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Using the uniform continuity theorem for compact intervals together rvith the
mean value theorem, a derivative-based criterion is obtained with which to
establish the uniform continuity of functions on non-compact intervals.

From the mean value theorem it readily follows that if the derioatiae of thefunction
f is bounded on an interaal I, then J is Lipschitz, hence uniJormly continuous on I l'll.
Since 1is not necessarily closed or bounded here, the italicized statement represents
an extension of the uniform continuity theorem (for differentiable functions) to
arbitrary intervals. The statement is also analogous to the one for continuous
functions from elementary calculus, namely, that eaery functionv,thich is differentiable
on I, is continuous on I. However, unlike its continuous analogue, the uniformly
continuous version is not applicable to elementary functions such as '\:/I that are not
Lipschitz on, say ( - @, @ ). This problem can be overcome if the uniform continuity
theorem itself is also applied in addition to the mean value theorem to get past a
compact set of troublesome points. The resulting derivative test applies with ease

to virtually all elementary functions of calculus on their intervals of uniform
continuity, including the class of functions such as V7 that are continuous and
piecervise smooth on real intervals. Thus, when presented in instruction as a
corollary of the trvo basic theorems on which it is based, the test here takes the form
of an immediateiy useful application of those two theorems.

In this note, we consider only real-valued functions of a real variable. Also an
interval is defined in its most general form as a non-empt),, connected subset of the
real numbers (thus single points as well as the set of all real numbers are also intervals
in this note).

Lemma. Let/be continuous on an interval .I, and let 11 and 12 be subintervals
of 1. If/is uniformly continuous on each of 11 and 12, then/is uniformly continuous
on 1r U.Iz.

ProoJ.If either subinterval is contained in the other, then the lemma is trivially
true. So assume that there is a number a in the relative complement 11\.I2 and also

there is b e I2\Il with a<0. This assumption implies that.Ir has a right end point
6r and likewise-Izhasaleftendpointa2. Itisclearthata< a23banda3b1s Dwhere
at least one of the inequalities is strict in each case. Let e>0 be given and consider
the following cases:
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Case 1. azlbr or b11a2; for i:1,2 we may choose di such that if x,y e I; and
l*-yl <6,, then lf@)-JO)l <". Define 6:min{lor- orl,dr,dz}. Then
d : d(e) ) 0, and if x, y e I tU I 2with I x - y I < d, then x and yare both in 1r or both
rn 12. k follows that l/(x) -"f(y) I < e.

C ase 2. a I a2 : h < b ; let c : az : bt. Since the closed interval [a, 6] is compact,
the uniform continuity theorem implies the existence of do:do(e)>0 with the
property that if x,yela,b) and lr-yl(6s then lf@)-f(ill.u. Define
d:min{c-a,b-c,6q,61,62}. Clearly 6:6(e)>0, and if x,yeI1U12 with
l, -, | < 6 then both x and y must be contained in at least one of the subintervals
la,b), Il or 12. Once agaln l/(r) -fU)l <r.

Case 3. Either a{a2:b1 :b or a: a2:bt<b; since the two sub-cases are
similar, we consider only the latter. Since a e 11, there are two possibilities: 11 : {a }
or there is c e 11\12 such that c I a. In the latter situation apply Case 2 to the interval
lc,b). If, on the other hand, It: {a}, then 1r U 12 isjust the left closure of12. Thus,
since/is continuous on 11 U IzCland uniformly continuous on 12, it follows that
/ is uniformly continuous on the union [1]. QED

Remark. Continuity of / on an ambient interval 1 is crucial to the validity of the
above lemma (as well as the following theorem). For instance, the function l" | /" it
continuous (in fact, differentiabie) on its domain ( - - ,0) U (0, oo ) and uniformly
continuous on each of the subintervals ( - *, 0) and (0, co ) separately. However, this
function is not uniformly continuous on the union of the two subintervals.

Theorem. Let/be continuous on an interval 1. Assume that the derivative/' exists
and is bounded on.I except possibly on a compact set KC1. Then/is uniformly
continuous on 1.

Proof . In the light of the mean value and the uniform continuity theorems, we
may assume that 1 is non-compact and that 1( is non-empty. Suppose then that a
and b are the least and the greatest elements of l(, respectively. Thus 1{ C la , b) C I ,

and the closed interval la,bl partittons l into three intervals: [a,&] itself, and two
other intervals 11 and 12 on either side of [a, b] (since 1is assumed not compact, then
at least one of the latter two intervals is non-empty). By the mean value theorem,
/is uniformly continuous on 11 and 12. Since by the uniform continuity theorem/
is uniformly continuous on [a,D], the lemma above implies that/ is uniformly
continuous on 1. QED

Examples. The theorem can be used to rapidly establish the uniform continuity
for most of the functions encountered in elementary calculus over suitable intervals.
Examples u.. lrl un4 *112n-1, n:1.,2,3,... which are unilbrmly continuous on
( - *, cc) with K: {0} and 1{: [ - 1, 1], respectively. The functions x1l2',
n:1,2,3,... are likewise uniformly continuous on their common domain [0, co]

with 1{ equal to, say [0, 1]. In the same manner, we can use the theorem on more
general functions such as x*1", where mln and m and n are relatively prime.

Also, since the composition of two uniformly continuous functions is again a

uniformly continuous function, we conclude that if / is uniformiy continuous
(though not necessarily differentiable) over a non-empty set S of real numbers, then
so are the functions/1/2' ',r: 1,2,3, . . . . And if the range of/is contained in [0, co),
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then the same is true of the function" f'l'", n:1,2,3,... . Clearly, identical
statements may be made if / is a real-valued, uniformly continuous function on a
general metric space. Of course, the above theorem also applies to composite
functions which have no natural expression as a composition of other uniformly
continuous functions on a given set. Familiar examples include exp ( - x2) and
(1 + x2)-1 on ( - -, *).

Remarh. The compactness of I(in the statement of the theorem may be weakened
somewhat (as in the case of a periodic, piecewise linear function on the reals), but
it cannot be replaced with 'boundedness'. A familiar counterexample would be
sin (1/x), which is bounded and differentiable on (0, oo ) and has a bounded derivative
on (e, m ) for each s ) 0. However, sin (1/x) is not uniformly continuous on (0, m ).

References
[1] Pnorron, M. H., and MoRRov, C. B., 1991, A First Course in Real Analysis,2nd Edn

(New York: Springer-Verlag), pp. 81, 337 .

Nowhere differentiability of the coordinate functions of the
Von Koch curve

by HANS SAGAN
5004 Glen Forest Drive, Raleigh, N.C. 27612, USA

(Receiaed 16 March 1991)

In 1904, Helge von Koch constructed a continuous curve which does not have
a tangent anywhere. Based on a pararnetrization of this remarkable curve, which
was found by this author recently, it will be proved analytically that its coordinate
functions are nowhere differentiable.

The first sentence in K. Knopp's paper [1] on a unified generation of the curves
of Peano, Osgood and von Koch says that'Zu den besten Beispielen einer Kurve
ohne Tangente gehort wohl ohne Zweifel dasjenige von v. Koch' ('Among the best
examples of a curve without tangent is without doubt the one by von Koch'.) Von
Koch found this curve in 1904 and proved geometrically that it does not have a

tangent anywhere [2-4]. Knopp calied von Koch's proof cumbersome and lacking
in lucidity. He supplied a much simpler proof in [1] but his, as well as von Koch's
proof are of a geometric nature and are based on the observation that for a curve to
have a tangent at one of its points, all sufficiently small chords which contain that
point or emanate from it, have to form an arbitrary small angle with each other.

Von Koch did not find an explicit representation (parametrization) of his curve
but Cesiro and Knopp did [1, 4]. However, neither made use of it to obtain the
stronger result that the coordinate functions of this curve are nowhere differentiable
and it appears that nobody else did either. We will prove the non-differentiability
of the coordinate functions analytically, based on a parametrization which we found


