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- .  Lrabil jci* &r< iaitiai ssts ofpoin-i fiOiri .*hi& :hi: ;rcjt.;ljriG, Gf >iil.gc!ar z;zei-enic iqnz- 
tions reach inifinite discontinuities after a finite number of steps; therefore, a solution does 
not exist in such cases. For iiijeciive imps of the :ins possisjiiig a: leas: onc fixed point, 
the structure of crash sets is determined. For second order equations whose vector maps 
of the p h e  are iiijective, a geiicia! algorithin f ~ :  recursivebj, consiracting crash sets. is. 
obtained, together with results on the structure of those sets in a special case. 

Keywords: Infinite discontinuity; Monotonic maps; Crash set 

AMS Subject Classij?cation: 39A10 

1 INTRODUCTION 

Discrete initial value problems may not have solutions when infinite dis- 
continuities (or singularities) exist. This fact is discussed in several 
recent works on difference equations; see, e.g. [I-31. Yet, there appears 
to be very little systematic study done on this problem; indeed, it is 
noted in [l] that "The problem of existence of solutions for difference 
equations is of paramount importance but so far has been systemati- 
cally neglected." 

The aim of this paper is to consolidate and extend various appar- 
ently unrelated results, particularly those In 11-31, in ihe coniext of 
monotonic map iterates in dimensions one and two. Given that solu- 
tions of delay (or higher order) difference equations can be expressed 
as map iterations, for monotonic (or injective) maps the natural thing 
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536 H. SEDAGHAT 

to consider is the images of the singularity set under successive 
iterations of the inverse mapping. We are interested in the structure of 
the set consisting of all these inverse images. In this paper we consider 
first and second order equations. In the first order case, we obtain 
general results for monotonic maps and apply those results to 

...%.--- W;IC.IL a is n a nn,,,rn IIVIIAbIV roo: lLUl n,,m~pr I 1 u l l I U ~ l  2nd p is a positive odd riltz'onal, i.e., 

p = (2t - !)/(2j - 1) where i, j are positive integers. The equation studied 
in [2] is of this type. We also study the existence of solutions for second 
order equations of type 

wherep, g are odd rationals, at !east one of which is positive. The equa- 
tions in [I]  and 131 arc of this type. 

2 MONOTONIC MAPS WITH POLES 

The mapping on the right hand side of Eq. (i j is a member of the ciass 
of functions on the real line R defined by the four properties: 

(Al) f is continuous on its domain R - (0); 
(A2) f is injective (or one-to-one) on R - (0); 
(A31 0 ~ f @  - (01); 
('44) lilllx,O I f ( x )  1 = 02. 

Property (A4) makes origin a "pole type" singularity forf. Property 
(A2) implies that the left and right limits off at the origin must both 
have infinite magnitudes, but with opposite signs. Also by (Al) and (A2), 
f consists of two continuous pieces on the two sides of 0, and these 
pieces are either both increasing or both decreasing. Hence, we may 
refer to f as an "increasing map" or a "decreasing map" in this sense, 

Injectivity forces a unique pole, which may be assumed to be at  the 
origin, because a map having two or  more poles cannot be injective on 
the complement of its set of poles. Property (A3) ensures nontriviality; 
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EXISTENCE OF SOLUTIONS 537 

for in the absence of (A3), f is just a continuous map of R - (0) into 
itse!f. 1f f -' denotes the inverse mapj then (A31 is equivalent to aswm- 
ing f -'(0) exists and is nonzero. 

The iterates o f f  at some specific point xo E R - ( 0 )  make up the 
orbit (xo,.f(xo), f 2(xoi, . . .] wherefn denotes the composition o f f  with 
itself n times. This orbit is the solution of the discrete initial vaiue 
probiem, 

Such an orbit cannot be defined if fn(xo) = 0 (equivalently, xo = 

f -"(O)) for some positive integer n; we refer to the backward trajectory 
{ f -"(O)) where f -" = ( f  -I)" as the crash set off. We now list some 
relevant elementary properties of monotonic maps as a lemma. 

Further, f -'(o) < 0 and there are precisely two fixed points, one in the 
interval (f -'(o), 0) and another in (0, m). 

Suppose t / i a l f i s  iiicremiiig. a 5 P iiiid f -1 is iiicreajiiig 

lim f - ' ( y )  = co, lim f - ' ( y )  = -m. 
y-a- Y++ 

Further, 0 < f -'(o) < CY and if S is the (possibly empty) 
points o f f ,  then S c (f -'(o), a). 

set of fixed 

THEOREM 1 (a) Assume that f is decreasing and let 2 be thefixedpoint 
in ( f  -'(o), 0). Then the sequence { f -"(O)) is contained in the interval 
[ f -'(!I), f -2(~)], and converges either to 2 or to a 2-cycle. 

(b) Let f be increasing and assume that S is nonempty with 2 = 

inf(S ) > f -' (0). Then the sequence { f -"to)) is contained in [ f -' (0), 2) 
and converges monotonically to 2. 

Proof (a) Note thai since f -' maps (-m, 0) into itself, 
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It follows inductively that f -"(0) E [ f -'(0j, 0) for all positive integers n. 
In particular,f -'((I) < f - 3 ( ~ )  and since f -' is increasing, 

J - ~ ( O )  =f-2!f-3!~)) > , f - 3 ( ~ ) .  

Ey induction we cnr?c!ude that 

Next. for each integer k > 1. 

so that the even iterates form a decreasing sequence. Further. if 
f -2k(0) > Z, then f -2k-2 (0) > f -2(ji.) = ji. and since f -'(Oj > f -' (3)  = x 
we see that the even iterates are bounded below by 3. On the other 
hand. for each k, 

so that the sequence of odd iterates off -' is bounded above by X. If 
the sequence { f -2k(~)} does not converge te  2, then it must converge to 
some c > Z. Hence, given the uniqueness of 2 in [ f -'(o), 0), {c, f -'(c)} 
is a 2-cycie in if-'(o), Oj to which { j-"(6)) converges. Note that drie 
to continuity, 

so that this limit cycle is in fact the largest possible 2-cycle in 
[f -;m 0). 

(b) By the minimality o f f ,  f > y for 0 < y < 2. Therefore, 

and { f -"(O)) must increase to 2. 

CGP,OLL.A.RY ! Stqpose !hat f her a fixed point. Then (f -"(O,)) is 
bounded, infinite and has at most two limit points. 

The next corollary uses the following result from [4]. 
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EXISTENCE OF SOLUTIONS 539 

LEMMA 2 Let f be decreasing. A fixed point i o f f  is asymptotically 
stable (respectively, ~lmtahle) if and only if thpre is r j >  O wch that 
f - ' ( x )  > f ( x )  (respectively, f - ' ( x )  < f ( x ) )  for i - S < x < i. 

COROLLARY 2 The sequence ( f  -"(O)) has two limit points [f' f is 
decreasing and its ncgative fixed point 2 is asympiot icaliy stable. In 
par?icu!ar: $f-f is co~?imnus!:, d&{felen!iab!e a? - w i ~ h  -1 < fl(-?) < 0, 
then (f -"(C)) has two limit poi~ts.  

Proof Suppose (2) is asympioricaiiy siabie. Then by Lemma 2 there 
is S > O S U C ~  that f - ' (XI  > f ( x j  for I - G < n < x. On the other hand, 

so there is a point In ( f  -' (O), 2) at which f equals f - I .  Hence, the 
number c def ned by (4) emt r  2nd by Theorerr? 1 ( f  "(0)) has the two 
I . - .  . u:mi pmxits c &d;-'&>. 

3 T H E  MAPPING ( a / x P )  + I 

In this section we consider rational functions of type 

where the odd rationality ofp ensures rnonotonicity. It is zasy to see that 

so that f - '(0) = -a'Ip and f - I  has a pole at y = 1. 

THEOREM 2 (a )  The sequence { f -"(O)) of backward iterates converges 
to a 2-cycle {c ,  -(a/(l - c))-'IP) i f  and only i f p  < 1 and 

The number c E (-allp, -(a/(a'iP + l))'lp) is an extverrzal solution of the 
equation f - ' (u)  = f(u). 
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540 H. SEDAGHAT 

(b)  For a > 0, the sequence ( f - " ( 0 ) )  converges to 2 E (-a1/*,  
- (a/ (al ip  + l ) ) ' l p )  i f p  _> 1 ,  or Sfp < 1 and 

I'hc jixed pomt x 1s the unique rzegalive soiulion of / ' - ' (u j=/ ' ju)  in 
this case. 

(ci  The sequence { f -"(O)) increases to 3 E ( ( - a ) ' ' P , p / ( p  + 1 I] i f  

The Jixed point 3 is the smaller of at most two positive solutions of 
f - ' (u)  = f (u )  in this case. 

Proof (a) From (6 )  we see that a > 0. Suppose thatp < 1 and (6) holds. 
To prove the existence of a Zcycle, Corollary 2 may be used if it is 
shown that f ' (3) > - 1, where 2 is the negative solution of 

Since f ( X )  = x, direct calculation shows that f '(2) > - 1 is equivalent 
to the inequality 

or equivalently, 

-P x<- 
1 - P  

If u < 0, then 

4; ( u )  = ( p  + 1)uP - pup-1 = u p - ' [ ( p  + 1)u - p] < 0. 

Since (X) = 0, from (1 1) we conclude that f ' ( X )  > -1 is equivalent to 

which is the same as (6) .  
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EXISTENCE OF SOLUTIONS 54 1 

Conversely, since Zcycles do not exist when a < 0 (i.e., when f is 
increasing), we may suppose that a > 0 and either p < 1 and (7) holds, 
or that p 2 1. In either case, it suffices to show that f lu)  > f - ' ( u )  for 
u < Z, or equivalently, 

with 

To this end, consider 

Direct calculation shows that $'(u) = 0 if and cnlp if 

and also that a and 4' have opposite signs everywhere. 
Now, if p = 1 then b = !, so it fo!lows that a(u) = 1 for all u < 0; in 

particular, #'(u) is negative for u < i? and by (12) 4 has no zeros less 
+I..., .? -, 
L u a u  i ;I, this case, 

I f p  # 1, then a l (u )  =pup-'  - b has a unique negative solution 

It is easily verified that if p < 1 then ,u represents a local minimum 
for a and when p > 1 then p is a local maximum. 

Suppose first that p < 1 .  Then 

if and only if 
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H. SEDAGHAT 

This can be restated as 

Using the definition of b in (1 3), we find that (1.5) is equivalent to 

which may be easily reduced to 

with equality holding if and only if we have equality in (14j. if strict 
inequality holds in (16), then a and hence, 4' have no zeros less than 3: 
therefore, 4 is strictly decreasing and by (12),4 has no zeros less than .?= 

& hand, eq.ua]iij; ;j,13, : .  " " +L-- If3 c>n * - ~  
i A A  1 : U,), LUU& 

and a straightforward calculation shows that ,LL = -p/(l -p).  Further, 

so that 

It follows that f  is the unique negative zero of 4', so once again 4 has 
no zeros less than X. 

Now, we consider the last remaining case, p > I .  In this case, ,LL is the 
unique local maximum of a ,  and u(0) = b > 0 so that a has a unique 
negative zero x' < p. Further, since f (2) = 2 = f -' ( f ) ,  direct calcula- 
tion shows 
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EXISTENCE OF SOLUTIONS 5411 

It follows that #(%) > 0 if and only i fp < (p  - I)%, which is not possi- 
ble. Hence, #(%) < 0; i.e., ~ ( 3 )  > Oj which implies that . > x' ;  there- 
fore, +'(u) < 0 for u E ( x ' ,  %). Since x' is the unique zero of cr, hence 
also of q', we see that Q increases before x i  and decreases on (x', 2 ) .  
This fact, together with (12) imply that once again d has no  zeros less 
than Z, and the proof of (aj - and (bj - is completed. 

To prove jcj it iiiiisi be s'nuw~i ihai (8) implies ihai f has at ieasi 
one positive fixed point. As noted eariier, 4, is decreasing when 
tr < p I ( p  -!- 1 j and since 

by (8), we conclude that there is one positive fixed point 2 5 p / ( p  + 1 )  
in this case (and possiblji another ar,e greater than p / ( p +  I)). This 
curnpktcj the prilor. 

Proof If a < - p P / ( p  + I ) P + ' ,  then by (17) f has no fixed points. 
Hence, if (f-=(Ojj converges, then the iimit must be a; this is not pos- 
sible, since if f-k(0) is very close to a, then I f-(kf ')(0)l  is very large. 
The converse is obvious from Theorem 2. 

We close this section with a result whose proof uses the ideas in 121. 

THEOREM 3 For a < -pP/(p+ I ) ~ + ' ,  the crash set of ( 1 )  is finite, i f  
and only i f  f - ' (0 )  is a zero of one of the functions g,(u) defined 
recursively for n > 2 by 

Proof First, we show that for n 2 1, 
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544 H. SEDAGHAT 

Since f -'(o) = -aIiP and f -2(0j = -a'lp/(l + a'!P)llP, (19) holds for 
n = I .  Suppose, inductively, that (19) holds for some k > 1. Then 

so that by (is) the claim is true fur iL t I .  Nsxi, (: 8j imijiies that ;"c;r 
each n, g, and g,,, have no zeros iil coninion; for otherwise, gomg back 
inductively we reach the contradiction that go has a zero. Now, by (19) 
f -(n+2)(0) = 0 if and only if g,( f -'(o)) = 0 for some n 2 1 (in which 
case g,+l( f -'(o)) # 0). This completes the proof. 

4 THE SECOND ORDER EQUAT!QN 

Consider the second order difference equation 

where the initial values are specified as the real numbers xo and x-1. 
W-e assume that the mapping f has the fo!iowing properties In the sequel: 

(B1) f :  JR2 --+ R is continuous at each point of the Euclidean plane IR2 
net in a singu!afity set S of zero area; 

(B2) For all ( x ,  y) E S, I f(x, y)l = oo; 
(B3) For each real number x,f(x,yl j = f(x, y2) impiies yl = y2. 

Let F be a standard vectorization of f, i.e., F(x, y) = (f(x, y), x). 
Then properties (Bl), (B2) have their obvious interpretations for F 
while (B3) implies that F is injective or monotonic. 

LEMMA 3 (a) There exists a uniquefunction g such that jTor ali x, z ,  i fz  

is in the range off, then 
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EXISTENCE OF SOLUTIONS 545 

(b) F -'(u, v) = (v,  g(u, v)) for all u, v; 
(c) Let ( [ ~ ( t ) ,  [2(t)). t E R be a curve in the singularity set S. Define a 

family {q,) of curves recursively by 

Proof (a)  For each given pair of numbers x azd z ,  by (£33) there is a 
unique y such that f ( x ,  y )  = z .  We define g(z, x)  = y. 

( b )  Suppose that FP' (u ,  v) = (41(u, v) ,  q5Z(u, v)) .  Then, solving the 
equation F(F ' (u ,  v)) = ( u ,  Y ) ,  we see that $,(u, v) = v and b y  Part (a), 
&(u, V )  = g(u, Y )  for all u, v. 

(c) Ey Part (b) ,  (20) holds for n = 1 .  If true for n = k, then by (b) and 
thc 3eh;'rivn of ihc y'?,, 

as required. 

Part (c) of Lemma 3 gives an algorithm for recursively computing 
the curves F-"([,(t), &(t)) for each PZ, provided that an explicit expres- 
sion for g is found. This is the case for Eq. (2) where 

Assuming p and q are odd rationals and none of a ,p ,  q are zero, 
solving z = f ( x ,  y)  for y gives 

We use the algorithm of Lemma 3 to construct graphs of 
F-"(Cl(t), c2(t)) in later sections of this paper. 
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546 H. SEDAGHAT 

For later reference, note that 

To save space, we assume in the sequel that a > 0 and p > 0; the cases 
a < 0 or p < 0 can be handled similarly to the cases we consider below. 
Thus, in the sequel we always assume the following without further 
mention: 

a > 0, p > 0, q j 0, and p, q are odd rationals. (22) 

This leaves two cases to consider: q < 0 and q > 0. The equation in 
[I] is of the latter type (with p = q = 1) while that in [3] is of the former 
type, which is seen more clearly in their equivalent vectorization, 

with q= -1,p= 1. 

THE CASE q < 0 

In this case, we assume q < 0 and for convenience define 

Under conditions (22), Eq. (2) cannot have a solution if x,,, = 0 for 
some n, for then x ~ + ~  cannot be defined. Hence, the foilowing definition. 

DEFINITION The crash set Z of (2) is the set of all pairs ju, v) in the 
plane where Fn(u, v) E (0) x W; i.e., 

OC, 

Z = U F-"((6) x W). 
n=O 

where F O  is taken as the identity function. Note that F - ' ( z )  C 2. 

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
C

om
m

on
w

ea
lth

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
3:

07
 0

8 
O

ct
ob

er
 2

01
3 



EXISTENCE OF SOLUTIONS 547 

FIGURE 1 Initial part of a crash set and sample trajectory; q = -917, p = 517, 
a = l . l .  

In the notation of the previous subsection (<,(t), J2(t)) = (0, t) is 
actually the singularity set S. Figure 1 shows F-"(0, t) for n = 1, . . . ,6; 
given Lemma 4(a) below; only the portion for t > 0 is shown. These 
curves are constructed recursively on a computer using the algorithm 
of Lemma 3(c). 

We now proceed to determine some properties of Z. The next result 
improves upon Lemma 3 by giving afirst order algorithm for the F-" 
and thus making the analysis somewhat easier. Interestingly, this 
approach fails in the case q > 0. 

LEMMA 4 Let mappings <, be defined recursiveiy asfoiiows: 
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548 

and for n > I ,  

H. SEDAGHAT 

Cnil (u) = a-' [<;' (u) + u-~]' .  

Then the following statements are true: 

(a) j,(-u> = -j,(u) for ail u and ail n ( i .e . ,  C, is oddfor all n); 
(b) For each n, <, is a decreasing function and ('"(0, m) = (0, co); 
(c) For each n, lim,,, &(u) = 0, and lim,,o- jn(u) = m; 
, ., jaj 2, ,', gr,o cg,y?i,qzoas 01~ (0, ,:Q); 

(el &(u) < Cntlfu) for all n 2 ! and each t! > 0, with inequaliry reversed 
for u < 0; 

(f ) F-"((0) x R) = G(<,), where G(&) denotes the graph of C, 

Proof Note that <, has properties mentioned in (a)-(d) and 

and it is easy to check that C2 also satisfies (a)-(d); further, (e) is 
cieariy satisfied for n = i since a-'hu-'LDr > O for all ic > O aiid oddness 
implies the reverse inequality for u < 0. Property (f) is also satisfied 
for n = 1 since (u, v) E F-'((0) x R) if and only if 

which is true if and only if v = a-'~-~';  i.e., if and only if (u, v) E G(C1). 
Next, suppose inductively that (a)-(e) hold for I,, n 5 k. Then, 5;' 

has the properties listed in (a) and (b), so it follows from (23) that Cktl 
satisfies (a) and (b). Property (c) is satisfied because 

so if u -+ cc then Cci (u) must converge to zero by (dj and the induction 
hypothesis. Hence, by (23), lim,,, &+,(u) = 0. A similar argument 
establishes the case where u-0'. To prove (d), we see that jktl 
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EXISTENCE OF SOLUTIONS 

is continuous by (23). Since 

it follows that o Ck+] is continuous. Thus, <,+, is continuous, imply- 
ing also the continuity of <& because 

.4s for (e), !et u > O and note that it is enough to show that 

for n = k -+ 1. Using (23), inequality (24) reduces to 

which is equivalent to (k i l (u)  > &(u) for aii u > 0. Since this iast inequal- 
ity is true by the induction hypothesis, (e) is established. 

Finally, regarding (f), we have (u,  v) E F - (~+  ' ) ( {o )  x R) if and only if 
F(u, v) E G(Ck). This latter statement means 

for some w f .  0. Conditions (25) are equivalent to 

which is true if and only if 

that is, (u ,  v) E G(Ck+,). This completes the proof of the lemma. 

LEMMA 5 For each positive iiitege? ii, let sn be the uiztqte positkqe 
solution of the equation 

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
C

om
m

on
w

ea
lth

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
3:

07
 0

8 
O

ct
ob

er
 2

01
3 



550 H. SEDAGHAT 

(a) The sequence {s,) is increasing and for each n,  

(bj Let y(u) =a- ' (u  + u - ~ ) ' ,  the expression on the right hand side 
of (27). Then <,,I (snj = :~(s,) for all n, a~?d  

i.e., the curve y is the image ofthe identity under F - ' .  
(c) Let G+(j,) = ( (u ,  i,(u)j: u > s,) be the part of the  graph of (', over 

(s,, ca) and let G-(<,) = ( (u ,  <,(u)): u < sn} be the part over the interval 
(0,  s,), where s, > 0. Then 

Proof; (a) For each n, Eq. (26j has a unique posi~ive solution by 
i .emma 4(a); hence, _rij  is well defined. Now, the hnc t inn j  

is decreasing for each n and by Lemma 4(d), a,  < a,,, . In particular, 

SO that s, < s,+' and is,} is increasing. Using this fact and (23), we can 
also see that 

which establishes (27j. 
(b) The first claim is already proved in (29). As for the second, 

from (21), 

F-' (u ,  V )  = (v,  aWr(u + v-P)'), v # 0 ,  (30)  

which upon setting v = u gives (28). 
(c) This is a straightforward consequence of (30) and (23). 
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EXISTENCE OF SOLUTIOhTS 551 

LEMMA 6 (a) If r < 1 ,  then Eq. (2 )  has a unique positive fixed point 
ji. E (c ;  cxj) where 

(b) Let r = 1 .  [ f  a 5 1 then ( 2 )  docs not have any ,fixed pointy. [ f a  > 1 .  
ther! (2) has a unique positivefixedpoint, 

(c) Let r >  1. I f  

then (2) has two positiw fixed points, m e  cn each side of c as defined 
by (31). gequulity huoid~ in (33.1,  hen there i~ il uniquepusiaivrfixedpvin~ 
n = i. u t h e  reverse irzeyualiiy holds in (331, then ihere are nofixedyoinis. 

Proof From (2 )  we find that the fixed points are the solutions of the 
equation 

Since 4 is an even function, we need only concern ourselves with the 
positive zeros of 4. Clearly, when r = 1, there is a unique positive fixed 
point given by (32), thus proving (b). If r < 1 ,  then an examination of 
the derivative 

shows the number c given by (31) to be a unique local minimum. Since 
4(0) = -1 aiid lim,,, $(ti) = m, it follows that ihere is a unique fixed 
point 3 E (c,  m) and the proof of (a) is completed. Finally, to prove (c), 
we observe that the number c given by (3 1) is a unique local maximum 
when r > 1. Thus, there are 2, 1, or no positive zeros for 4, according 
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H. SEDAGHAT 

to whether the quantity 

is positive, zero or negative, respective!y. These three cases readily trans- 
late into (33) and its associated cases. 

THEOREM 4 (a) I f Z  is the crash set of (2), then 

In particular, i f  

ihen 

(b) If either (i) r < 1, or (ii) r = 1 and a > 1, then  or all positive 
integers n 

where, if2 is the uniquefixedpoint of (2)  

Proof B y  Lemma 5,  Z is a countable collection of graphs of mono- 
tonic odd functions (, defined on R - {0), so the truth of assertions in 
(a) follows. To prove (b), given the origin symmetry of the curves c,, 
it is only necessary to prove that the positive half of Z, namely, the part 
consistmg of the positive haives of the in,  is contained in S;' u 5; 
This is established if we only show that the sequence {s,) of Lemma 5 
is bounded if either (i) or (ii) hold. From (27) we have s, < y(sn) which 
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EXISTENCE OF SOLUTIONS 

is equivalent to 

with i as defined in the proof of Lemma 6. Since either (1) or !ii) 
requires 4 to be negative on ( 0 , x )  and positive on (2, x), we must con- 
ciude from (34) that s, E ju, xj for ali n. This compietes the proof. 

The next theoren; refines some of the preceding results in a special 
case; it also complements Theorem 2 in [3]. 

THEOREM 5 Let r = p  = 1. Then, 

(a) The crash set Z= ( ( x , ~ ) :  x = O  or x,v=o,, n = 1,2,3,  . .), where 

where 

I f a =  1, then f o r n L 2  

(c) I f a  5 ! , then Z partitions thz positive quadrant of the plane; i.e., if 
x,  y 2 0 ,  then the point (x ,  y)  is between and C,, or on one of these 
curves, for some n 2 1 ,  where we define Co to be the union of the two coor- 
dinate axes. The same conclusion is valid for points (x ,  y) with x,  y 5 0 .  
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5 54 H. SEDAGHAT 

(d) I f  a > 1 then the function sequence {in) converges monotonically 
at each point to C, where 

(e) If js,) is the sequence dqfined in Lemma 3, then s, = hence, 
(s,) converges monotonically to x = ag2 if a > I .  I f  a 5 1, then {s,) is 
unbounded. 

Proof (a )  Since I: fu) = C;' (u) = 1 /nu, (23) yields Cz(u) = (av' + 
a-2)ju and this is clearly equal to its own inverse, too. So suppose 
inductively that &(u) = f f k / u  where a k  is given by (35). Then by (23) 

as desired. Now, (aj follows from Lemma 4. 
jb:! By  he defintinn of F - I ,  equaiity (36) is ubvi~usiy true for i i  = :. 

Next, observe that by (231, (301 and (a) 

for all u # 0 and all n. Thus repeated applications of F-' result in the 
following development: 

Now, using (37) and a straightforward induction argument, we 
obtain (36). This also proves (38) since a = 1 implies a n  = n. 

(c) This is clear, since &(u) = an/u by (a) and if a 5 1 then a ,  -+ M 

a s n - w .  
(d) If a > 1 then an -+ l / ( a  - 1) =a, as n -+ M. The statements in (e) 

are now clear. 

f'finnt r A n v  A 
LVRVLLtlR I 7 k t  a > ! . 
(a) The limit curve 5, is invariant under F - I ,  every neighborhood of the 

each of the two fixed points &az2 contains points of  Z,  and if 
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EXISTENCE OF SOLUTIONS 555 

(x, y )  E Z with x # 0, then (x ,  y) is between the two curves 1 /au and 
1 /!a - 1)u. or possibly on theformer curve. 

(b) The trajectories { F  -(2"-')(~,  y) )  and { F  -'"(o, y ) )  converge to 
unequal points on C, for all but two values of y .  Hence, all but ~ w o  
backward trajectories converge to 2-q~cles determined by y. The two 
exceptional backward ~rajeclories converge LO the rwo Jixed points 
&(a-  I ) - ' '~ ;  see I&. 2. 

Proof (a) B y  (28) 

i.e., 5, is invariant under F - ' .  The remaining assertions in (d) are clear 
from Theorem 5. 

ooe 
w 

+++ 

FIGURE 2 The exceptional trajectory (t), a sample one and the limit curve; 
a = 1 .O5. 
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556 H. SEDAGHAT 

(b) Since F - ~ "  = F - I  o F-(&-'), Theorem 5 implies that 

Ry Theorem 5 and earlier results, the sequence {A,)  has a limit, 

Thus, the sequences of the first coordinates of F - ~ "  and F - ( ~ " - ' )  con- 
verge to Ly and l / ( u  - 1)Lj?, respectively. The only values of y for which 

The Case q > 0 

This case is more difficult than the case q < 0 because our C-curves are 
no longer invertible and there is no analog of (23). To obtain some infor- 
mation about the crash set Z, we begin by solving Eq. (2) for x,-l, 

Hence, the first two < curves in this case may be defined as follows. 

DEFINITION For every u  E R, define 

Note that C1 is strictly increasing on R, and its inverse map is given by 

c;' (U) = a - ' / ~ ~ q I ~ .  (40) 
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EXISTENCE OF SOLUTIONS 557 

Additional properties of C I  and C2 are listed in the next lemma 
whose elementary proof is omitted. 

LEMMA 7 (a) c2, C l  are oddfunctions (i,e., with origin symmetry). 
(b) C2(u) < i 1 ( u )  for u > 0 and C2(0) = il(Q) = 0. 
jc) Derivarives <i(O) = <,!(O) = 8, a! ' ; ,  or x depending on whether 

p > q, p = q,  or p < q, respectively. 
(d) C z  achieves a maximum value at the single point. 

(e) lim,,, C ~ ( U )  = 0. 

The next definition is based on the preceding lemma and on Eq. (39). 
Because of origin symmetry, we need consider only u 2 0. 

where <iA(uj, ~l;lh(uj are inverse maps oj, respectively, 

LEMMA 8 (i) C; ( 0 )  = ~ f ( 0 )  = 0 and C ~ ( W )  = <f(w)  = [awP/ 
+ 1)11/4; 

(ii) [f is an increasing function on its domain [O, w]; 
(iii) 0 < c!(u) < Cy ( u )  < ( 2  (uj for 0 < u < W ;  

(iv) The graph [T U [! is the boundary of the compact region, 

and the area of Mt is less than q ( p  + q)-'al/qw'+p/q. 

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
C

om
m

on
w

ea
lth

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
3:

07
 0

8 
O

ct
ob

er
 2

01
3 



558 H. SEDAGHAT 

Proof Statement (i) is clear from the definitions. and (ii) is an easy con- 
sequence of the decreasing nature of the inverse map As for (iii), 
the first inequality from left is easy to verify from the definitions. The 
second inequality from the left is an immediate consequence of the 
inequalities 

for 0 < u < w. For each u in rhis range, v = <T:(U) is the unique num- 
ber in the intervai (0, pj where i2jvj = u. Inserring rhis in both sides of 
(41), and applying 61 to both sides we have 

which is true for all positive v. Since (42) is equivalent to (41), the 
proof of (iii) is complete. The first assertion in statement (iv) is now 
obvious from statements (i) and (iii), and the final assertion just states 
that the area of M + is smaller than the area under the graph of C, over 
[0, w],  namely, smaller than the integral (u) du. 

Remarks (1) In the special case p = g = 1, the functions Cf, If can be 
explicitly determined; they are given by the formula 

with the "+" giving g. Using these explicit formulas, we can also 
determine the area of S +  precisely as 
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EXISTENCF OF SOLIJTTON9 5 59 

FIGURE 3 Initial part of a crash set and sample trajectory; q = 719, p = 917, a = 2.4. 

(2) In the case q > 0 ,  (<,(t) ,  &(t)) = (0, t )  and the singularity set S 
is the union of the two coordinate axes. Figure 3 shows F-"(0, t)  for 
n = 1:. . . , 6 ;  given Lemma 7(a), only the portion for t > 0 is shown. 
These curves are constructed recursively on a computer using the 
algorithm of Lemma 3jc). Note that for n 2 3 ,  ihe curves F-"(0, t j  are 
closed. 

DEFINITION Let A = R x ( 0 )  U ( 0 )  x R denote the union of the two 
coordinate axes in IR2 and define 

M -  = ((x, y): -w < x < 0,  -(;(--x) < y < -(!(-x)). 

We also define M = A U G(CI) U G(C2) U M + U M -. 
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560 H. SEDAGHAT 

THEOREM 6 Equation (2) has a solution for each initial point 
(xo ,  x - , ) $  M ;  i.e., the crash set Z C M. 

Proof We prove that if X , + I  = 0 for some m 2 0 then ( x o , x - , )  E A. 
We consider the case x ,  > 0, in which case, by (39) x ,  > 0 for 1 5 
n 5 rn. The case x ,  < O is proved znalagouslj~. By coostruc?ion, for 
J=O,  !,2, (x,-j+;,x,-j) E Cj  if m >j ,  and (x,?.-?, x,.-5) E (! U (! if 
;iz 2 3. So suppose that E L  4. Having shown that ( Y ~ - , + ~ ,  xm-j) E M + 
for j= 3, assume inductively that the same is true for j= 3, . . . , k 
where k < m. Then 

and using (391, it is easy to see that ( X  ,,-- k 3  x,-k-l) E Aft-, i.e., 

if and only if 

To prove (44),  we note that xm-k+, < w and consider two possible 
cases. 

Case 1 p 5 W If 0 < Xm-kt1  < I% then CZ,tY(~m--k+l) = <2(xm-k+l) 2 
x,-k by (43).  Thus, xm-k+~ > C ~ ; ; ( X ~ - ~ )  due to the increasing nature 
of C2,& this, together with the fact that p < ~ h ( x )  for ail x < w 
establish (44).  Next, if p < ~ ~ - k ~ ~  < W, then (43) again implies that 
c2,d~m-k+l) = & ( x ~ - ~ + ~ )  1 xmPk which since C2,@ is decreasing, yields 
xm-k+l 1 < i b ( ~ m - ~ ) .  Therefore, as CiL(x) 1 p, we conclude that (44) 
holds again. 

Case 2 p > w Since xrn-k+~ 5 w < p, we can argue as in the first 
pzrt of Case 1 to establish (44). 

It follows that every point ( x , - ~ , x , - ~ - , )  of the backward orbit 
starting from ( x , + ~ ,  x,), must be in M +. Now setting k = m, we see in 
particular that (xo ,  x -  E M '-. 
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EXISTENCE OF SOLUTIONS 

5 CONCLUSIONS, FUTURE DIRECTIONS 

This paper has left some questions unanswered. Significant among them 
are the following: 

( 1  j For the first order cast, iffis iricreiisirig and { f -"(i;)j is noi finite, 
is (f -"(O)) dense ourside of a compact set? 

(2) In the second order case, when q < 0 ,  a unique fixed point 2 > 0 
exists and {s,) is bounded, should 2 be a limit point of the crash 
--*so T P  - --.:ii F-77,',-, -*--- z < - .  - /: r', - - -~ P .  . .ii 
see! 11  w ,  W I I I  r (v, i j  a c ~ u a ; ; ~  ~urrvcrgc to (n, x )  ab n -+ oo lur  all 

t > O? 
(3) When q > 0,  under what conditions will a unique fixed point 2 > 0 

be a limit point of the crash set? 

The above questions and many related ones (e.g., extending the study 
to equations of orders 3 and higher) deserve answers, if we are to gain 
a deeper understanding of monotonic, singular difference equations. 
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