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Let S be a dense subsemigroup of a semitopological semigroup 7. In
this note we consider the following extension problem: Given a property N of
functions on semigroups, find conditions on S and T such that every bounded,
continuous, (complex—valued) function on S with property N extends contin-
uously to a function on T' with the same property.

Several authors have considered special cases of this problem. For exam-
ple, it has been shown that if N is the property of almost periodicity, weak
almost periodicity, or strong almost periodicity, then the extension problem
has a positive solution if T contains an identity and is topologically right
simple (e.g., if T is a group) [3].

It is interesting (and fruitful) to break up the extension problem into the

following somewhat more basic problems:

(a) Find conditions on S and T such that every bounded continuous function
on S with property N extends to a continuous function (not necessarily
possessing property N) on T.

(b) Find conditions on S and T such that if the restriction of a continuous

function f on T has property N, then f has property N.

Note that positive solutions to both (a) and (b) imply a positive solution to
the extension problem. In this paper we consider only those properties N
which define m-admissible algebras of functions (defined below). If F(S) and
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F(T) denote such algebras on S and T, respectively, then (a) and (b) may be

rephrased as follows:

(a’) Find conditions on S and T such that F(S) C C(T)|s.
(b') Find conditions on S and T such that F(S)NC(T)|s C F(T)|s.

We prove below a general theorem which addresses (b') and we use this the-
orem, together with various positive solutions of (a'), to prove some special

cases of the extension problem.

PRELIMINARIES

In this section we summarize some of the main idcas concerning semigroup
compactifications. A detailed account of the theory may be found in [2] or [3].

A topological space and semigroup X is is said to be right topological if the
mappings ¢ — zy : X +— X, y € X, are continuous. If the mappings = — yz :
X — X, y € X, are also continuous, then X is said to be semitopological. A
compactification of a semitopological semigroup S is a pair (¢, X'), where X isa
compact, Hausdorff, right topological semigroup and ¢ : $ — X is a continuous
homomorphism such that ¢(§) = X and the mappings & — o(s)r: X —» X,
s € §, are continuous. When convenience dictates, we shall omit reference to
the mapping ¢ and call X a compactification of S. A continuous function =
from a compactification (¢, X) of S to a compactification (1,Y") of S is said
to be a homomorphism if m 0 ¢ = . Note that such a mapping preserves
multiplication and is onto. A homomorphism which is one-to-one is called an
isomorphism.

A compactification of S which possesses a certain property P (such as
that of being a topological group) will be called a P-compactification of
S. A P-compactification (¢, X) of S is said to be universal if for any P-
compactification (¢,Y) of S there exists a continuous homomorphism from
{#,X) onto (3,Y).

Let (¢, X) be a compactification of S and let ¢* : C(X) — C(S) denote
the dual mapping f — f 0 ¢. Then the C*—subalgebra F(S) := ¢*(C(X)) has

the following properties:

(a) F(S) is translation invariant; i.e., R,F(S)UL,F(S) C F(S)forall s € §,
where R,f(t) := f(ts) and L,f(t) := f(st), t € S, f € C(S).
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(b) F(S) is left m-introverted; i.e., T, F(S) C F(S) for all u in the spectrum
of F(S), where T, is defined by T, f(s) = u(L.f), f € F(S), s€ S.

Conversely, let FI(S) be a C*-subalgebra of C(S) with properties (a) and (b)
and containing the constant functions (such an algebra is called m-admissible).
Let X denote the spectrum of F(S) with the weak* topology, andlet ¢ : S +— X
be the evaluation mapping defined by ¢(s)(f) = f(s), f € F(S), s € S. Then
(¢,X) is a compactification of S such that F(5) = ¢*(C({X)), where mul-
tiplication on X is defined by zy = z o Ty. (¢,X) is called the canonical
F(S)~compactification of S. We shall frequently denote this compactification
by SF9), or simply by S¥. Here are some important examples (see Chap-
ters 3 and 4 of [3]): SAP is the universal topological semigroup compactifi-
cation of S, where AP(S) is the algebra of almost periodic functions on S.
SWAP is the universal semitopological semigroup compactification of S, where
W AP(S) is the algebra of weakly almost periodic functions on S. S$54% is
the universal topological group compactification of S, where SAP(S) is the
algebra of strongly almost periodic functions on S. S*C is the compactifica-
tion of S§ which is universal with respect to the property that the mapping
(s,z) = ¢(s)z : § x SLC€ s SLC is continuous, where LC(S) is the algebra
of left norm continuous functions on S. Finally, S¥M€ is tle universal (right
topological) semigroup compactification of S, where LM C(S) is the algebra of
left multiplicatively continuous functions on S (equivalently, LMC(S) is the
largest m—admissible subalgebra of C(S5)).

RESULTS

Lemma 1. Let A be an m-admissible subalgebra of C(S) such that A C
C(T)|s and let B = {f : f € A}, where f denotes the continuous extension of
f to T. Then there exists a topological isomorphism 8 of the compactification

TB onto the compactification S4 such that

N =vf) (eI’ fea) &y

Proof. Since the mapping f ~— f : A v+ B is an isomorphism of C*-
algebras, the mapping 0, as defined by (1), is 2 homeomorphism. It remains

to show that 6 is a homomorphism, i.e., that

6(zy)(f) = 6()8(y () (2)
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for all z,y € TP and all f € A. By (1) and the definition of multiplication in

TB, the left side of (2) equals (zy)(f) = z(T, f) and the right side of (2) equals

z(m). Hence it suffices to show that (T} f)|s = Tyy)f or, equivalently,

that y(L,f) = y(L,f) for all s € S. But this is immediate from the identity

L.f =L.f.

Lemma 2. Let F(S) be an m-admissible subalgebra of C(S) and define B :=

{9 € C(T): g|s € F(S)}.

(i) B is a right translation invariant C*-subalgebra of C{T') such that LsB C
B.

(ii) If F(S) is right m~introverted (i.e., the mapping s v~ u(R, f) is a member
of F(S) for each p in the spectrum of F(S) and each f € F(S)), then B
is left translation invariant.

(iii} If B is left translation invariant and contained in LMC(T), then B is

m-admissible.

Proof. (i) B is easily seen to be a C*—subalgebra of C(T') and the identity

(Lsg)ls = Ls(gls), s€S, geC(T)

shows that LsB C B. let u be in the spectrum of B and choose a net {s,} in
S such that forall g € B

#(g) = limg(sa).
This is possible since S is dense in T' and the evaluation functionals are dense
in the spectrum of B. We may assume that there exists v € F(S)* such that
for all f € F(S)

W(f) = lim f(sa).

Then for any ¢ € B and s € S, we have

T,g(s) = p(Lag) =limg(ssq) = limg[s(ssa) = v(Ls(gls)) = Tu(gls)(s),

ie.,
(Tug)ls = T.(gls)- (3)
Right translation invariance of B follows from (3) upon taking u = €(t) and
noting that T,y = Ry, where € is the evaluation mapping.
(ii) Let g € B, t € T and let {s,} be a net in S converging to t. Then
L,.{g]s) € F(S), and since F(S) is right m-introverted, there exists a subnet
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{ss} such that the net {L,,(g|s)} converges pointwise on S to some function
f € F(S). 1t follows that (L.g)|s = f € F(S5), i.e., Lyg € B.

(iii) If B is contained in LM C(T') then T, g is continuous; hence (3) implies
that T, B C B, i.e., B is left m-introverted.

Remark. In connection with part (iii) of Lemma 2 it should be pointed out
that in general B may not be contained in LM C(T). For example, if S and T
denote, respectively, the topological groups of rational and real numbers under
the usual topology and addition, then B = {g € C(T"): gls € LMC(S)} ¢
LMC(T) [6].

In the following theorem and its corollaries we consider only those prop-
erties P which are invariant under homemorphisms of compactifications and
for which universal P-compactifications exist. Examples of such properties
and a general existence theorem for universal P-compactifications appear in

Chapter 3 of [3].
Theorem. Let (v, X) and (¢,Y) be universal P-compactifications of § and
T, respectively, and let Fp{S) = *C(X) and Fp(T) = ¢*C(Y'). Then
Fp(S)NC(T)ls = Fp(T)ls (4)
if and only if the C*-algebra
B:={g€ C(T):gls € Fp(S)} (5)

is contained in LMC(T) and is left translation invariant (in which case it is

m-admissible).

Proof. If (4) holds then B = Fp(T'), hence B is contained in LM C(T).
Conversely, assume that B is left translation invariant and contained in

LMC(T). By Lemma 2, B is m-admissible. Let
A= Fp(S)ﬁC(T)Is. (6)

Note that A is m-admissible, since it is the image of the m—admissible al-
gebra B under the restriction mapping f — fl|s. Since A C Fp(S), $4 is
a continuous homomorphic image of the compactification X of S (Theorem

3.1.9, [3]) and hence has property P. Let 6 : TB® +— S* be the mapping
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of Lemma 1. Then T has property P, and because (¢,Y) is the universal
P—compactification of T, B C ¢*C(Y) = Fp(T). Thercfore A ¢ Fp(T)|s.
For the reverse inclusion, note that by Lemma 1, the compactifications Y and
SFr(Dls are isomorphic, hence SFP(Mls has property P. By the universality
of X, Fp(T)|s C Fp(S). This completes the proof of the theorem.

Corollary 1. If Fp(S) is right m-introverted (e.g., if T is abelian) and
Fp(S)C LMC(T)|s, then
Fp(S) = Fp(T)|s.
Proof. The hypothesis implies that B ¢ LM C(T), where B is the algebra
in (5). Hence the corollary follows from Lemma 2 and the theorem.

Corollary 2. If Fp(S) = Fp(T)|s then
Fo(S) = Fo(T)ls (7)

for all stronger properties @) for which F(S) is right m—introverted.

Proof. If Q is stronger than P, then Fp C Fp. Hence (7) follows from
Corollary 1.

Remark. Equation (7) need not hold for properties @ which are not stronger
than P. For example, if S and T are the topological groups of rational and
real numbers, respectively, then WAP(S) = WAP(T)|s (Corollary 4 below)
but LMC(S) # LMC(T)|s [6].

The following corollary generalizes Proposition 4 of [1].

Corollary 3. If Fp(S) C WAP(S) then
Fp(S)NC(T)|s = Fp(T)ls.

Hence if also Fp(S) C C(T)|s then Fp(S) = Fp(T)|s.

Proof. We show that the algebra B in (5) satisfies the hypotheses of
the theorem. Since Fp(S) is right m-introverted (by virtue of its being a
subset of WAP(S)), Lemma 2 implies that B is left translation invariant. It
remains to show that B € LMC(T'). To this end let f € B, let u be a member
of the spectrum of B, and let {sq} be a net in S such that g(s«) — u(g)
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for all ¢ € B. Let A be as in (6). Since fls € A C WAP(S) and 4 is
translation invariant (in fact, m-admissible), we may suppose that {{R,_f}is}
converges weakly to some function f, € 4. Fix ¢t € T. The map h :— h(t) is
a continuous linear functional on 4 so (R, f)(t) — f.(t). On the other hand,
(Ro, f)(t) = Lif(sa) — pw(Lef) = Tuf(t). Therefore T, f = f, € C(T), i.e.,
feLMC(T).

Corollary 4. Suppose that T contains a right identity and is topologically
right simple. Let Fp(S) C WAP(S). Then

Fp(S) = Fp(T)|s.

Proof. First note that since T is topologically right simiple so is S. Hence
WAP(S) C LC(S) [4]. Also, by Theorem 3.2 of [5], LC(S) C C(T)|s. There-
fore WAP(S) C C(T)|s, and the conclusion follows from Corollary 3.

Corollary 5. Suppose that T is topologically left simple and topologically
right simple. If Fp(5) C WAP(S), then
Fp(S) = Fp(T)\s.
Proof. By Lemma 4.2 of [5] WAP(S) C C(T)|s. The conclusion now
follows from Corollary 3.

Corollary 6. Suppose that T is topologically simple. If Fp(S) C SAP(S),
then

Fp(S) = Fp(T)|s.

Proof. By the proof of Theorem 4.6 of [5], SAP(S) C C(T)|s. Now apply
Corollary 3.

Corollary 7. Suppose that T is topologically right siinple and contains a right
identity. Then LC(S) = LC(T)|s if and only if the C*-algebra {f € C(T):
fls € LC(S)} is m-admissible.

Proof. By Theorem 3.2 of [5] LC(S) ¢ C(T)ls. The conclusion now

follows from the above theorem.

Remark. The statement that Fp(S) = Fp(T)|s is easily scen to be equivalent

to the assertion that S¥7(5) is isomorphic to the universal P-compactification
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of T. (In fact, Lemma 1 provides the necessity.) This observation allows us,

for example, to restate Corollary 4 as follows:

Let T be topologically right simple and contain a right identity. Then S

and T have the same universal semitopological semigroup P-compactifications.
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