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Existence of Solutions for Certain
Singular Difference Equations

HASSAN SEDAGHAT

Department of Mathematical Sciences, Virginia Commonwealth University,
Richmond, VA 23284-2014, USA

(Received 31 August 1998; In final form 2 October 1999)

Crash sets are initial sets of points from w
tions reach inifinite discontinuities after a
not exist in such cases. For injective ma
the structure of crash sets is determined. For second order equations whose vector maps
of the plane are injective, a general algorithm for recurmvcly constructing crash sets is
obtained, together with results on the structure of those sets in a special case.
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1 INTRODUCTION

Discrete initial value problems may not have solutions when infinite dis-
continuities (or singularities) exist. This fact is discussed in several
recent works on difference equations; see, e.g. [1-3]. Yet, there appears
to be very little systematic study done on this problem; indeed, it is
noted in [1] that “The problem of existence of solutions for difference
equations is of paramount importance but so far has been systemati-
cally neglected.”

The aim of this paper is to consolidate and extend various appar-
ently unrelated results, particularly those in {1-3], in the context of
monotonic map iterates in dimensions one and two. Given that solu-
tions of delay (or higher order) difference equations can be expressed
as map iterations, for monotonic (or injective) maps the natural thing

535



Downloaded by [Virginia Commonwealth University Libraries] at 13:07 08 October 2013

536 H. SEDAGHAT

to consider is the images of the singularity set under successive
iterations of the inverse mapping. We are interested in the structure of
the set consisting of all these inverse images. In this paper we consider
first and second order equations. In the first order case, we obtain
general results for monotonic maps and apply those resuits to

I 1s a positive odd ratione ,
V/(2j — 1) where i, are positive integers. The equation studied
in [2] is of this type. We also study the existence of solutions for second

order equations of type

a 1
o 7
Apl = — 77> (‘/
I ox

2 MONOTONIC MAPS WITH POLES

The mapping on the right hand side of Eq. (1) is a member of the class
of functions on the real line R defined by the four properties:

(Al) fis continuous on its domain R — {0};
(A2) fis injective (or one-to-one) on R — {0};
(A3) 0ef(R—{0});

(A4) lim,_o | f(x)|=c0.

Property (A4) makes origin a “pole type” singularity for f. Property
(A2) implies that the left and right limits of f at the origin must both
haveinfinite magnitudes, but with opposite signs. Also by (Al) and (A2),
f consists of two continuous pieces on the two sides of 0, and these
pieces are either both increasing or both decreasing. Hence, we may
refer to fas an “increasing map” or a “decreasing map” in this sense,

Injectivity forces a unique pole, which may be assumed to be at the
origin, because a map having two or more poles cannot be injective on
the complement of its set of poles. Property (A3) ensures nontriviality;
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for in the absence of (A3), fis just a continuous map of R — {0} into
itself. If ! denotes the inverse map, then (A3) is equivalent to assum-
ing £ ~!(0) exists and is nonzero.

The iterates of / at some specific point xo € R— {0} make up the
orbit {xg, f(x0), f*(xg), ...} where f” denotes the composition of f with
itself n times. This orbit is the solution of the discrete initial value
probiem,

Xne1 = f(%n), X0 € R —{0}. (3)

Such an orbit cannot be defined if f"(xy) =0 (equivalently, xy=
£77(0)) for some positive integer n; we refer to the backward trajectory
{f7™0)} where f"=(f"")" as the crash set of . We now list some
relevant elementary properties of monotonic maps as a lemma.
LEMMA 1 (3) The limits lim, . f(x)=«a, lim,_, o, f(x)=0 both

exist and of8 > 0 (hence, we may assume o, 3> 0).
4 b2 el

(N Coimmmcn st £ dpsameimg Thay A« n £ ie dopnsmoineg with
\‘U’] SDELPUST LHUL ] IS UOLTCUSEIE . £ Lit jf > L2, f b3 UTLTCUSwlg Yreide
1: P RPN 1 r—1 N
im /7(y) =, im /7 (y) = —o0.
y—at y—=p5"

Further, f~1(0) <0 and there are precisely two fixed points, one in the
interval ( f ~1(0), 0) and another in (a, o).
{c) Suppose that f is increasing. Then a < (3 ar

lim f1(y) = oo, lim £~

y—ar y—B*

<
It
!
8

Further, 0 <~ (0)< a and if S is the (possibly empty) set of fixed
points of f, then S (f71(0), ).

THEOREM 1 (a) Assume that [ is decreasing and let X be the fixed point
in (f~10),0). Then the sequence {f "(0)} is contained in the interval
[f~10),f~40)], and converges either to % or to a 2-cycle.

(b) Let f be increasing and assume that S is nonempty with X =
inf(S) > f~'(0). Then the sequence {f "(0)} is contained in | f~1(0), X)
and converges monotonically to X.

Proof (a) Note that since /™' maps (—o0, 0) into itself,

20 =771710) € (£71(0),0).
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It follows inductively that £ ~*(0) e [ £~ (0) ), 0) for all positive integers 7.
In particular, /™ '(0) <f- 3(0) and since f is increasing,

T30) =£7HF30)) > £(0).

By induction we conclude that

fHoy < f

Next, for each integer & > 1,

STEHO) = /(TN < S THTHEN0)) = £ 7(0),

so that the even iterates form a decreasing sequence. Further, if
£7(0) > %, then f~%*~2(0) > f*(X) = X and since f ~2(0) > [~ (X) = x
we see that the even iterates are bounded below by X. On the other
hand. for each &,

so that the sequence of odd iterates of /™' is bounded above by %. If
the sequence { f~2¥(0)} does not converge to %, then it must converge to

some ¢ > X. Hence given the umqueness of xin[f~ 1(0) 0) {e.f ()

is a 2-cycle in [ f~'(0), 0) to which {f "(0)} converges. Note that due

to continuity,

¢ =sup{u € [f71(0),0): /7 (u) =/ ()}, 4)

so that this limit cycle is in fact the largest possible 2-cycle in

[f7'(0),0).
(b) By the minimality of %, f~!(»)> y for 0 < y < X%. Therefore,

SO <O =20 <) =/ 0) < <%

and {/7"(0)} must increase to X.

COROLLARY | Suppose that f has a fixed point. Then {f7(0)} is
bounded, infinite and has at most two limit points.

The next corollary uses the following result from [4].
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LEMMA 2 Lert f be decreasing. A fixed point X of f is asvmptotically
stable (respectively, unstable) if and only if there is 6>0 such that

FHx) > f(x) (respectively, f =1 (x) < f(x)) for X — 6 < x < X.

COROLLARY 2 The sequence {f 7(0)} has two limit points if [ is
decreasing and its negative fixed point X is asympiotically stable. In
particular, if f is continuously differentiable ar x with —1 < f'(x) < 0,
then {£77(0)} has two limit points.

Proof Suppose (%) is asymptotically stable. Then by Lemma 2 there
is 6 > 0 such that /~'(x) > f(x) for ¥ — § < x < %. On the other hand,

STHTH0)) =£720) < 0= £ (71 (0)), (5)

so there is a point in (f~1(0),%) at which f equals f~'. Hence, the

number ¢ defined by (4) exists and by Theorem 1 {f"(0)} has the two

Vsl mmite - oad £l
1T1iL POINS ¢ andG j iCj.

3 THE MAPPING (a/x”)+ 1

In this section we consider rational functions of type

a 2i—1
f)=z+1 a#0,p 2}._1,1,16{1,2,3, b

where the odd rationality of p ensures monotonicity. It is easy to see that

1/p
—1( ) == a .
() (y_l) ;

so that f~'(0)= —a'” and f ™’ has apole at y = 1.

THEOREM 2 (a) The sequence {f~"(0)} of backward iterates converges
to a 2-cycle {c, —(aj(1 — ¢))"VP} if and only if p < 1 and

\p+1

a(l —p)’™ > p?. (6)

The number ¢ € (—a'’?, —(a/(a'? + 1))'/?) is an extremal solution of the

equation [~ (1) = f(u).
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(b) For a>0, the sequence {f "(0)} converges to %€ (—a'/?,
—(a/(@/? + 1)) ifp>1,0orifp<1 and

a(l -py™' < p”. ™)

The fixed point % is the unique negative solution of ~'{u)=f(u) in
this case.
(c) The sequence {f ~"(0)} increases to % € ((—a)"/?,p/(p+ D] if

~pf <a(p+17" <0 8)
The fixed point X is the smaller of at most two positive solutions of
FYw)=£ () in this case.

Proof (a) From (6) we see that a > 0. Suppose that p < 1 and (6) holds.
To prove the existence of a 2-cycle, Corollary 2 may be used if it is
shown that f/(X) > —1, where X is the negative solution of

, < optl
0= ¢1(u) =0

—uf —q. (%)

Since f(X) = %, direct calculation shows that f/(X) > —1 is equivalent
to the inequality

(p~1x>p, (10)
or equivalently,
= —pP
—£ i1
x < —p ( )

If u <0, then
6 () = (p+ D = pu?™" = u"![(p+ u~p| <0.
Since ¢ (%) = 0, from (11) we conclude that //(X) > —1 is equivalent to

0>¢1(1_\’=/1 \ -4
\L TP (L -p)

which is the same as (6).
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Conversely, since 2-cycles do not exist when a <0 (i.e., when fis
increasing), we may suppose that a > 0 and either p < | and (7) holds,
or that p > 1. In either case, it suffices to show that f(u)>f () for
u < X, or equivalently,

r—1

o) =flu)— MW =au? +1—aPu—1)""" >0, foru<zx.
with
$(—a') = o(f71(0)) = =f72(0) >0, o(x)=0.  (12)
To this end, consider

& (u) = —L al?
T urtt g — )R

Direct calculation shows that ¢'(x) =0 if and only if

LN T A Y
u(u};up—iLu+IJ:u,

]

fed

(p——l)/(v+1)p2p/(p+l) (13\)

and also that o and ¢’ have opposite signs everywhere.

Now, if p=1 then b=1, so it follows that s{u)=1 for all #<0; in
particular, ¢'(x) is negative for u < X and by (12) ¢ has no zeros less
than ¥ in this case.

If p#1, then o’(u) = pu? ™' — b has a unique negative solution

b 1/(p=1)
-
P

It is easily verified that if p <1 then p represents a local minimum
for o and when p > | then g is a local maximum.
Suppose first that p < 1. Then

min(c) > 0, (14)
if and only if
0 < ofp),
= b—P/(l—p)[pI/(1~p) —pP/U=P)] 4 p,
— b'p/(l-p)pp/(l“p)(p —1)+b.
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This can be restated as
pt/(-p) pr/’(i~p)(1 -p). (15)
Using the definition of b in (13}, we find that (15) is equivalent to

alp= e g2 (01 > pr(y — pyi=p

3

which may be easily reduced to

pP

a< —t
(1-p)"

(16)

with equality holding if and only if we have equality in (14). If strict
inequality holds in (16), then ¢ and hence, ¢’ have no zeros less than x;
therefore, ¢ is strictly decreasing and by (12), ¢ has no zeros less than x.

if, on the other hand, equality holds in (16}, then,
olp) = min{e) =0

and a straightforward calculation shows that = —p/(1 — p). Further,

o —P\=1_n/1‘2\p=1__1_*=“1
\1-p) \p ) -p 1-p
so that
s P _
x-—l_p o

It follows that X is the unique negative zero of ¢’, so once again ¢ has
no zeros less than .

Now, we consider the last remaining case, p > 1..In this case, u is the
unique local maximum of o, and o(0) =54 > 0 so that ¢ has a unique
negative zero x’ < . Further, since f(X) = % = f~' (%), direct calcula-
tion shows
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It follows that ¢/(%) > 0if and only if p < (p — 1)x, which is not possi-
ble. Hence, ¢/(%) < 0, i.e.,, o(X) > 0, which implies that ¥ > x'; there-
fore, ¢'(u)< 0 for u € (x',%). Since x’ is the unique zero of &, hence
also of ¢’, we see that ¢ increases before x’ and decreases on (x’, X).
This fact, together with (12) imply that once again ¢ has no zeros less
than X, and the proof of (a) — and (b) — is completed.

To prove {(c) it must be shown that (8) implies that / has at least
one positive fixed point. As noted earlier, ¢, is decreasing when
u < p/(p+1)and since

—pP
. (pfrl> G oS o

by (8), we conclude that there is one positive fixed point ¥ < p/(p+ 1)
in this case {and possibly another one greater than p/(p+1)). This
completes the proof.

COROLLARY 3 Let p=> 1. Then {f "(0)} converges (not in a finiie num-
ber of steps) to a unique limit point if and only if a> — p?/(p+ 1)P"!

a#0.

Proof If a< —p?/(p+1)P*!, then by (17) f has no fixed points.
Hence, if {f~"(0)} converges, then the limit must be o; this is not pos-
sible, since if 7%(0) is very close to a, then Lf~%+10)| is very large.
The converse is obvious from Theorem 2.

We close this section with a result whose proof uses the ideas in [2].

THEOREM 3 For a< —p?/(p+1)?"}, the crash set of (1) is finite, if
and only if £7'(0) is a zero of one of the functions g,(u) defined
recursively forn>2 by

l/p]l/p

g =1 —ug Bl go=1, ;=1 —w)'. (18)

Proof First, we show that forn>1,

f.—(n+1)(0) - M

g = —a'’?. 19
£ (o) 0 (19)
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Since 7~ H0)=—a'” and f~X0)=—a"?/(1 +a'")', (19) holds for
n=1. Suppose, inductively, that (19) holds for some k£ > 1. Then

1/p
—1 p=lk+ gy = a ‘
Sy o (uto g1 (10)]' 7 /i (g)) — 1)177

_ | g (0)]'"?
(—uto] g1 (u0)]'77 + i (u0))

i/p’

so that by (18) the claim is true for £+ 1. Next, (18} implies that
each n, g, and g,.1 have no zeros in common,; for otherwise, going back
inductively we reach the contradiction that gy has a zero. Now, by (19)
F~0+D(0)=0 if and only if g.(f~'(0))=0 for some n>1 (in which
case g, ;(f'(0)) #0). This completes the proof.

Remark In the case p=1 discussed in [2], each function g, in

Theorem 2 ig 2 polynomial of degree no more than (n4-1)/2
H pOly al ot degree no more than (p+- 1)/

4 THE SECOND ORDER EQUATION

Consider the second order difference equation
Vald AY
Xn+1 = J (Xny Xp-1), R = 192335"'

where the initial values are specified as the real numbers xy and x_;.
We assume that the mapping fhas the following properties in the sequel:

(B1) f:R*— R is continuous at each point of the Euclidean plane R?
not in a singularity set S of zero area;

(B2) Forall (x,y) €S, | fx,y)| = o0;

(B3) For each real number x, f(x, y1) =f(x, y,) implies y; = y.

Let F be a standard vectorization of f, i.e., F(x,y)=(f(x,y),x).
Then properties (B1),(B2) have their obvious interpretations for F
while (B3) implies that F is injective or monotonic.

LEMMA 3 (a) There exists a unique function g such that for all x,z, if z
is in the range of f, then

flx.8(z,x)) = z.
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(b) F ™ (w, v) = (v, g, v)) for all u, v;
(c) Let (£1(1), &x(1)), 1 € R be a curve in the singularity set S. Define a
Samily {1} of curves recursively by

Yo=¢&1, vi=8&. Ui (0)=g(n (). n(1)), n=1,2,3,...

F7 (& (1), €2(1)) = ($a(1), Ynaa (1)) (20)

Proof (a) For each given pair of numbers x and z, by (B3) there is a
unique y such that f(x, y) = z. We define g(z, x)=y.

(b) Suppose that F~'(u, v)=(¢1(u, v), d2(x, v)). Then, solving the
equation F(F '(u, v)) =(u, v), we see that ¢;(u, v) =v and by Part (a),
dx(u, v)=g(u,v) for all u, v.

(c) By Part (b), (20) holds for n=1. If true for n=%, then by (b) and
the definition of the ¢,

F &0, 6()) = FH (1), ¥ (1)
= (Yr+1(2), 8(ic (1), Yu1 (1))
= ('¢k+1 (t), 11blc+2(t))

as required.

Part (c) of Lemma 3 gives an algorithm for recursively computing
the curves F~"(£(1), £&x(1)) for each n, provided that an explicit expres-
sion for g is found. This is the case for Eq. (2) where

” 1
f(x9y>=;q”——x—;-

Assuming p and g are odd rationals and none of 4, p, q are zero,
solving z = f(x, y) for y gives

. 1/q
a
y=glzx)= (z + x’P) '

/

We use the algorithm of Lemma 3 to construct graphs of
F7"(&(D), £(0) in later sections of this paper.
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For later reference, note that

F(xay) = (ay—q - x_Ps x);

21
F ' uy) = <v,al/"(u+ v-—p)“l/q>‘ (21)

To save space, we assume in the sequel that a > 0 and p > 0; the cases
a <0 or p<0can be handled similarly to the cases we consider below.
Thus, in the sequel we always assume the following without further
mention:

a>0, p>0, ¢g#0, and p,q are odd rationals. (22)

This leaves two cases to consider: ¢ <0 and g > 0. The equation in
[1]1is of the latter type (with p =g = 1) while that in {3] is of the former
type, which is seen more clearly in their equivalent vectorization,

withg=—-1,p=1.

THECASE ¢ < 0

In this case, we assume g < 0 and for convenience define

r=—>0.
q

Under conditions (22), Eq. (2) cannot have a solution if x,,, =0 for
some n, for then x,,_., cannot be defined. Hence, the following definition.

DEFINITION  The crash set Z of (2) is the set of all pairs (u,v) in the
plane where F"(u,v) € {0} x R; i.e.,

where F° is taken as the identity function. Note that F~\(Z) C Z.
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vty 24

wi(t)

w1}

wi(1)

woit)

vty

0.5 4 /'

;
!
b /

\ l
0 0.5 | ] 2 2.5
l.wltl),wJ(l),w*(n.wS(l).wo(l).u.zn+I

FIGURE 1 Initial part of a crash set and sample trajectory; g=-9/7, p=5/7,
a=1.1.

In the notation of the previous subsection (£1(2),£())=(0,1) is
actually the singularity set S. Figure 1 shows F7(0,¢) for n=1,...,6;
given Lemma 4(a) below, only the portion for >0 is shown. These
curves are constructed recursively on a computer using the algorithm
of Lemma 3{c).

We now proceed to determine some properties of Z. The next result
improves upon Lemma 3 by giving a first order algorithm for the F™"
and thus making the analysis somewhat easier. Interestingly, this
approach fails in the case g > 0.

LEMMA 4 Let mappings (, be defined recursively as follows.

Guw)=au ", u#0



Downloaded by [Virginia Commonwealth University Libraries] at 13:07 08 October 2013

548 H. SEDAGHAT
andforn>1,
Crar(u) = a™"[¢ () + w77 (23)

Then the following statements are true:

(@) ((—u)=—Cq(u) for all uand all n (i.e., {, is odd for all n);
(b) For each n, (, is a decreasing function and ({0, oc) = (0, 00);
(c) For each n, lim,_,o (,(u) =0, and lim,,_¢- (,(1) = oc;

PN , 1
() Foreachn, (,and (]

@) Calw) < Ci(w) for all n> 1 and each u> 0, with inequality reversed
Joru<0;
() F7'({0} x R) = G(C,), where G((,,) denotes the graph of (,,.

s At ierrimie ~ )
re continuous on (0, 00);

Proof Note that ¢, has properties mentioned in (a)—-(d) and

Gy = a ey oy # 0.

o
e
o~

[\

%]
N’

Gu) = a"[a”l/Pu“/P’ +u7P)

and it is easy to check that (, also satisfies (a)—(d); further, (e) is
clearly satisfied for n=1 since a~'u~"7" > 0 for all > 0 and oddness
implies the reverse inequality for u < 0. Property (f) is also satisfied
for n=1 since (&, v) € F~'({0} x R) if and only if

a'’" —uP =0, ueR—- {0},

which is true if and only if v=a""u"""; i.e., if and only if (&, v) € G({4).

Next, suppose inductively that (a)—(e) hold for ¢,, n<k. Then, ;!
has the properties listed in (a) and (b), so it follows from (23) that (.,
satisfies (a) and (b). Property (c) is satisfied because

GG () =,

s0 if u — oo then ¢; ! (u) must converge to zero by (d) and the induction
hypothesis. Hence, by (23), lim,_.o (xi1(u)=0. A similar argument
establishes the case where u— 0%. To prove (d), we see that (.,



Downloaded by [Virginia Commonwealth University Libraries] at 13:07 08 October 2013

EXISTENCE OF SOLUTIONS 549
is continuous by (23). Since
Ger2(Gear () = a7 u + Gt ()], u#0,

it follows that (x5 o ;.1 is continuous. Thus, ;> is continuous, imply-
ing also the continuity of (;!, because

Gidy (1) = aGeea ()" —u™P, u#0.
As for (e), let u > 0 and note that it is enough to show that
G(Gn()) < G (Gn(w)), u >0, (24)
for n=k+ 1. Using (23), inequality (24) reduces to

!:—1.(!’.1,»1..(.11\.\ < 1
Sk WSATFIAF G T R

which is equivalent to (., (u) > (x{u) for allu > 0. Since this iast inequal-
ity is true by the induction hypothesis, (e) is established.

Finally, regarding (f), we have (u,v) € F ‘(k“)({O} x R) if and only if
F(u, v) € G((). This latter statement means

a'" —uP =w, u=G(w) (25)
for some w= 0. Conditions (25) are equivalent to
" =P = G (),
which is true if and only if
v=a"[G @)+ w7 = G (),
that is, (i, v) € G((x+1)- This completes the proof of the lemma.

LEMMA 5 For each positive integer n, let s, be the unigue positive
solution of the equation

Calt) =u, u>0. (26)
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(a) The sequence {s,} is increasing and for each n,
Sn < Spa1 < @ sy + 5,F). (27)

(b) Let yv(uy=a "(u-+u"?Y, the expression on the right hand side
of (27}. Then (poq(sy) = ~(sy,) for all n, and

) = (1, 7(w), w0, (28)
i.e., the curve ~y is the image of the identity under F~

(©) Let G () = {(u, Co(w)): u > 5,,} be the part of the graph of (, over
(8, 00) and let G7((y) = {(u, (W) u < 5,} be the part over the interval
(0,s,), where s,> 0. Then

FH G (G) = G (G1)s FTH(GT () = GF (Gus).

aoj {a) For each n, Eq. (26) has a unique positive solution by
emma 4(a); hence, s, is well defined. Now, the function,

Sy 2RSS Oy st

|_‘ "w

on(u) =Ga(u) —u
is decreasing for each n and by Lemma 4(d), 0,, < 0,,41. In particular,
On+1 (Sn) > O'n(sn) =0 = opq (5n+1)a

so that s, < s,.1 and {s,} is increasing. Using this fact and (23), we can
also see that

Sptl = §n+1 (sﬁ—H) < C?H—'A(S?i) = a—r(sn + S;p)ry (29)
which establishes (27).

(b) The first claim is already proved in (29). As for the second,
from (21),

Flu,v) = (vya (u+v?"), v#0, (30)

which upon setting v = u gives (28).
(c) This is a straightforward consequence of (30) and (23).
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LeMMA 6 (a) If r< 1, then Eq. (2) has a unigue positive fixed point
X € (¢, 00) where

(31)

(b) Let r=1. If a<1 then (2) does not have any fixed points. If a> 1,
then (2) has a unigue positive fixed paint,

%= (a— 1)1, (32)

(c) Letr>1.1If
a>rp+)(r— 1>—(r~1)/r(11+1){pr + })(Pr+1)/'(1>+1), (33)

th» (2) has two positive fixed points, one on each side of ¢ as defined

by (31). if equality holds in (33), then there is a unique posiiive fixed poini
X = ¢. If the reverse inequality holds in (33), then there are no fixed points
Proof From (2) we find that the fixed points are the solutions of the
equation

d(w) = auPtVr —yPtl 1 =0,

Since ¢ is an even function, we need only concern ourselves with the
positive zeros of ¢. Clearly, when r=1, there is a unique positive fixed
point given by (32), thus proving (b). If r < 1, then an examination of
the derivative

¢'(u) = uPla(p+1/r)u'! = (p+1)]

shows the number ¢ given by (31) to be a unique local minimum. Since
d(0)=—1 and lim,_, ., ¢(u) = oo, it follows that there is a unique fixed
point ¥ € (¢, o) and the proof of (a) is completed. Finally, to prove (c),
we observe that the number ¢ given by (31) is a unique local maximum
when r > 1. Thus, there are 2, 1, or no positive zeros for ¢, according
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to whether the quantity

~1

. (pr+1)/(r=1)
czs(cszarw)/(r—w[ r—1 Hp,ﬂ ]
/ rip+ 1)) r(p+1)]

is positive, zero or negative, respectively. These three cases readily trans-
late into (33) and its associated cases.

THEOREM 4 (a) If Z is the crash set of (2), then
Z = ({0} x R)U | J G(¢)-
n=1

In particular, if

= ) — ~F) 4l P27
S—{(x:.)’)'x—'g) Orf}’f> i’xl }:

Q

ihen

(b) If either (1) r<1, or (ii) r=1 and a>1, then for all positive
integers n

ZcCSTuSSuSTusy,

where, if X is the unigue fixed point of (2)

St =SoN[0,%) x (0,0),
%),

S5 = Sy N[0, 00) x (0,

Proof By Lemma S, Z is a countable collection of graphs of mono-
tonic odd functions ¢, defined on R — {0}, so the truth of assertions in
(a) follows. To prove (b), given the origin symmetry of the curves ¢,
it is only necessary to prove that the positive half of Z, namely, the part
consisting of the positive halves of the (,, is contained in S} U S,
This is established if we only show that the sequence {s,} of Lemma 5
is bounded if either (i) or (ii) hold. From (27) we have s, < (s,) which
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is equivalent to

d(se) <0, n=1,2.3,... (34)

with ¢ as defined in the proof of Lemma 6. Since either (i) or (i)
requires ¢ to be negative on (0, X) and positive on (X, oc), we must con-
clude from (34) that s, € (0, %) for all n. This completes the proof.

The next theorem refines some of the preceding results in a special
case; it also complements Theorem 2 in [3].

THEOREM 5 Letr=p=1. Then,

(a) The crash set Z={(x,y): x=00r xy=0,, n==1,2,3,...}, where

Q= Za—-’len—a] (on=nifa=1). (35)
k=1 $— 1
{b) Foralin>1,a+1,
1~ a—2n+1
F—(Zn—-l) — _ —a (36
(0,y) = | An-1ys @=iy) (36)
where
) o 1 —a*
Ifa=1, then forn>2
2212y (2n+ 1)(28)!
—(2n-3) _ Y\
Frn90,) = (gt Py, (39)

(c) If a <\, then Z partitions the positive quadrant of the plane; i.e., if
x,y 20, then the point (x,y) is between (,_, and ,, or on one of these
curves, for some n > 1, where we define (g to be the union of the two coor-
dinate axes. The same conclusion is valid for points (x, y) with x,y <0.
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(d) If a> 1 then the function sequence {(,} converges monotonically
at each point to (., where

. L.
Co:(u}: 700’5 Qe = nl_lfgoan = a1
(e} If {s,} is the sequence defined in Lemma S, then s, = a,lz/ 2; hence,
{s,} converges monotonically to %= ol/? if a>1. If a<1, then {s,} is
unbounded.

Proof (a) Since () =¢ ') =1/an, (23) yields () =(a"'+
a~?)ju and this is clearly equal to its own inverse, t00. So suppose
inductively that () = a;/u where a is given by (35). Then by (23)

G () = a o fu+ 1fu) = (a7 +a o) /u = apsr Ju

as desired. Now, (a) follows from Lemma 4.

(b) By the defintion of F ™!, equality (36) is obviously true for n=1.
Next, observe that by (23), (30) and (a)

F™H 1, Ga(w) = (Gal1), Gra1 (Ga(w))) = (an/t; omsrt/ 0on)

for all 50 and all n. Thus repeated applications of F~! result in the
following development:

0,9) = (y,a1/y) = (1 /y, 02y/ 1) — (c2y/a1, 0301/ cy) — -+

Now, using (37) and a straightforward induction argument, we
obtain (36). This also proves (38) since a =1 implies o, = n.

(¢c) This is clear, since (1) = a,/u by (a) and if a<1 then a,,—
asn— oo.

(d)If a>1 then o, — 1/{(@a — 1) = a., as n — oco. The statements in ()
are now clear.

AROT T A
OROLLARY 4 Leta > 1.

(a) The limit curve (o is invariant under F ", every neighborhood of the
each of the two fixed points +al/? contains points of Z, and if
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(x,y)€ Z with x#0, then (x,y) is between the two curves 1/au and
1/(a — Du, or possibly on the former curve.

The trajectories {F~%""1(0,3)} and {F72"(0,y)} converge to
unequal points on (. for all but two values of y. Hence, all but two
backward trajectories converge to 2-cycles determined by v. The two
exceptional backward trajeciories converge io the two fixed points

+{a— 1}“”2; see Fig. 2.

Proof (a) By (28)

F (1, (oo (w)) = oo/, @7 (1 + 1/ 0i0))
= (oo /tt, u) = (oo /U, oo (00 /1))

i.e., (s isinvariant under F ' The remaining assertions in (d) are clear
from Theorem 5.

A n : : . ; 1
1 T d

Lwl(l).wé(().\vA(l),\v5(l).v,u.Zn+l-‘Vn+_1

FIGURE 2 The exceptional trajectory (+), a sample one and the limit curve;
a=1.05.
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(b) Since F 2~ 1o F~®" 1 Theorem 5 implies that

5 1= —2n+1
F~(0,y) = (————~———~—, Ayl
(0.7) (a—~ 1A,y ,,y)

L

By Theorem 5 and earlier results, the sequence {A4,} has a limit,

Thus, the sequences of the first coordinates of F~>" and F ~@n=1D con-
verge to Ly and 1/(a — 1)Ly, respectively. The only values of y for which

1
Ly = (a— 1)Ly

A 1/n . M 5 R - 1
are y* = =£1/(a—1)""L==%%/L Note also that £% = Ly~, thus
establishing the final assertion of the corollary.

TheCaseg >0

This case is more difficult than the case ¢ < 0 because our ¢(-curves are
no longer invertible and there is no analog of (23). To obtain some infor-
mation about the crash set Z, we begin by solving Eq. (2) for x,,_,

ax? Y
Yot = (___—) . (39)

Xni1%7 + 1
Hence, the first two ¢ curves in this case may be defined as follows.

DEFINITION  For every u € R, define

, y
Gluw) = al/tlup/q’ G = (....___fi’i._") q.

a-1/pyr+rie + 1

Note that (; is strictly increasing on R, and its inverse map is given by

Gl u) = a rudle. (40)
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Additional properties of (; and (, are listed in the next lemma
whose elementary proof is omitted.

LEMMA 7 (a) (5, ¢y are odd functions (i.e., with origin symmetry).

() Cow) < Ci(w) for 1> 0 and (x(0) = (1(0) = 0.

(¢) Derivatives (}(0) = ([{0) =0, &%, or oc depending on whether
p>q,p=gq,orp<q,respectively.

(d) ¢2 achieves a maximum value at the single point,

L= (al/qp2/q)p/(p2+q) > 0.

(e) hmu-—»oo CZ(u) =0.

The next definition is based on the preceding lemma and on Eq. (39).
Because of origin symmetry, we need consider only u > 0.

DEFINITION  Let w = (x{p) be ine maximum value of (5. For (<u<uw
/.

jine

Y

a9

‘ au? \ au? e
a(y) = ) = ,
G ) (u!’(ié(u) + 1) Gw) (uPCZé(u) + 1)
where (5} (u), (5 4(u) are inverse maps of, respectively,

Qou) =Gu), 0<u<y,
Gau) = Gu), p<u<oo.

LeMmMa 8 () GO0)=¢0)=0 and W) =GW) = [aw?/
(wPu+ 1]

(ii) Cf is an increasing function on its domain [0, w);

(iii) 0 < (2 (u) < C2(u) < Ca(u) for 0<u<w;

(iv) The graph (§ U Cf is the boundary of the compact region,

1‘v{+ = {(x,y): 0

and the area of M is less than q(p + q)~' a /91 #/9.
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Proof Statement (i} is clear from the definitions, and (ii) is an easy con-
sequence of the decreasing nature of the inverse map Cz—,;lr As for (1),
the first inequality from left is easy to verify from the definitions. The
second inequality from the left is an immediate consequence of the
inequalities

which are

equivalent to
Galu) > a™Putl? = (7' (u) (41)

for 0 < u <w. For each u in this range, v = {5 (u) is the unique num-
ber in the interval (0, u) where (5(v) = u. Inserting this in both sides of
(41), and applying (; to both sides we have

GO > GG eM) = G, (42)

which 1s true for all positive v. Since (42) is equivalent to (41), the
proof of (iii) is complete. The first assertion in statement (iv) is now
obvious from statements (i) and (iii), and the final assertion just states
that the area of M 7 is smaller than the area under the graph of ¢; over
[0, ], namely, smaller than the integral f;° ¢ (1) du.

Remarks (1) In the special case p=g=1, the functions (f, Cf can be
explicitly determined; they are given by the formula

2au

2+ a2+ vVat = 2a2’

with the “+” giving Cf . Using these explicit formulas, we can also
determine the area of S precisely as

/"\/‘7/2 aud — 2au? du ( a?
- 2
0

-y ot 1 VAN 2'
14+ a? + au? b+ >ln( ta)-a
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251

v 2t

w3t

w1

WSt}

st
wo(t)

2O

+ + + {
1] 0.5 | 1.5 2 8
l.wZ(xl,wl(l)‘w‘(l).wS(l}.wo(l).u.zn+,

FIGURE 3 Initial part of a crash set and sample trajectory; ¢=7/9, p=9/7, a=2.4.

(2) In the case g >0, (£,(2),&())=(0, 1) and the singularity set S
is the union of the two coordinate axes. Figure 3 shows F %0, r) for
n=1,...,6; given Lemma 7(a), only the portion for >0 is shown.
These curves are constructed recursively on a computer using the
algorithm of Lemma 3(c). Note that for n > 3, the curves F (0, ¢) are
closed.

DEFINITION Let A=R x {0} U{0} xR denote the union of the two
coordinate axes in R* and define

M~ ={(xy): ~w<x<0, ~(~x) <y < ~F(-x)}.

We also define M =AU G(()UGCIUMTUM ™,
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THEOREM 6 Egquation (2) has a solution for each initial point
(X0, x_1)¢ M, ie., the crashset ZC M.

Proof We prove that if x,,.,=0 for some m >0 then (x4, x_;) € 4.
We consider the case x,, >0, in which case, by (39) x,>0 for 1<
n<m. The case x,,<0 1s proved analogously. By construction, for

j:O: 1: 29 (Xm_j+1,xm.j‘) S {;/ if m ij and (Xm_,za xmwa) & (:g U (;5 if
m > 3. So suppose that m > 4. Having shown that (x,,_.1, %, )EM ™
for j=3, assume inductively that the same is true for j=3,...,k

where k <m. Then
Xmok S G5 (Xm-tr1) < QXmapt1) Sw (43)
and using (39), it is easy to see that (X4, Xm_x_1)EM ', ic.,
k) < Xkt < C${Xmoi)s
if and only if
Ga(Xmai) € Xmoietr < G5 (Xmt). (44)

To prove (44), we note that x,,_,,; <w and consider two possible
cases.

Case ! p<w I 0<Xpm i1 <p, then (o olXmii1) = C2(Xm—it1) >
Xmk by (43). Thus, xp-k41 2 (5, ! (xm—k) due to the increasing nature
of (»,; this, together with the fact that p < (i},(x) for all x<w
establish (44). Next, if 4 <x,_z.1 <w, then (43) again implies that
C2,8(Xm—t+1) = C2(Xm—k+1) = Xm—y Which since { 5 is decreasing, yields
Xkl < G5 é(xm_k). Therefore, as (5 (x) < p, we conclude that (44)
holds again.

Case 2 u>w Since X, 41 <w< pu, we can argue as in the first
part of Case 1 to establish (44).

It follows that every point (X, > Xm—k—1) ©f the backward orbit
starting from (X,,.1, Xn), must be in M *. Now setting k = m, we see in
particular that (xo, x_;) e M ™.



Downloaded by [Virginia Commonwealth University Libraries] at 13:07 08 October 2013

EXISTENCE OF SOLUTIONS 561
5 CONCLUSIONS, FUTURE DIRECTIONS

This paper has left some questions unanswered. Significant among them
are the following:

7 Fales (94

(1) For the first order case, if /is increasing and {/77(0)} is not finite,
is { /7"(0)} dense outside of a compact set?

(2) In the second order case, when g <0, a unique fixed point ¥ > 0

exists and {s,} is bounded, should x be a limit point of the crash

—HON O\ ot

I F77(0, 1) actually co

set? If so, wil
t>0?

(3) When ¢ > 0, under what conditions will a unique fixed point X > 0
be a limit point of the crash set?

eras tm (T Y ae o RS |
1verge to (X, X) as n— oo for all

The above questions and many related ones {e.g., extending the study
to equations of orders 3 and higher) deserve answers, if we are to gain
a deeper understanding of monotonic, singular difference equations.
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