) system of two first-

order difference equations is typically defined as

xnþ1 ¼ f ðn; xn; ynÞ
ynþ1 ¼ gðn; xn; ynÞ

(
n ¼ 0; 1; 2; . . . ; ð1Þ

where f ; g : N0 £ D! S are given functions, N0 ¼ f0; 1; 2; . . . } is the set of non-negative
integers, S a nonempty set and D , S £ S. If S is a subset of the set R of the real numbers

with the usual topology then (1) is a planar system.

An initial point ðx0; y0Þ [ D generates a (forward) orbit or solution fðxn; ynÞ} of (1) in
the state-space S £ S through the iteration of the function

ðn; xn; ynÞ! ðnþ 1; f ðn; xn; ynÞ; gðn; xn; ynÞÞ : N0 £ D!N0 £ S £ S;

for as long as the points ðxn; ynÞ remain in D: If (1) is autonomous, i.e. the functions f ; g do
not depend on the index n then ðxn; ynÞ ¼ Fnðx0; y0Þ for every n where Fn denotes the

composition of the map Fðu; vÞ ¼ ðf ðu; vÞ; gðu; vÞÞ of S £ S with itself n times.

A second-order, scalar difference equation in S is defined as

snþ2 ¼ fðn; sn; snþ1Þ; n ¼ 0; 1; 2; . . . ; ð2Þ
where f : N0 £ D0 ! S is a given function and D0 , S £ S. A pair of initial values s0; s1 [
S generates a (forward) solution fsn} of (2) in S if ðs0; s1Þ [ D0. If fðn; u; vÞ ¼ fðu; vÞ is
independent of n then (2) is autonomous.

An equation of type (2) may be ‘unfolded’ to a system of type (1) in a standard way; e.g.

snþ1 ¼ tn

tnþ1 ¼ fðn; sn; tnÞ

(
ð3Þ

In (3), the temporal delay in (2) is converted to an additional variable in the state space.

All solutions of (2) are reproduced from the solutions of (3) in the form ðsn; snþ1Þ ¼ ðsn; tnÞ
so in this sense, higher order equations may be considered to be special types of systems.

In general, (2) may be unfolded in different ways into systems of two equations and (3) is

not unique.

Definition 1. Let S be a nonempty set and consider a function f : N0 £ D! S where

D , S £ S. Then f is semi-invertible or partially invertible if there are sets M , D,

M0 , S £ S and a function h : N0 £M0 ! S such that for all ðu; vÞ [ M if w ¼ f ðn; u; vÞ
then ðu;wÞ [ M0 and v ¼ hðn; u;wÞ for all n [ N0.

The function h above may be called a semi-inversion, or partial inversion of f . If f is

independent of n then n is dropped from the above notation.

Semi-inversion refers more accurately to the solvability of the equation w2
f ðn; u; vÞ ¼ 0 for v which recalls the implicit function theorem (see [12]). However, a

substantial class of semi-invertible functions is supplied (globally) by the following idea.
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Definition 2. (Separability) Let ðG; *Þ be a nontrivial group and let f : N0 £ G £ G! G.

If there are functions f 1; f 2 : N0 £ G! G such that

f ðn; u; vÞ ¼ f 1ðn; uÞ*f 2ðn; vÞ
for all u; v [ G and every n $ 1 then we say that f is separable on G and write f ¼ f 1*f 2
for short.

Every affine function f ðn; u; vÞ ¼ anuþ bnvþ cn with real parameters an; bn; cn is

separable on R relative to ordinary addition for all n with, e.g. f 1ðn; vÞ ¼ anu and

f 2ðn; vÞ ¼ bnvþ cn: Similarly, f ðn; u; vÞ ¼ anu=v is separable on Rnf0} relative to

ordinary multiplication.

Now, suppose that f 2ðn; ·Þ is a bijection for every n and f21
2 ðn; ·Þ is its inverse for each

n; i.e. f 2ðn; f21
2 ðn; vÞÞ ¼ v and f21

2 ðn; f 2ðn; vÞÞ ¼ v for all v: A separable function f is semi-

invertible if the component function f 2ðn; ·Þ is a bijection for each fixed n, since for every

u; v;w [ G

w ¼ f 1ðn; uÞ*f 2ðn; vÞ ) v ¼ f21
2 ðn; ½f 1ðn; uÞ�21

*wÞ;
where map inversion and group inversion, both denoted by 21, are distinguishable from

the context. In this case, an explicit expression for the semi-inversion h exists globally as

hðn; u;wÞ ¼ f21
2 ðn; ½f 1ðn; uÞ�21

*wÞ; ð4Þ
with M ¼ M0 ¼ G £ G. We summarize this observation as follows.

Proposition 3. Let ðG; *Þ be a nontrivial group and f ¼ f 1*f 2 be separable. If f 2ðn; ·Þ is a
bijection for each n then f is semi-invertible on G £ G with a semi-inversion uniquely

defined by (4).

If an – 0 (or bn – 0) for all n then the separable function f ðn; u; vÞ ¼ anuþ bnvþ cn is

semi-invertible as it can readily be solved for u (or v). If an; bn are both zero for infinitely n
then f is separable but not semi-invertible for either u or v.

Now, suppose that fðxn; ynÞ} is an orbit of (1) inD. If one of the component functions in

(1), say, f is semi-invertible then by Definition 1 there is a setM , D, a setM0 , S £ S and

a function h : N0 £M0 ! S such that if ðxn; ynÞ [ M then ðxn; xnþ1Þ ¼ ðxn; f ðn; xn; ynÞÞ [
M0 and yn ¼ hðn; xn; xnþ1Þ. Therefore,

xnþ2 ¼ f ðnþ 1; xnþ1; ynþ1Þ ¼ f ðnþ 1; xnþ1; gðn; xn; ynÞÞ
¼ f ðnþ 1; xnþ1; gðn; xn; hðn; xn; xnþ1ÞÞÞ; ð5Þ

and the function

fðn; u;wÞ ¼ f ðnþ 1;w; gðn; u; hðn; u;wÞÞÞ ð6Þ
is defined on N0 £M0. If fsn} is the solution of (2) with initial values s0 ¼ x0 and

s1 ¼ x1 ¼ f ð0; x0; y0Þ and f defined by (6) then

s2 ¼ f ð1; s1;gð0; s0;hð0; s0; s1ÞÞÞ ¼ f ð1;x1;gð0;x0;hð0;x0;x1ÞÞÞ ¼ f ð1;x1;gð0;x0;y0ÞÞ ¼ x2:

By induction, sn ¼ xn and thus hðn; sn; snþ1Þ ¼ hðn; xn; xnþ1Þ ¼ yn. It follows that

ðxn; ynÞ ¼ ðsn; hðn; sn; snþ1ÞÞ; ð7Þ
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i.e. the solution fðxn; ynÞ} of (1) can be obtained from a solution fsn} of (2) via (7). Thus the
following is true.

Theorem 4. Suppose that f in (1) is semi-invertible withM;M0 and h as inDefinition 1. Then
each orbit of (1) in M may be derived from a solution of (2) via (7) with f given by (6).

The following gives a name to the pair of equations that generate the solutions of (1) in

the above theorem.

Definition 5. (Folding) The pair of equations

snþ2 ¼ fðn; sn; snþ1Þ ðcoreÞ; ð8Þ
yn ¼ hðn; xn; xnþ1Þ ðpassiveÞ; ð9Þ

where f is defined by (6) is a folding of the system (1). The initial values of the core

equation are determined from the initial point ðx0; y0Þ as s0 ¼ x0, s1 ¼ f ð0; x0; y0Þ.
We call Equation (9) passive because it simply evaluates the function h on a solution of

the core Equation (8) – no dynamics or iterations are involved. Also observe that (1) may

be considered an unfolding of the second-order Equation (8) that is generally not

equivalent to the standard unfolding (3) of that equation.

If one of the component functions in the system is separable then a global result is

readily obtained from Theorem 4 using (4).

Corollary 6. Let ðG; *Þ be a nontrivial group and f ¼ f 1*f 2 be separable on G £ G.

If f 2ðn; ·Þ is a bijection for every n then (1) folds to

snþ2 ¼ f 1 nþ 1; snþ1; g n; sn; f
21
2 ðn; ½f 1ðn; snÞ�21

*snþ1

� �� �
; ð10Þ

yn ¼ f21
2 n; ½f 1ðn; snÞ�21

*snþ1

� �
: ð11Þ

Each orbit fðxn; ynÞ} of (1) in G £ G is obtained from a solution fsn} of (10) with the initial
values s0 ¼ x0; s1 ¼ f 1ð0; x0Þ*f 2ð0; y0Þ.

The next result is a special case of Corollary 6.

Corollary 7. Let an; bn; cn be sequences in a ring R with identity and let

g : N0 £ R £ R! R. If bn is a unit in R for all n then the semi-linear system

xnþ1 ¼ anxn þ bnyn þ cn

ynþ1 ¼ gðn; xn; ynÞ;

(
ð12Þ

folds to

snþ2 ¼cnþ1 þ anþ1snþ1 þ bnþ1g n; sn; b
21
n ðsnþ1 2 ansn 2 cnÞ

� �
;

yn ¼b21
n ðsnþ1 2 ansn 2 cnÞ:

ð13Þ

Each orbit fðxn; ynÞ} of (12) in R is obtained from a solution fsn} of (13) with the initial
values s0 ¼ x0; s1 ¼ a0x0 þ b0y0 þ c0.
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A natural question after folding a system is whether the qualitative properties of the

solutions of the core Equation (8) are shared by the orbits of (1). The answer clearly depends

on the passive equation so that despite its non-dynamic nature, (9) plays a nontrivial role in

the folding. The next result illustrates this feature and is used in the next section.

Lemma 8. Assume that the semi-inversion h in (9) has period p $ 1, i.e. p is the least

positive integer such that hðnþ p; u;wÞ ¼ hðn; u;wÞ for all ðn; u;wÞ [ N0 £M0. Let fsn}
be a solution of (8) with initial values s0 ¼ x0, s1 ¼ f ð0; x0; y0Þ.

(a) If fsn} is periodic with period q $ 1 then the corresponding orbit fðxn; ynÞ} of (1) is
periodic with period equal to the least common multiple lcmðp; qÞ.

(b) If fsn} is non-periodic then fðxn; ynÞ} is non-periodic.

Proof.

(a) Recall that xn ¼ sn so that the sequence fxn} of the x-components of fðxn; ynÞ} has
period q: Also by (9)

ynþlcmðp;qÞ ¼ hðnþ lcmðp; qÞ; xnþlcmðp;qÞ; xn þ 1þ lcmðp; qÞÞ ¼ hðn; xn; xnþ1Þ ¼ yn;

since both p and q divide lcmðp; qÞ. Therefore, the sequence fyn} of the y-

components of fðxn; ynÞ} has period lcmðp; qÞ and it follows that fðxn; ynÞ} has

period lcmðp; qÞ.
(b) If fðxn; ynÞ} is periodic then so is fxn}, which implies that fsn} is periodic.

A

3. Cycles and chaos in a rational system

Various definitions of chaos for non-autonomous systems exist in the literature. Possibly

the most familiar form of deterministic chaos, in the sense of Li and Yorke, is defined

generally as follows.

Definition 9. (Li–Yorke chaos) Let Fn : ðX; dÞ! ðX; dÞ be functions on a metric space

for all n $ 0 and define Fn
0 ¼ Fn+Fn21+· · ·+F0 i.e. the composition of maps F0 through Fn.

The non-autonomous system ðX;FnÞ is chaotic if there is an uncountable set S , X (the

scrambled set) such that for every pair of points x; y [ S,

lim sup
n!1

d Fn
0ðxÞ;Fn

0ðyÞ
� �

. 0; lim inf
n!1 d Fn

0ðxÞ;Fn
0ðyÞ

� � ¼ 0:

For planar maps, Fnðu; vÞ ¼ ðf ðn; u; vÞ; gðn; u; vÞÞ on the Euclidean space R2 ¼ R £ R.

Despite the similarity of the above definition to the familiar one for interval maps

(autonomous one-dimensional systems) proving that a particular non-autonomous system

is chaotic in the sense of Definition 9 is a non-trivial task. For a continuous interval map

the existence of a 3-cycle is sufficient for the occurrence of Li–Yorke chaos [8] and for a

continuously differentiable map of RN a sufficient condition is the existence of a snap-

back repeller [9]. To take advantage of such relatively practical results, we may consider

non-autonomous systems that are tied in some way to an autonomous one.
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One natural case that is frequently studied in the literature concerns nonautonomous

systems where the sequence fFn} converges uniformly to a function F on X so that ðX;FÞ
is an autonomous system; see e.g. [1,3] for studies of pertinent issues, including whether

the occurrence of chaos in the autonomous system implies, or is implied by the same for

the non-autonomous one.

We consider a different approach where a non-autonomous system is tied to an

autonomous one through folding. In this section, we study a rational system that folds to an

autonomous, first-order difference equation for its core. In this case, the non-autonomous

system need not converge to an autonomous one; e.g. the system may have periodic

coefficients. The dynamic aspects of the core equation are not affected by the time-

dependent parameters which influence the orbits of (1) through the passive equation.

Consider the rational system

xnþ1 ¼ anxn þ bnyn

Anxn þ yn
; ð14aÞ

ynþ1 ¼ a0
nxn þ b0

nyn

xn þ Bnyn
; ð14bÞ

where all coefficients are sequences of real numbers. The autonomous version of the above

system, i.e.

xnþ1 ¼ axn þ byn
Axn þ yn

; ð15aÞ

ynþ1 ¼ a0xn þ b0yn
xn þ Byn

; ð15bÞ

has been classified as a type (36,36) system in [2] when all coefficients are non-zero

(separate number pairs are assigned to special cases where one or more of the

coefficients are zeros). System (15) is semi-conjugate to a first-order rational equation

via the substitution of rn ¼ xn=yn (or the reciprocal of this ratio); see [11] for a study of

semi-conjugate systems. We note that (15) is also a homogeneous system – a

generalization of the aforementioned type of semi-conjugacy exists for such systems;

see [10].

A comprehensive study of (15) appears in [6] for non-negative coefficients where the

positive quadrant of the plane is invariant under the action of the underlying planar

map. By analysing the one-dimensional semi-conjugate map, the authors show that exactly

one of the following possibilities occurs: (i) every non-negative solution of (15) converges

to a fixed point, or (ii) there is a unique positive 2-cycle and every non-negative solution of

(15) either converges to this 2-cycle or to a fixed point of the system, or (iii) there exist

unbounded solutions.

When all parameters in a rational system are non-negative, the positive quadrant

½0;1Þ2 is invariant and the underlying mapping of the system is continuous. In the absence

of singularities, linear-fractional equations such as those in (14) tend to behave mildly and

not exhibit the type of complex behaviour that is often associated with rapid rates of

change. So questions remain about the nature of the orbits of (15) for a wider range of

parameters, including negative coefficients. Does the system have cycles of period greater

than two? Can it exhibit complex, aperiodic behaviour?

With negative parameters the occurrence of singularities (discontinuity) raises significant

existence and boundedness issues for orbits. We use folding to identify special cases where

singularities are avoided and some results are obtained about (14) and similar systems.
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To fold (14) we first solve (14a) for yn to find

yn ¼ xnðan 2 Anxnþ1Þ
xnþ1 2 bn

¼ hðn; xn; xnþ1Þ: ð16Þ

Next, using (5) and (14b) we obtain the following first-order core equation:

xnþ2

¼anþ1ðAnBn21Þx2nþ1þ½anþ1ðbn2anBnÞþbnþ1ðAnb
0
n2a0

nÞ�xnþ1þbnþ1ða0
nbn2anb

0
nÞ

Anþ1ðAnBn21Þx2nþ1þ½Anþ1ðbn2anBnÞþðAnb0
n2a0

nÞ�xnþ1þa0
nbn2anb0

n

:

ð17Þ

The first-order nature of this folding and the semi-conjugacy of planar mapping of the

autonomous system (15) to a one-dimensional map are evidently related. However,

folding does not require knowledge of a semi-conjugate relation or even of whether such a

relation exists.

Equation (17) does not have complex solutions for all choices of parameters. For

instance, if An ¼ bn ¼ b0
n ¼ 0 for all n then (17) reduces to the affine equation

xnþ2 ¼ anþ1

a0
n

xnþ1 þ anþ1anBn

a0
n

; ð18Þ

which does not exhibit complex behaviour with constant or even periodic parameters.

To assure the existence of cycles and the occurrence of chaos even in the autonomous

case, we consider a different special case where

An ¼ a0
n ¼ bn ¼ 0; an;b

0
n – 0 for all n $ 0: ð19Þ

These conditions are not necessary for the occurrence of cycles or chaos but we show

that they are sufficient. If conditions (19) hold then (17) reduces to the quadratic equation

xnþ2 ¼ anþ1

anb
0
n

x2nþ1 þ
anþ1Bn

b
0
n

xnþ1: ð20Þ

To simplify calculations we also assume that there are constants a; b such that for all n,

anþ1

anb0
n

¼ a;
anþ1Bn

b
0
n

¼ b:

Since an – 0 for all n, we see that a – 0. These equalities yield

b0
n ¼

anþ1

aan

; Bn ¼ b

aan

; ð21Þ

with an unspecified. Under these assumptions, (14) folds to

xnþ2 ¼ ax2nþ1 þ bxnþ1; yn ¼ anxn

xnþ1

: ð22Þ
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By a change of variables rn ¼ xnþ1 the first-order, autonomous core equation above

may be written as

rnþ1 ¼ ar2n þ brn; r0 ¼ x1 ¼ a0x0

y0
: ð23Þ

If b – 0 then the quadratic equation above exhibits complex behaviour in some

invariant interval for a range of parameter values. This behaviour for the x-components

occurs regardless of the choice of an, and in particular, when an ¼ a is constant, i.e. the

autonomous case.

Equation (23) is conjugate to the logistic equation tnþ1 ¼ btnð12 tnÞ via the

substitution tn ¼ 2arn=b. It is well known that as b goes from 3 to 4 the solutions of the

logistic equation in the invariant interval [0,1] undergo a familiar sequence of bifurcations.

In particular, the logistic equation has a period 3 solution when b . 3:83 so (23) has

periodic solutions of all possible periods due to the Sharkovski ordering and exhibits chaos

in [0,1] in the sense of Li and Yorke. In fact, a lower value b $ 3:57 that corresponds to the
end of the period-doubling cascade may be taken to be the parameter value for the onset of

chaos. These observations lead to the following result.

Theorem 10. Consider the system (14) subject to (19), i.e. the system

xnþ1 ¼ anxn

yn
; ð24aÞ

ynþ1 ¼ b0
nyn

xn þ Bnyn
: ð24bÞ

Assume also that (21) holds with 0 , b , 4.

(a) If ðx0; y0Þ is an initial point such that

a0x0

y0
[ 2

b

a
; 0

� �
if a . 0;

a0x0

y0
[ 0;2

b

a

� �
if a , 0; ð25Þ

then the following are true:

(i) The orbit fðxn; ynÞ} is well-defined with yn ¼ anxn=xnþ1 and xn [
ð0;2b=aÞ if a , 0, xn [ ð2b=a; 0Þ if a . 0 for all n $ 0: Furthermore,
the orbit is bounded if fan} is bounded.

(ii) If limn!1 an ¼ a – 0 and the solution frn} of (23) converges to a q-cycle
then the orbit fðxn; ynÞ} converges to a q-cycle.

(iii) If fan} converges to zero then the orbit fðxn; ynÞ} converges to a limit set

that is contained in the x-axis. If the solution frn} of (23) converges to a

cycle or is chaotic then the orbit has the same behaviour but the limit set

itself does not contain a solution of (10).

(iv) If fan} converges to a p-cycle and the solution frn} of (23) converges to a

q-cycle then the orbit fðxn; ynÞ} converges to a cycle with period lcmðp; qÞ.
(v) If fan} is bounded and the solution frn} of (23) is chaotic (e.g. if 3:57 ,

b , 4Þ then the orbit fðxn; ynÞ} is chaotic.

(b) If ðx0; y0Þ is such that a0x0=y0 does not satisfy (25) and a0x0=y0 – 0;^b=a then

the orbit fðxn; ynÞ} is well-defined and unbounded.
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Proof.

(a) We prove the case a , 0 here and leave out the analogous arguments for the case

a . 0:
(i) Let a0x0=y0 ¼ r0 [ ð0;2b=aÞ. The critical point of mðrÞ ¼ ar 2 þ br at

r ¼ 2b=2a yields the maximum value mmax ¼ 2b2=4a. It follows that

0 , 2
b3

4a
12

b

4

� �
¼ mðmmaxÞ # rn # mmax , 2

b

a
;

for all n sufficiently large. In particular, xn ¼ rn21 does not approach 0 so

yn ¼ anxn=xnþ1 is well defined. Furthermore, since

jynj ¼ janjxn
xnþ1

¼ rn21

rn
janj # mmax

mðmmaxÞ janj ¼ 16

b2ð42 bÞ janj;

it follows that the orbit fðxn; ynÞ} is bounded if fan} is.

(ii) Since xn ¼ rn21 for n $ 1 if frn} converges to a q-cycle in 0;2b=a
� �

then

fxn} converges to the same q-cycle (with a phase shift), say,

limn!1jxn 2 jnj ¼ 0, where fjn} is a q-cycle in the interval

½mðmmaxÞ;mmax�. Then jnþq=jnþ1þq ¼ jn=jnþ1 for all n so fjn=jnþ1} has

period q and

xn

xnþ1

2
jn
jnþ1

����
���� # 1

xnþ1jnþ1

jnþ1jxn 2 jnj þ jnjxnþ1 2 jnþ1j
� �

#
mmax

mðmmaxÞ2
jxn 2 jnj þ jxnþ1 2 jnþ1j
� �

:

Thus fxn=xnþ1} converges to the periodic sequence fjn=jnþ1} with period

q. Since

yn 2
ajn
jnþ1

����
���� # anxn

xnþ1

2
anjn
jnþ1

����
����þ anjn

jnþ1

2
ajn
jnþ1

����
����

# janj xn

xnþ1

2
jn
jnþ1

����
����þ jan 2 aj mmax

mðmmaxÞ :

it follows that fyn} converges to the sequence fajn=jnþ1} which has period

q: Hence, the orbit fðxn; ynÞ} converges to a sequence with period q.

(iii) By (i) above,mðmmaxÞ # xn=xnþ1 # mmax so limn!1 yn ¼ 0 and the limit set

of fðxn; ynÞ} is contained in the x-axis. If frn} converges to a cycle or is

chaotic then so is fxn} and the same behaviour is exhibited by fðxn; ynÞ} as it
approaches the x-axis. The limit set in the x-axis may be finite or infinite

depending onwhether the limit of fxn} is periodic or not. However, the limit

set itself cannot be a solution of the systemwhere yn – 0must hold for all n.

(iv) Suppose that frn} converges to a q-cycle. Then fxn} converges to a q-cycle
fjn} in the interval ½mðmmaxÞ;mmax�. As in (ii), fxn=xnþ1} converges to the

periodic sequence fjn=jnþ1} with period q. If fan} converges to a sequence
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fa*
n} of period p then by Lemma 8 fa*

njn=jnþ1} has period lcmðp; qÞ and

yn 2
a*
njn

jnþ1

����
���� # anxn

xnþ1

2
anjn
jnþ1

����
����þ anjn

jnþ1

2
a*
njn

jnþ1

����
����

# janj xn

xnþ1

2
jn
jnþ1

����
����þ jan 2 a*

nj
mmax

mðmmaxÞ :

Therefore, fyn} converges to the sequence fa*
njn=jnþ1} with period

lcmðp; qÞ. Hence, the orbit fðxn; ynÞ} converges to a sequence with period

lcmðp; qÞ.
(v) If frn} is chaotic then so is fxn}. If fan} is bounded then fyn} is also bounded

since xn [ ½mðmmaxÞ;mmax� for all n $ 0. Therefore, regardless of the nature

of the behaviour of fyn}, the orbit fðxn; ynÞ} is chaotic in the sense of

Definition 9.

(b) If ðx0; y0Þ is such that a0x0=y0 does not satisfy (25) and a0x0=y0 – 0;^b=a then the
solution rn of (23) is unbounded. Thus the sequence fxn} is also unbounded and it

follows that the orbit fðxn; ynÞ} is unbounded, regardless of the nature of fyn}.
A

An example of a system to which the preceding result applies is the following

xnþ1 ¼ ð21Þnxn
yn

; ynþ1 ¼ 2yn

axn þ bð21Þnyn ;

where a; b are real numbers such that a – 0. Note that this system does not converge to an

autonomous system though it is periodic. A more comprehensive study of 14 in the future

through folding and (17) may reveal additional interesting possibilities.

Remark 11. Certain exceptional solutions of (24) cannot be derived from the folding.

In particular, if x0 ¼ 0 and y0 – 0 then xn ¼ 0 for all n so that yn ¼ b0
n=Bn ¼ anþ1=b. Thus

the sequence fð0;anþ1=bÞ} is an orbit of (24) that cannot be obtained from the ratio

anxn=xnþ1 in the passive equation. This orbit is unstable if b . 1, a parameter range for

which 0 is unstable in (23) but if 0 , b # 1 then it attracts all orbits of the system with

a0x0=y0 as given in (25).

4. An inverse problem and more rational systems

Folding a given nonlinear system into a higher order equation does not always simplify the

study of solutions. From a practical point of view, a significant gain in terms of simplifying

the analysis of solutions is desirable. This was the case in the previous section where the

folding had a one-dimensional structure. In this section, we determine and study classes of

difference systems that fold to equations of order 1 or 2 with known properties. We start

with one of the two equations of the system, say, the one given by f along with a known

function f that defines a second-order equation with desired properties. Then a function g

is determined with the property that the system with components f and g folds to an

equation of order 2 defined by f:
This process is indeed an inverse of folding in the sense that the resulting system with f

and g is a (non-standard) unfolding of the equation of order 2 that is defined by the function

f. In the autonomous case, if f ðu; vÞ ¼ v then g ¼ f and we obtain a standard unfolding.
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Using a rational function f the above unfolding process leads, in particular, to a

rediscovery of the rational system discussed in the previous section as a non-standard

unfolding of the first-order logistic equation. By unfolding other first or second order

difference equations in this way, we discover other rational systems that are not

homogeneous but which can still be analysed using the same method.

Suppose that a function f satisfies Definition 1. By (6) the following

f ðnþ 1;w; gðn; u; hðn; u;wÞÞÞ ¼ fðn; u;wÞ

is a function of n; u;w. Since f is semi-invertible, once again from Definition 1 we obtain

gðn; u; hðn; u;wÞÞ ¼ hðnþ 1;w;fðn; u;wÞÞ: ð26Þ

Now, suppose that fðn; u;wÞ is prescribed on a set N0 £M0 where M0 , S £ S and we

seek g that satisfies (26). Assume that a subset M of D exists with the property that

f ðN0 £MÞ £ fðN0 £M0Þ , M0 For ðn; u; vÞ [ N0 £M define

gðn; u; vÞ ¼ hðnþ 1; f ðn; u; vÞ;fðn; u; f ðn; u; vÞÞÞ: ð27Þ

In particular, if v [ hðN0 £M
0 Þ then g above satisfies (27). These observations

establish the following result.

Theorem 12. Let f be a semi-invertible function with h given by Definition 1.

Furthermore, let f be a given function onN0 £M0. If g is given by (27) then (1) folds to the
difference equation snþ2 ¼ fðn; sn; snþ1Þ plus a passive equation.

In separable cases, explicit expressions are possible with the aid of (4). Note that semi-

linear systems are included in the next result.

Corollary 13. Let ðG; *Þ be a nontrivial group and f ðn; u; vÞ ¼ f 1ðn; uÞ*f 2ðn; vÞ be

separable onG £ Gwith f 2 abijection. Iff is a given function onN0 £ G £ Gandg is givenby

gðn; u; vÞ ¼ f21
2 nþ 1; f 1ðnþ 1; f 1ðn; uÞ*f 2ðn; vÞÞ

� �21
*fðn; u; f 1ðn; uÞ*f 2ðn; vÞÞ

� 	
;

then (1) folds to the difference equation snþ2 ¼ fðn; sn; snþ1Þ plus a passive equation.
The next result yields a class of systems that actually reduce to first-order difference

equations.

Corollary 14. Assume that f ; h satisfy the hypotheses of Theorem 12 and let fðn; ·Þ be a
function of one variable for each n. If

gðn; u; vÞ ¼ hðnþ 1; f ðn; u; vÞ;fðn; f ðn; u; vÞÞÞ

then (1) folds to the difference equation snþ2 ¼ fðn; snþ1Þ with order 1 plus a passive

equation.

We may use the above corollary to rediscover the rational system discussed in the

previous section. Let f ðn; u; vÞ ¼ anu=v as in (14) subject to (19). With fðn; u;wÞ ¼
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aw2 þ bw that defines (22) we obtain, using Corollary 14

gðn; u; vÞ ¼ anþ1anu

v½aðanuÞ2=v2 þ banu=v�
¼ anþ1v

aanuþ bv
¼ ðanþ1=aanÞv

uþ ðb=aanÞv :

Using the substitutions (21) we obtain the homogeneous system (24). The next result

yields a class of systems that fold to second-order difference equations whose orbits are

determined by first-order equations.

Corollary 15. Assume that f ; h satisfy the hypotheses of Theorem 12 and let fðn; ·Þ be a
function of one variable for each n: If

gðn; u; vÞ ¼ hðnþ 1; f ðn; u; vÞ;fðn; uÞÞ; ð28Þ

then (1) folds to the difference equation snþ2 ¼ fðn; snÞ whose even terms and odd terms

are (separately) solutions of the first-order equation

rnþ1 ¼ fðn; rnÞ; ð29Þ

i.e. s2k ¼ fð2k2 2; s2k22Þ and s2kþ1 ¼ fð2k2 1; s2k21Þ for all k $ 1, s0 ¼ x0 and

s1 ¼ f ð0; x0; y0Þ.
As an application, consider the function f ðn; u; vÞ ¼ anu=v again but now with

fðn; u;wÞ ¼ au2 þ bu. Then Corollary 15 yields

gðn; u; vÞ ¼ anþ1anu

vðau2 þ buÞ ¼
anþ1an

vðauþ bÞ ;

which results in the system

xnþ1 ¼ anxn

yn
; ð30aÞ

ynþ1 ¼ ananþ1

ðaxn þ bÞyn : ð30bÞ

The core of its folding is snþ2 ¼ as2n þ bsn a second-order equation of type seen in

Corollary 15. The even- and odd-indexed terms are generated by a conjugate of the logistic

map so an analysis similar to that of the previous section may be carried out for the rational

system (30).

The fact that, despite similarities, the folding of (30) has order 2 whereas that of (24)

has order 1 has some interesting consequences about the corresponding systems and their

orbits. To be more precise, consider the autonomous version of (24) with an ¼ a for all n

i.e. the system

xnþ1 ¼ axn
yn

; ð31aÞ

ynþ1 ¼ byn
xn þ gyn

; ð31bÞ
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where b ¼ 1=a and g ¼ b=aa which we compare to the autonomous version of (30)

xnþ1 ¼ axn
yn

; ð32aÞ

ynþ1 ¼ b

ðxn þ gÞyn ð32bÞ

with an ¼ a, b ¼ a2=a and g ¼ b=a.
The graph of a single typical orbit of (31) that satisfies the hypotheses in Part (v) of

Theorem 10 appears in Figure 1. We note that the chaotic orbit is in the positive quadrant

since yn . 0 for all n in this case.

The one-dimensional manifold that contains the orbit is the curve y ¼ a=ðaxþ bÞ
which is calculated using (22) as follows:

yn ¼ axn
xnþ1

¼ axn
ax2n þ bxn

¼ a

axn þ b
:

The graph of a single typical orbit of (32) is shown in Figure 2. The spread of the orbit

in the plane reflects the higher order of the folding in this case.

Other facts worth mentioning with regard to (31) and (32) are that the latter is not

homogeneous, and semi-conjugacy to a known map is not known for it. Furthermore, the

second equation of (32) is not linear-fractional.

The next result concerns systems that fold to autonomous affine equations of order 2.

Corollary 16. Assume that f ; h satisfy the hypotheses of Theorem 12 and let fðu;wÞ ¼
auþ bwþ c be an affine function where jaj þ jbj . 0. If

gðn; u; vÞ ¼ hðnþ 1; f ðn; u; vÞ; auþ bf ðn; u; vÞ þ cÞ;

then (1) folds to the difference equation snþ2 ¼ asn þ bsnþ1 þ c plus a passive equation.

Figure 1. A typical orbit of the homogeneous system.
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As an application of the above corollary, consider f ðn; u; vÞ ¼ anu=v together with

fðu;wÞ ¼ auþ bwþ c. Then by Corollary 16

gðn; u; vÞ ¼ anþ1anu

v½auþ bðanu=vÞ þ c� ¼
anþ1anu

auvþ cvþ ban

;

corresponding to the following rational system

xnþ1 ¼ anxn

yn
; ð33aÞ

ynþ1 ¼ ananþ1xn

anbxn þ ðaxn þ cÞyn : ð33bÞ

In the special casewherean ¼ a is a constant and a ¼ 0 the above system takes the form

xnþ1 ¼ axn
yn

; ð34aÞ

ynþ1 ¼ bxn
xn þ gyn

; ð34bÞ

where b ¼ a=b and g ¼ c=ab. This homogeneous system, which folds to the affine first-

order equation (18) does not generate complex behaviour, in contrast to (31), which is also

homogeneous. On the other hand, if b ¼ 0 and an ¼ a then (16) reduces to the autonomous

system

xnþ1 ¼ axn
yn

; ð35aÞ

ynþ1 ¼ bxn
ðxn þ gÞyn ; ð35bÞ

where b¼ a2=a and g ¼ c=a: This system may be compared to (32) since (35) is not

homogeneous, semi-conjugacy to a knownmap is not known for it and the second equation

Figure 2. A typical orbit of the non-homogeneous system.
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of the system is not linear-fractional. But in contrast to (32), system (35) folds to a second-

order affine difference equation and thus, cannot generate complex behaviour. In fact,

general formulas for the orbits of (34) and (35) can be easily obtained in closed form if

desired.

Acknowledgement

The author appreciates informative comments by the editor and the anonymous referees.

References

[1] F. Balibrea and P. Oprocha,Weak mixing and chaos in nonautonomous discrete systems, Appl.
Math. Lett. 25 (2012), pp. 1135–1141.
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