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The Ducci Problem
and Related Questions
by Hassan Sedaghat

Consider four positive integers placed
at the four corners of a square and let us
play the following game: Calculate the ab-
solute value of the difference of the two in-
tegers at the two endpoints of each side of
the square, and use that number to label
the midpoint of the side in question. Do
this for every side and obtain a set of four
positive integers, each at the midpoint of
a side of our square. Connect these points
pairwise by straight lines to form a new
square inside the original one. Now re-
peat this process for the new square and
continue forming squares. Will this go on
forever, or will it end, eventually, with
a square whose vertices are zeros? Now
suppose we play the same game with a
triangle instead of a square. Will we go
on forming triangles forever? And what
about other polygons? ... will this pro-
cess go on indefinitely or will it end?

The case of the square is often re-
ferred to as the Ducci process (8], and
there is a sizable literature on it (see the
references). Generalizations to other poly-
gons were apparently first discussed in
[2]. Here we discuss some aspects of the
problem in terms of periodic sequences
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of real numbers. If a is the sequence
(a1,03,4s,...) of real numbers, define the
period of a to be the smallest positive in-
teger p such that ap4x = ax forall k > 1.
Sequences of period p = 1 correspond to
the constant sequences (c,¢,¢c, ...) where ¢
is a real number. In the sequel we will also
use the notation a(k) to denote the k-th
term a; of the sequence a. Now define the
operator & as follows:

da= (|a3 = ﬂ;l,las = azl,‘..)

We call § the absolute difference operator.
As in the notation for higher order deriva-
tives, let §(*)a denote k successive appli-
cations of § to the sequence a. In this set-
ting, sequences of period p = 4 represent
squares, and the repeated applications of
6 represent the formations of successive
Bquares. Similarly, different periods rep-
resent different numbers of sides. The fol-
lowing theorem now answers the questions
raised above.

1.(I) If a is a sequence of real numbers
with period p > 3 and if p is odd, then
§(F)a % 0 for all positive integers k.

(II) If « is a sequence of rational numbers
with period »n, then §(¥)a = 0 for some
k > 1 depending on a if and only ifp = 2"
for some positive integer n.

If p is any positive integer not covered
by the above theorem, then §(¥)a may or
may not equal the zero sequence for some
finsie value of k, and the outcome will
depend on the choice of the sequence a.
Note that the second part of the above
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theorem is true only if we restrict our at-
Sention to the rational numbers. For ex-
ample, if r is the real root of the polyno-
mial 23 — 72 — 7 1, and a is the periodic
real sequence (1,r,r2,7%,1,r,r3,¢3, . ) of
period 4, then §a = (r — 1)a and there-
fore, §(X)a # 0 for all k (see [7]).

To prove the above theorem, we be-
gin by stating an interesting property of
periodic sequences which we state for the
absolute difference operator (it actually
bolds for more general operators). This
may be proved by a straightforward com-
putation:

2. I @ is a periodic real sequence with
period p > 2, then the period of §a divides
P-

Now 1(I) is a consequence of 2 and
the following:

3. Suppose a is a periodic real sequence
of period p > 2. Let n be the number of
Begalive terms among the first p terms of
Sa, the first finite difference of a. Then
P = 2n if ba is a constant sequence.

Proof. It is clear that n > 1. Suppose
éa = (c,c,...), ¢ > 0 is a constant se-

- guence where

T

oy, a2, ...,0,,01,03, ...,0,,...).

Then [a; — a,| = |a; - az| = ... = |a; ~
8l =¢c>0 and let § = et larer =
8z = pc. Suppose for j = 1,2,...,n we
bave iagj_,_l = akj[ = Gk, — Qk,41- Then
upon writing up all terms of S and sim-
plifying, we obtain § = E;-.=1(2Gg,- -
285, 41) = 2nc. So p = 2n.

Now for a € I®(R) (ie, a is a
bounded sequence of real numbers) define
llal[to be the I% — norm of qj i.e., the
supremum of all terms of a. If a is peri-
odic with period p, then

llel| = maz(jas],las], ..., |a])

- To prove 1(II), we proceed by showing
that repeated applications of § to a peri-
odic real sequence a tend to reduce |a.

4. Let a be a periodic real sequence with
at least three distinct terms. Then there is
anm, 1 < m < p-1, such that ||§(™)q|| <
=0
Proof. Let a = ||af|. Since §(a+8) = éa,
where § = (b,), ...), for some real number
b, is a constant sequence, without loss of
generality, we may assume that the small-
est termof a is 0. If 0’s and a’s in a do not
occur next to each other, then |[6a|| < a.
Otherwise, there are blocks of 0’s and a’s
between terms that are not 0 or a, such
that in each block some 0 occurs next to
some g. Since § commutes with the right
shift operator, we may assume that the P
th term of a is not 0 or a. Let h denote the
number of blocks of 0’s and a’s within the
first p positions and let m; be the number
of elemerts in the s-th such block. -Note
that m; > 2, fori=1,2,....,a < p/2. Let
m = mai(my, ms,...,m,). When we ap-
Ply é to «, the length of each block of 0’s
and a’s is diminished by one init, so that
after (m-- 1) applications of & no 0’s occur
next to e’s. The conclusion fillows.

We should note that 4 coes not hold
for arbitiary a € I°(R). Le! a = (a(k))
be defined as follows: a(k) = 2 if k =
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("3*) —4forsomen > 3; a(k) =1if k=
;%) —3fcr some n > 3; and a(k) = Ofor
all other k > 1. Hence, ||6(™)a]| = ||a] =
2forall m > 1.
As a corollary to 4, we have:

5. If a is a periodic sequence of ratio-
nals with period p > 2, then there is k
(depending on a) such that §(¥)a is a se-
guence consisting entirely of 0's and a’s,
for s6me rational number a < ||af|.
Proof. Apply 4 repeatedly to la, where
[ is the absolute value of the least com-
mon multiple of the denominators of the
first p terms of a. Since the reductions of
llia]| take place by integral units, we must
eventually end up with no more than one
non-zero term in our sequence.

Note that the above corollary is not
true if o assumes irrational values (con-
sider the sequence (0,1,,0,1,x,...)).

Because of 5, we may restrict our at-
tention to sequences in ZY, where Z3 =
{0,1}, and N is the set of positive inte-
gers. Zg is a field under addition modulo
2 and ordinary multiplication. Hence Z}
with coordinate-wise addition is a vector
space over Z3 and § is a linear operator on
it. In fact, if a = (e1,4a3,...) € ZF, then
da = (a; + a;,a; + as,...). Define the two
summation operators §; 'a, 6] 'a on Z})
as &, 'a = (0,a1,a; + a3,a; + a3 +as, ...)
and 67 'a= (1,14a;,1+a; +a;3,1+a; +
as + ag,...).

The following result now tells us
about the effect of §;' and &' on the
period of a periodic sequence in Z§'.

g

8. Suppose a € Z} has period p > 1. If
a(k) = 1 for an even number of k’s be-
tween 1 and p, then both of the summa-
tion operators yield sequences of period p
when applied to a. If a(k) = 1 for an

odd number of k’s between 1 and p, then

both of the summation operators yield se-
quences of period 2p when appliec to a.

Proof. If 2m is the number of k’s such
that a(k) = 1 then > %_, a(k) = 2m =
0 (mod2). If k = 1, then &; 'a(1 +p) =

f=1a()) =0 = 65 'a(s), and for all

k>2
k+p—1 k+p—1
6 'a(k+p) = E afr) = E af(r)
s=1 s=p+1

k-1
=Y afi) = 6 'a(k).

s=1

Hence &;'a is periodic with period at
most p. Also §(5; 'a) = a, so by 2, the
period of §; 1o is at least p. Thus, p must
be the period.

If 2m + 1 is the number of k's such
that a(k) = 1, then 377 a(s) = 2(2m +
1) = 0 (mod2). As in the even case above,
it follows that §; 'a(k+2p) = 6 'a(k) for,
all k > 1. On the other hand, note that

P

65 la(p + 1)=Za(:')=2m+1 =1,

=1

~

whereas 6;'a(1) = 0. Thus §;'a can-

not have period p, so that by 2, its period
must be 2p.
As for 67 'a, note that if ¢ denotes
the period of 65 la, then for all k > 1
continued on page 11




Ducci Problem...
continued from page 7

we have
7lalk+q)=1+6"alk+q) -

=1+ 65 ' (k)
=4 olk)

-

Hence §; '« also has period g.

We shall need two combinatorial lem-
mas before proving 1(II). The first of these
is proved by a straight-forward calculation
and the second is a simple consequence of
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Wwwenlle idemtity for binomial coefficients
P

., mmhnmml coefficient ("' ) is even
il > 1, k= 1,2,...,2™

. Horec 2,

wﬂﬂ Z( )a(n—J-H) (mod2).

Wimw we are in a poesition to prove
am
P of 1(I1). Because of 5, there is a
il member o and a positive integer
- W et 8 = (1/a)6(*)a € ZN. Sup-
([ @ Sme period 27. Then by 2, § has
il 2™, = < n. By 7 and 8

2" m
- > (7 )pem - +0
: = (2™ +1) + B(3)
= 26(5) = 0 (mod2)

fioe wlll & > 1. Hence for k = ky+2™, w

Bt

§i%a = §07)(ap)
=a6®7)g
=a(0,0,...) =0

Chmwensely, we can obtain a binary tree

il seguences in Z) by successive applica-
s of the two operators §; ' and 6
liiaiing from (0,0,...). By 6, every se-
iuemes obtained in this fashion is periodic
il Wiw period is a power of 2. It follows
Wil smly those sequences whose period is
W mwer of 2 can lead to the zero sequence

upon successive applications of the opera-
tor 6.

In closing, let us point out that al-
though 1(II) states that for any given a of
period 2", n > 1, we obtain the zero se-
quence after applying § to a a finite num-
ber of times k, it does not imply that there
is a bound for k independent of . Indeed,
for the smallest non-trivial case, p = 22,
it has been shown (7] that the value of k
can become arbitrarily large depending on
the choice of a. On the other hand, Dan
Ullman has shown [6] that for “most” se-
quences a with period p = 2%, one obtains
k<8

I wish to thank Rodica Simion and
Dan Ullman for useful suggestions.
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CAPITAI CITY CONFERENCE
on Combiaatorics and
Theoretic:]1 Computer Science

The GW -:ampus will be the site of
the Capita!l City Conference on Combi-
natorics and Theoretical Computer Sci-
ence during May 22-26, 1989. This is
an interdisciplinary conference organized
by the Department of Mathematics and
sponsored by the National Science Foun-
dation and George Washington Univer-
sity.

The scientific program includes invited
and contributed talks, as well as discus-
sion and problem sessions, and aims to
offer a setting for professional interaction
among mathematicians and computer sci-
entists. A series of survey lectures by
three preeminent researchers is scheduled:

Laszlé Lovasz
Princeton and E6tvos Lorand University
Commaunication Complezity of Graph Problems

Richard Stanley
MIT
Applications of Algebra to Combinatorics

Richard Karp
University of California, Berkeley
Randomized Algorithms

The conference has nationwide participa-
tion of researchers from universities and
industry centers, and we anticipate an ex-
citing program. Details regarding this
conference can be obtained by calling
(202) 994-6238.




