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Consider the following characterization of the uniform convergence of 
a sequence of functions in terms of the uniform continuity of a single associ- 
ated function. Let {g,} denote a sequence of bounded, uniformly continuous, 
complex-valued functions on a topological group G (assume the right uniform 
structure). Suppose that {g,} has a pointwise limit g and define a function on 
the direct product Noo x G as f (n ,u )  = gn(u) and f(oo, u) = g(u), u e G 
(Noo denotes the usual one-point compactification of the positive integers N).  
Note that if N~o is given the left zero multiplication (i.e., ab=a) ,  then No~ x G 
is a topological left group. Corollary 5.7 below shows that if, e.g., the group G 
is locally compact or complete metric, then g ,  ~ g uniformly if and only if f 
is uniformly continuous on Noo x G (with respect to the product uniformity). 
However, on certain other groups (such as the group (Q, +)  of the usual addi- 
tive rationals) the uniform continuity of f on Noo x G is no longer necessary for 
the uniform convergence of the sequence {g~}. A weaker form of continuity is 
needed which coincides with uniform continuity in groups but not in left groups 
(2.6, 2.10). This type of continuity, which we call left local continuity is the main 
subject studied in this paper. The above characterization of uniform conver- 
gence on topological groups extends to other semitopological semigroups (and, 
as a degenerate case, to general topological spaces) upon suitable generalizations 
(Section 5). The focus b_ere will be on the special class of semitopological semi- 
groups known as rectangular semigroups, since such semigroups (which include 
left groups) possess highly non-trivial left locally continuous structures that are 
nevertheless amenable to substantial (though not exhaustive) analysis within a 
single paper. 

Left local continuity is responsible for (and characterized by) the emer- 
gence of many new C*-algebras of continuous functions as one passes from group 
structures to more general types of semigroups. Indeed, consider the topological 
left group S of 3 x 3 matrices of the form: 

0 
0 y 

x E  K, y E R ,  y ~ O  

under matrix multiplication, w h e r e / (  is any compact subset of the reals R with 
an infinite number of limit points (e.g., K=[0,1]).  We show that  there exists 
an uncountable Boolean lattice of translation invariant C*-algebras of bounded, 
continuous functions on S, where each algebra contains all bounded, uniformly 
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continuous functions on 5: (see 2.10, 4.1 and the comments  before 5.7 below). As 
a consequence, the class of all universal semigroup compactifieations of 5: which 
extend the LUG(S)-compactification is uncountable (with cardinal number  2 c 
if, e.g., K = [0, 1], where c is the cardinal number of the continuum; see 4.5. 
The  universal mapping  property of these eompactifications is discussed in [9]). 

Such multi tudes of C*-algebras of continuous functions on the above 
close relatives of topological groups simply do not materialize on the groups 
themselves. The closest things to these algebras could already be found in [8] 
(see also [2, p.175]), but  it was in [9] where the above C*-algebras made their 
debut. Specifically, we showed in [9] that  the size and structure of the class of 
locally continuous algebras for lattices of groups mimies the algebraic structure of 
the semigroup (as determined by the natural  semilattice congruence), provided 
tha t  the topological s tructure permits the application of the Joint Continuity 
Theorem in [6]. Boolean lattices of locally continuous algebras then correspond 
to similar lattices of idempotents  and principal ideals in the semigroup. 

In this paper  we show that  the algebraic determinant of the left locally 
continuous structure in a rectangular semigroup is the Green's relation ~ (under 
nominal  topological hypotheses).  Thus the class of locally continuous algebras 
forms a lattiee which eorresponds to the lattice of right ideals (see Sections 2 and 
3 below). Before proceeding with the discussion of left local eontinuity however, 
we recall a few preliminary concepts. 

A ~emitopologieal semigrou p 5: is a semigroup and a (Hausdorff) topo- 
logical space where the semigroup operation (often called multiplication) is sep- 
.arately continuous (if the multiplication is jointly continuous on 5: x 5:, then we 
say that  5: is topological) [2]. For any semitopological semigroup 5:, we use the 
notat ion G(5:) for the set of all bounded, continuous, complex-valued functions 
on 5:. Recall that  G(5:) is a translation invariant C*-algebra with respect to 
the sup-norm topology. We need here two translation invariant C*-subalgebras 
of C(5:): The algebra LUG(5:) of all left uniformly continuous function~ (i.e., 
functions f E G(5:) for which the mapping s ~-~ Lsf  : 5: ~-~ C(5:) is norm 
continuous) and the algebra LMC(5:) of all f E C(5:) for which the map-  
ping s H # ( L s f )  : 5: H C is continuous for all # in the spectrum of C(5:). 
LMC(5:) is usually called the algebra of left multiplicatively continuou~ func- 
tions on 5: [2]. In these definitions, Lsf  denotes the left translation of f by s; 
i.e., L,f( t )  = f(st) for all t E 5:. Likewise, we define the right translation as 
R,f( t )  = f ( t8 ) .  Observe that  LUC(5:) C LMG(5:), and that  if 5: is a topo- 
logical group, then LUG(5:) coincides with the set of all functions in G(5:) that  
are uniformly continuous with respect to the right uniform structure. Detailed 
information on the algebras LUG(5:) and LMC(5:) may be found in the existing 
literature, but  we need relatively little of that  knowledge for our purposes here 
(we do mention,  however, the double limit criterion for L~IC(5:), a discussion of 
which may be found in [2], Chapter  Four). Closer to the subject of this paper,  in 
[3] a comparat ive  s tudy of the algebras LUG and LMC, along with the algebras 
of almost periodic functions and weakly almost periodic functions is presented 
on semitopological left groups. 

In this paper,  we will be primarily concerned with a class of algebraically 
simple semigroups which includes such familiar structures as the left groups 
and the right groups. Following conventions similar to those adopted in [3] 
for semitopological left groups, we define 5: to be a 8emitopological rectangular 
8emigrou p if it is isomorphic to a direct product  Zt x G x Zr ,  where G is a 
semitopological group and Zt, Zr are, respectively, a left zero semigroup and 
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a right zero semigroup [2]. With this convention, the topology of S is always 
determined by the topologies of G, Zt and Zr via the product topology mad, as 
in [3], we avoid some of the technical complications that may otherwise arise in 
topologizing S. Also, left groups may be represented as Zt x G, right groups as 
G x Zr and rectangular bands as Zt x Zr. 

1. The  Lattice of  Left Locally Cont inuous  Algebras 

The aim of this section is to establistl the basic facts about left local 
continuity in semitopological semigroups in general. In particular, we generalize 
the results of Section 2 in [9] concerning the lattice structure. A function 
f E LMC(S)  (S  is a semitopological semigroup) is said to be left locally 
continuous at a E S if the mapping 

s ~ L~f : S ~ C(S) 

is continuous at the point a relative to the uniform topology on C(S) .  The set of 
all functions of this type is denoted by LLC(S, a). Further, if A is a non-empty 
subset of S, we define 

L L C ( S , A ) = N { L L C ( S , a )  : aE  A}. 

It is clear that  LUC(S) = LLC(S ,S )  C LLC(S,a)  for every a E S,  and 
if A C B,  then LLC(S ,B )  C LLC(S ,A) .  It is thus reasonable to define 
LLC(S,  (?)) = LAIC(S) where O represents the empty set. 

R e m a r k .  The restriction in the above definition that every left locally con- 
tinuous function be a member of LMC(S)  is adopted from [9], where the use 
of semigroup compactifications required the restriction. By continuing to ad- 
here to the original definition here, in addition to preserving consistency, with 
a little extra effort we succeed in demonstrating the existence of large lattices 
of function algebras within LMC(S)  and not just within C(S).  The loss of 
generality that results from such a restriction is inconsequential at this stage, 
where little is known about LLC structures, while at the same time it may be 
desirable to learn more about LMC(S) .  In fact, rather than seeking the most 
general hypotheses possible, we aim to establish throughout much of this paper 
that  highly non-trivial lattices of subalgebras arise within L MC(S )  on fairly 
"commonplace" semigroups. 

The routine proof of the following basic lemma is ommited. 

L e m m a  1.1. (a) For every non-empty family .7" of subsets of ,9, 

LLC(S, UJ z) = A { L L C ( S , A )  : A E .7-'}, 

LLC(S, NJ r) D U { L L C ( S , A )  : A E }-)}. 

(b) For every subset A C S, LLC(S ,A)  is 
C*-subalgebra of C( S).  

(c) For semitopological 8emigroups S and T,  
homomorphisra. If O* denotes the dual 
LLC(S ,A) .  

a right translation invariant 

let 0 : S H T be a continuous 
of 0, then O*LLC(T, OA) C 
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In the light of 1.1(b) above, we may refer to each LLC(S, A), A C S,  as 
a left locally continuous algebra on the semigroup S. 

Let S be a semitopological semigroup, and for each pair of subsets A 
and B of S,  define a relation p in the power set P (S )  by 

ApB if and only if LLC(S,A)  = LLC( S,B). 

Clearly p is an equivalence relation. Let [A] represent the p-cell (or equivalence 
class) of the subset A C S. Lemma 1.1(a) implies that U[A] �9 [A], so we have a 
unique representation of each p-cell by it~ maximum element. Let C(S) denote 
the set of all such maximal representatives for p, and note that E(S) is non- 
empty since it always contains S.  Further, let 9 v be any non-empty subset of 
s  and note that  if A �9 .T then UiA ] -- A. From 1.1(a) 

U{LLC(S, g): A �9 ~} C LLC(S, N.T) = LLC(S, U[Ngr]) 

so that  U[N.F] C A for every A �9 .7". It follows that n.r = u[n~-] �9 g ( S ) .  
Hence, g(S)  is closed under intersections and the next theorem follows (via [1, 
p. 4s91). 

T h e o r e m  1.2. If S is a semitopological semigroup, then E(S) is a complete 
lattice. �9 

Theorem 1.2 shows that what we called "semilattices" in Section 2 of [9] 
are in fact much more (but also see 1.3 below). In E(S) the join of a family ~" 
defined as V9 v = M{B E C(S) : U9 ~ C B} can easily be shown to equal U[U.T]; 
i.e., the join of a subset of C(S) is the maximal element of the p-cell of its union. 

We sometimes use the notation (S(S), M, V) below for the lattice of The- 
orem 1.2. Notation-wise, the order in which n and V appear will be important 
in later comparisons. Notice that 

{LLC(S ,A) :  A c S } = { L L C ( S , B ) :  B E g ( S ) } .  

We denote the above class of all left locally continuous algebras on S by LLC(S),  
and note that  distinct members of LLC(S) are in one-to-one correspondence with 
the members of E(S).  For any family 9 v of sets in $(S) ,  we have 

A{ LC(S, A ) :  A �9 = LLC(S, u T )  = LLC(S, v : ) .  

Also, it is easy to check that  the join of LLC algebras defined by 

V { L L C ( S ,  d ) :  d �9 jz} = LLC(S, M.~) 

indeed represents the supremum (in LLC(S))  of the family {LLC(S, A) : A �9 
~'}. It follows that  (LLC(S),V,M) i~ a complete lattice of C*-subalgebras of 
C(S) ,  which is isomorphic to the lattice (s M, V) of sub~ets of S. We will 
use the term LLC-latticc, or the lattice of left local continuity, in refering to 
either one of the isomorphic lattices (E(S), n, v)  or (LLC(S), V, M). 

At this point it may be relevmit to take advantage of the equality in the 
first statement of 1.1(a) and prove a stronger result for LLC(S).  The next corol- 
lary shows, in particular, that  every semilattice (LLC(S),M) (or equivalently, 
(g(S) ,  V) ) is a homomorphic image of the power set semilattice (7~(S), U). 
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C o r o l l a r y  1.3. Let S be a semitopologicaI semigroup. Then p is a congruence 
in the semilattice (7~( S), U), and the quotient semigroup P( S)/p is isomorphic 
to the semilattice (LLC(S), N). 

P r o o f .  That  p is a congruence follows from Lemma 1.1(a). Since multiplica- 
tion in P(S)/p is given by [A][B] = [A U B], the mapping [A] ~ LLC(S,A): 
79(S)/p ~ LLC(S) is the required isomorphism. �9 

Evidently S in g(S) corresponds to the C*-algebra LUC(S) in LLC(S). 
Similarly, the maximal algebra LMC(S) in LLC(S) corresponds to U[O], 
namely, the maximal element of the p-cell of the empty set. The set U[O], 
which may be non-empty (see, e.g., 3.3 below) is the largest subset of S having 
the property that every member of LMC(S) is left locally continuous at each of 
its points. The following definitions are useful for classification purposes. 

1.4 Def in i t i ons  a n d  R e m a r k s .  Let S be a semitopological semigroup. 

(a) If LLC(S) is a singleton (equivalently, if LMC(S) = LUC(S) or if 
U[O] = S), then we say that S is LLC-trivial. 

(b) If LLC(S) = {LUC(S),LMC(S)} (equivalently, if s = {U[O],S}), 
then we say that S is LLC-simple. Note that every LLC-trivial semi- 
group is LLC-simple. 

Examples of LLC-trivial and LLC-simple semigroups include many ele- 
mentary or familiar cases, such as semitopological groups or compact topological 
semigroups. Some examples of semigroups which are not LLC-simple (includ- 
ing compact semitopological semigroups) appear in [9]. Also many examples of 
rectangular semigroups below are locally compact topological semigroups that 
are not LLC-simple. 

(c) For each pair of elements a,b E S, we define apob if LLC(S,a) = 
LLC(S,b). Then p0 is an equivalence relation in S (rather than in 
the power set 7~(S)), and for each s C S,  the p0-cell [s] is precisely the 
union of all the singletons in the p-cell [{s}]. 

By 1.1(a) [s] e [{s}], implying [s]C U[{s}]. This containment is usually 
strict: In fact, it is easy to see that for each s,t E S, we have 

t E U[{s}] if and only if LLC(S,s) C LLC(S,t) 
whereas, by definition, 

t G [s] if and only if LLC(S,s) = LLC(S,t). 
Unlike its sister relation p whose cells have a natural representation by unions, in 
general there is no explicit way of selecting a well-defined representative from each 
p0-cell. Still, for certain types of semigroups P0 has very interesting properties. 
In the case of rectangular semigroups, as we will see later p0 is often identified 
with the Green's relation ~ .  

The next lemma is a general result concerning the transformations of 
semitopological semigroups and their LLC structures. 

L e m m a  1.5. Let S and T be semitopological semigroups, and let 0 : S ~ T 
be a continuous homomorphism. Suppose that there is a subsemigroup $1 C S 
which is topologically isomorphic to T under t~. Then for every non-empty 
A~ C S1 and every A C S, LLC(S,A) C LLC(S, A1) implies LLC(T, lgA) C 
LLC(T, /~A1) . 

P r o o f .  Let f E LLC(T, OA), let a be any point of A1 and suppose that 
{t,} is a net in T that converges to O(a). Since tg*LLC(T, OA) C LLC(S,A), 
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it follows that  O*f E LLC(S,  a). Now if 8' : T --* $1 is the inverse of Ols,, then 

I]L,,f - Lo(a)fl] = sup ILo,(t,)O* f (  O'(y) ) - LaO* f(  O'(y) )] 
yET 

<_ HLo,(t.)O* f - LaO* fl I. 

Hence, f E LLC(T,O(a)),  and due to the arbitrary nature of a E A1, f E 
LLC(T,  OA1 ). �9 

Lernma 1.5 applies naturally to the projections of certain subsemigroups 
of direct products (e.g., subdirect products) onto various subspaces, and also to 
the projection onto one of the coordinate semigroups in a semidirect product. 
Since rectangular semigroups are expressed as direct products, the following 
special case of 1.5 will be very useful to us in this paper. 

C o r o l l a r y  1.6. Let S = H x T be a direc~ product of the semitopological 
semigroups H and T.  If  A1,A2 C H, A2 # 0 and B1,B2 C T,  such that 
LLC(S,  A1 x B1) C LLC(S,  A2 x B2), then LLC(T, B1) C LLC(T,  B2). �9 

Of course, if S = H x T is a direct product,  then H and T play 
symmetric roles in 1.6. This situation occurs naturally in rectangular semigroups 
which are defined as direct products, and explains the usefulness of 1.6 in the 
sequel. 

2. T h e  LLC S t r u c t u r e  o f  R e c t a n g u l a r  S e m i g r o u p s  

In this section we investigate the structure of the LLC-lattice for semi- 
topological rectangular semigroups. In particular, we show that fight groups are 
always LLC-simple whereas with even the most common topologies, rectangular 
semigroups (including left groups and rectangular bands) can have large power 
sets as their LLC-lattice. It is a curious fact that  such elaborate local structure 
can exist in simple semigroups like general rectangular semigroups, given that 
(Corollary 2.2 below) the right simple right groups display no such structure. In 
spite of its simple proof, the next lemma is of central importance and highlights 
the significance of the right ideals. 

L e m m a  2.1. Leg S = Z I x G x Z r  be a rectangular semigroup. Then LLC(S ,A)  
= LZC(S,  A1 x G x Zr), for A C S with A1 the projection of A into Zt. 

P r o o f .  The stated equality clearly holds if A is empty. For non-empty A, let 
(a, b, c) E A1 x G x Zr and observe that for any point (a, u, v) E A and for every 
(x, y, z) E S and f E LLC(S,  A),  

[IL(=,v,,)f - L(=,b,c)fll = []L(x,v.v)f - L(a,b.v)fl] = I[i(x,vb-,u,v)f -- L( . . . . .  )f]l. 

It foUows that  f E LLC(S, A1 x G x Z~). Thus, LLC(S,  A) C LLC(S,  A1 x G x 
Z~). The reverse inclusion follows from the inclusion A C A1 x G x Z~. �9 

N o t a t i o n :  As in the above 1emma, for each A C S,  we use the subscript "1" to 
denote the projection A1 of A into ZI. Also throughout the rest of this paper 
we abbreviate ZLC(S,  A1 x G x Zr) to L(A1) for every subset A1 C Zt, and if 
A1 = {a) is a singleton, we write L(a). 

We may consider a right group R = G x Z r  to be topologically isomorphic 
to the rectangular semigroup S = {z) x R where {z} is any singleton set. Thus 
the following corollary is an immediate consequence of 2.1 and 1.6. 
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C o r o l l a r y  2.2. Let R = G x Z~ be a semitopological right group. Then R is 
LLC-simple.  Also, if R is LLC-trivial  then the group G is LLC-trivial.  �9 

If a semitopologicM right group R is not LLC-trivial,  then by Lemma 
2.1 U[O] = O. According to the above corollary, an impor tant  case in which this 
can happen is when the group G is not LLC-trivial.  On the other  hand, if R 
is LLC-trivial  then, obviously, U[O] = R. By [2; 4.5.10] a locally compact  or 
complete metr ic  topological right group R is LLC-trivial.  

Corollary 2.2 fails to hold for left groups, and we demonst ra te  this in 2.6 
below. First  we need some lemmas. 

L e m m a  2.3. Let S = Zt x G be a semitopological left group where G is not 
LLC-trivial.  I f  A1 is a proper, non-empty open and closed subset of Zt, then 
L ( x ) \ L ( a )  ~ 0 for each x E ZI\A1, a E A1. 

P r o o f .  Let IA, denote the indicator  (or characterist ic)  function of A, on Zt, 
and observe tha t  due to the nature  of A1, IAI E C(Zz) = L M C ( Z t ) .  Since 
LUC(G)  # L M C ( G ) ,  let g E L M C ( G ) \ L U C ( G ) ,  and define f on S by 

f ( x , y )  = ZA,(x)g(y),  x E Zl, y E G. 

Clearly f E C(S ) .  Further,  the product  Z LMC x G LMC of L3lC-compactifica- 
tions is itself a semigroup compactification of S and therefore, a factor of S L M C  . 

It follows that  f E L M C ( S )  [2; 3.1.9 and 4.5.3]. 
Next,  let {y~} be a net in G which converges to the ident i ty  e of 

G such that  IILwg - g l l  does not  converge to zero, and let a E A~. Since 
I!L(a,y,)f - L(~,~)fll = Ilny, g - gll, we conclude that  f ~ L(a).  However, if x E 
ZI\A1 and {(x~,u~)} is any net ill S converging to (x ,u )  where u is any point 
of G,  then as Zt\A1 is open, there is c~0 such tha t  IlL( . . . . .  ) f -  L(x,,)f]l  = 0 
for all c~ > c~0. Therefore, f E L(x ) .  �9 

L e m m a  2.4.  Let S be an LLC-trivial  semitopological semigroup. If z is 
an isolated point of a left zero semigroup Zl, then LLC(Z t  x S, {z} x S) = 
L M C ( Z t  x S) .  

P r o o f .  Define q~ to be the embedding y ~ ( z ,y )  : S ~ Zt x S and let 
f E L M C ( Z t  x S) .  Since q~f E L ~ I C ( S )  = L U C ( S ) ,  and the equality 

IlL(~,v)f - L(~,,,)flt = IiLvq~f - L,,q*fI I 

holds for every y, v E S ,  it follows that  f E LLC(ZI  x S, {z} x S) .  �9 

The next lemma is a general result on rectangular  semigroups akin to Lemma 
2.1. 

L e m m a  2.5. Let S = Zt • G x Z,- be a rectangular semigroup and let L denote 
the mapping A1 H LLC(S ,  A1 x G x Z r )  : T'(Zt) H L L C ( S ) .  Then L is a lattice 
isomorphism of (7)(Zt),t.l, el) onto (LLC(S) ,  M, V) if and only if L is injeetive. 

P r o o f .  Suppose that  L is injective. Then Lemma 2.1 implies that  L is 
a bijection, and if U[A1 x G x Zr] ----- At x G x Zr for some A~ C Zl,  then 
L(A~) = L(A1) .  Thus A~ = A1, and it follows tha t  A1 x G x Zr E s  for an 
A1 C Zt.  Since for A1, B1 C Zt we have 

(A1 x G x Zr)  V (B1 x G x Zr)  = U[(A1UB1)  x G x Z,] = ( A 1 U B 1 )  x G x Zr 
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(A1 x G x Z , ) N ( B 1  x G x Z , ) = ( A I  FIB1) x G x Z , ,  

we conclude that  (7~(Z,), U, FI) is lat t ice isomorphic to (g(S),  V, f l ) ,  and hence 
to ( L L C ( S ) ,  A, V). The converse requires no proof. �9 

T h e o r e m  2.6. Let S = ZI x G x Zr be a rectangular semigroup with Zi 
discrete. 

(a) I f  G is not LLC-trivial ,  then L L C ( S )  is isomorphic to the Boolean 
l ttice U, n )  

(b) S is LLC-tr iv ia l  if and only if G x Zr is LLC-trivial .  

P r o o f .  In order  that  this theorem not reduce to Corollary 2.2, we assume 
tha t  Zt contains at least two elements. To prove Par t  Ca), let L be the mapping 
A1 ~ L(A1) : ;~ ~ L L C ( S ) ,  as in Lemma 2.5, and let A1 ,B ,  C Zz, A~ r 
B~. If a e A~\B~,  then (since {a} is open) by Lemma 2.3 there is a function 
f e L I ( x ) \ L I ( a )  for z 7 ~ a, x C Zt,  where LI(C1) = LLC(Z t  x G, C1 x G) 
for C1 C Zl .  Hence, f E LI (B1) \L~(A1);  i.e., La(A1) 7 ~ LI (B1) .  But then 1.6 
implies tha t  L(A~) 7~ L(B~).  It follows tha t  L is injective. 

As for Par t  (b), if S is LLC-trivial ,  then 1.6 implies that  G x Z~ is 
LLC-tr iv ial .  Conversely, assume L U C ( G  x Zr) = L M C ( G  x Z~). Then by 
Lemma 2.4, L(z)  = L M C ( S )  for all z e Zt; i.e., L U C ( S )  = L M C ( S ) .  �9 

In Theorem 2.6 l i t t le  or no restrictions are assumed on G or Z~. This is 
due to the  fact that  Zi is topologically restr ic ted in that  theorem. Naturally,  if 
we do not  wish to dist inguish between all subsets of Zz then we may not need to 
require tha t  Zt be discrete. Alternately,  we may replace or supplement Lemma 
2.3, or as in the next lemma and the rest of this section, put  some restrictions 
on G or Z~. 

L e m m a  2.8.  Let S = ZI x Zr be a rectangular band, where Zt is mctrizabIe 
and Zr is first countable and not psuedo-compact. If  a is a limit point in Zl,  
then L ( x ) \ L ( a )  7 s 13 for all x E Zt, x 7~ a. 

P r o o f .  Since Zr  is not pseudo-compact ,  there is a continuous function f : 
Z~ ~-* [0, cx~) and a sequence {y~} in Z~ such tha t  f ( yn)  --* oc as n --~ 
c~. Wi thou t  loss of generality, we may assume tha t  for all n > 1, f (y~)  < 
f(y~+~).  Let f~ be a continuous str ict ly increasing function on [0, co) such tha t  
f~( f (Yn))  = n, n = 1 , 2 , 3 , . . . ,  and define g = f l  o f .  Suppose d is a metric for 
Zt and define the function F ,  : S ~ [0,1] as follows: 

1 
F a ( x , y ) =  l + l d ( z , a ) - l - g ( y ) [  if x y ~ a ,  F a ( a , y ) = O ,  x e Z t ,  y e Z ~ .  

Clearly Fa 6 C(S) .  To show that  F ,  6 L A f C ( S ) ,  let {si} = {(xi,  Yi)} and 
{t/} = { (u i , v i )  } be sequences in S with the range of the former sequence 
relat ively compact  such tha t  all the limits involved in the following two quanti t ies 
exist: 

Q = lim l im Fa(si t i)  , Q' = lim lim Fa(sit j) .  
j ~ o o  i ~ o o  i ~ c ~  j-~oo 

We need to  show tha t  Q = Q'  (first countabi l i ty  of Zr  permits  the appl icat ion 
of 4.5.6 in [2]). Note tha t  si t j  = (xi, v j) .  If g(vj)  ~ oo, then Q' = 0, and 
likewise, Q = l i m j _ ~ F , ( z o , v j )  = 0 where x0 E Zt is a limit point  of the 
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relatively compact sequence {xi}. If {g(vj)} is bounded, then as a sequence of 

real numbers, it has a limit point y0. So Q' = limi~oo (1 + [d(xi, a) -1 - y0D -1 . 
In  this case, let x0 be a l i m i t  point of {xi}. If x0 -- a then Q* = 0, and also 

Q = l imj-oo Fo(a, vj) = 0. Tf x0 # a then Q = (1 + Id (x0 ,a ) - '  - YoI)- '  = Q'" 
It follows that  F~, �9 L M C ( S ) .  

Now let x �9 Zz, x ~ a, and take a sequence { ( x . , z . ) }  in S which 
converges to (x, z), where z is a point of Z~. Without  loss of generality~ we may 
assume that  Xn ~ a for all n.  Then 

IlL( . . . . .  )F~ - L(,:,~)FaH = sup IFa(x . ,y )  - Fa(x,y)l  
y~Zr 

1 g(y) 1 
_< sup d(;,a) 

-< e ( x , a )  " 

Since the last quanti ty above converges to zero as n ~ oo, it follows that 
F~ �9 L(x) .  On the other hand, if {am} is a sequence in Zl that converges 
to a (assume am 7 ~ a for all m > 1), then for any b �9 Zr and for each m _> 1, 

1 1 
IIL(a., )Fo - L( ,b)Eoll > s u p  

- n>_, 1+  [ d ( a m , a ) - ' - g ( Y . ) l  > ~ 

where {y.} is the sequence defined above. Thus F.  ~ L(a).  

R e m a r k .  In metrizable spaces compactness is equivalent to psuedo-compact- 
hess [10]. Thus 2.8 applies to all metrizable rectangular bands Zl x Z ,  in which 
Zr is not compact. 

We also have the following lemma on left groups. 

L e m m a  2.9. Let S = Zi x G be a left group where Zt is metrizable and 
G is first countable and homomorphic (as a topological group) to a non-trivial 
subgroup of ( R , + ) .  I f  a is a limit point in ZI, then L ( x ) \ L ( a )  ?s 0 for all 
x c Z z ,  x ~ a .  

P r o o f .  Let g : G ---* R. be a continuous homomorphism of topological 
groups, and note that by the hypothesis, the range g(G) is unbounded.  Define 
F~ : S ~-~ [0, 1] as in the proof of Lemma 2.8, and arguing as we did there (with 
only minor modifications), it is evident that Fa �9 L M C ( S ) .  Now, let {ai} be 
a sequence in Zt which converges to a and ai ~ a for all i > 1. Let b be any 
element of G that is not in the kernel of g, and note that g(b") = ng(b) for 
every integer n.  Then for each i _> 1 : 

1 1 
ItL(,,,,1)Fa - L(a,1)FaH :> sup - - 1 + Ig(b)[ 

- 1 + I d ( a , , a ) - '  I > 

Hence, Fa ~ L(a).  On the other hand, if x # a, and {(x j ,  y/)} is any sequence 
in S which converges to (x, 1), then from the inequalities below it is easy to see 
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that  Fa e L(x):  

IIL(~,y~)F. - L(x,1)Fall <_ sup 1 g(y) 1 

1 1 . 
< Ig(Yj)l + d ( ~ , a )  d(x,a)  

(g(vj) +g(v)) 

E x a m p l e s  a n d  R e m a r k s .  1. The condition on G in 2.9 implies (but is 
not implied by) the existence of non-trivial continuous characters for G (e.g., 
functions e ih(v), y E G, where h : G --* ( R , + )  is a continuous non-zero 
homomorphism). The weaker condition that G just have non-trivial characters 
is not sufficient for the validity of 2.9 (e.g., if G is compact; see 2.12 below). 
On the other hand, in 2.9 G need be neither abelian nor locally compact (e.g., 
the group G of all invertible 2 • 2 matrices with rational entries under matrix 
multiplication; see the next paragraph). 

2. Many familiar groups satisfy the condition of 2.9. Obvious examples 
are ( R  n, +)  and the group of units of (R  n, .). Another specific example is the 
general linear group GL(n, F) where F = R or C.  The required homomor- 
phisms in each case are easy to construct using the coordinate projections, the 
logarithm, the determinant and the modulus, as appropriate. Those subgroups of 
the above three groups that  are not contained in the kernel of the homomorphism 
in each case can also be used in 2.9. For (R  n, +)  this means every non-trivial 
Subgroup, while for GL(n, F) it means those subgroups that are not contained 
in the special linear group SL(n, F). 

T h e o r e m  2.10. Let S = Zt x G x Zr be a rectangular semigroup, where Zt is 
metrizable. Denote the set of all limit points in Zt by Z~ and suppose that one 
of the following two conditions holds: 

(i) Zr is first countable and not pseudo-compact; 
(it) G is first countable and homomorphic to a non-trivial subgroup of (R, + ) .  

Then LLC(S) is isomorphic to the lattice (P(Z;), U, n) if G• is LLC-trivial, 
and to the lattice (P(ZI),tO, N) if G is not LLC-trivial. 

P r o o f .  If Z~ is empty, then this theorem is a special case of Theorem 2.6. 
Thus suppose that  Z~ • O. We first assume that condition (i) holds. Let L be 
the mapping A1 ~-4 L(A1) : P(ZI)  ~-* LLC(S), Aa C Zl of Lemma 2.5. If G is 
not LLC-trivial and A1 r B1, let a E AI\B1. If a is isolated, then Lemma 
2.3 implies that  L(x)\L(a) # 0 for z # a,  so that  L(B1) r L(A1). On the 
other hand, if a is a limit point, then by Lemma 2.8 LI(X)\LI(a) # O, where 
LI(Cl) = LLC(Zt x Z,,C1 x Z,) for each C1 C Zl. Hence LI(A1) r LI(B1) 
and therefore, by 1.6, L(A1) # L(B1). Thus L is injective and consequently, a 
lattice isomorphism. 

If G x Zr is LLC-trivial, then for every A, C Zi, Lemma 2.4 implies 
that  L(A~) = L(A1 0 Z;). Let L '  be the restriction of L to 7~(Z;). In order 
that L '  : 7~(Z;) ~-~ LLC(S) be a lattice isomorphism, it is sufficient that  L'  
be injective. Let A1,B1 C Z;, A1 ~ B1. Then, using Lemma 2.8 as before, 
L'(A1) = L(Ai)  # L(B,) = L'(B1).  It follows that L'  is a lattice isomorphism. 

If condition (it) holds, then using Lemma 2.9 instead of 2.8 the theorem 
is proved in the same manner  as above. �9 

2 4 0  



SEDAGHAT 

The next corollary is now immediate  from 2.10 and the Remark following 2.8. 

C o r o l l a r y  2.11.  Let S = ZI x G x Zr be a rectangular semigroup where Zt 
and Z~ are metrizable and Zr is not compact. I f  either G is not LLC-tr iv iaI  
or Zt is dense-in-itself (e.g., if  Zi is connected), then LLC(  S) is isomorphic to 
the lattice (p(z,),  u, n). 

As the following general theorem demonstrates ,  some unboundedness 
hypotheses are required on Z~ or G in Theorem 2.10. 

T h e o r e m  2.12.  Let S = Zl x T ,  where T is a compact topological semigroup. 
Then S is LLC-tr iv iaI .  

P r o o f .  Let f �9 C ( S ) ,  and observe that  if ( z , t )  �9 S and {(za,t,~)} is any net 
in S converging to (z, t ) ,  then for each a there is va �9 T such that  

I l L ( z o , , o ) f  - L ( ~ , o f l l  = [f(z,~, t,~v~,) - f ( z ,  tv~,)[. 
Denote the norm quant i ty  above by Q,~ and assume, as we may, that  the net 
{v,~} converges to a point v0 �9 T.  Then for each a ,  

Q,~ < [ f ( z~ , t , , vo)  - f ( z , t vo ) [  + I f ( z , t vo )  - f ( z , t v ~ )J ,  

so that  Q~ --* 0 for all z �9 Zt, t �9 T.  Hence, f �9 L U C ( S ) .  �9 

3. Le f t  L o c a l  C o n t i n u i t y  a n d  the  Green ' s  R e l a t i o n  

Let S be a semigroup. Adhering to the somewhat customary notations,  
we recall the following three of the four familiar relations of Green: [4] 

aTib if a S U { a } = b S U { b } ,  (a, bE S);  
as if S a U { a } = S b U { b } ,  (a, b e S ) ;  
and: ~ =  7 ~ N s  

If S is a rectangular  semigroup, then it can be shown by a straight- 
forward argument tha t  each of the above relations is a congruence. Supposing 
S = Zt x G x Zr ,  note that  for each s E S ,  s S  = {sl} x G x Zr ,  where sl  is the 
project ion of s into Zt. Therefore, sT~t if and only if Sl = t l ,  and the "R-cell 
of s is the set {sl} x G x Zr .  Thus, in view of Lemma 2.1, it is reasonable to 
expect  a relat ionship between T~ and the L L C  relat ion p0. This is indeed the 
case, and more. We begin with a corollary to Lemma 2.1. 

C o r o l l a r y  3.1. Let S = Zt x G x Zr be a semitopological rectangular semi- 
group. Then Po is a congruence and Ts C Po. Hence Po r~ s is also a congruence 
which contains the relation TI. 

P r o o f .  Note tha t  by Lemma 2.1 L L C ( S ,  s t)  = L L C ( S , s ) ,  s , t  �9 S ,  which 
readily implies tha t  p0 is a congruence in S .  Also, since sl = t l  implies 
L L C ( S ,  s) = L L C ( S ,  t ) ,  it follows from the remarks  prior  to the corollary that  
"R C p0. The  rest of the corollary follows immediately.  �9 

The inclusions of Corollary 3.1 may easily be strict  (e.g., when S is 
LLC- tr iv ia l  and therefore, P0 is the universal relat ion S x S) .  However, under 
certain conditions p0 = 7~. If for each s , t  �9 S ,  it is true that  L(Sl)  = L(ta) if 
and only if Sl = t l  then spot if and only if sT~t. Several sufficient conditions 
based on 2.6 and 2.10 for the equality between P0 and Tr are l isted in the next 
corollary. 
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C o r o l l a r y  3.2.  Let S = Zt x G x Zr be a rectangular semigroup such that at 
least one of the following conditions hold: 

(i) Zl is discrete and G is not LLC-trivial; 
(ii) Zt is metrizable and G is non-LLC-trivial,  first countable and homo- 

morphic to a non-trivial subgroup of (R,  +)  ; 
(iii) Zt is metrizable and dense-in-itself (e.g., connected), and G is first 

countable and homomorphic to a non-trivial subgroup of (R,  + ) ;  
(iv) Zl is metrizable and dense-in-itself (e.g., connected), and Z~ is first 

countable and not psuedo-compact; 
(v) Zl is metrizable, Z~ is first countable and not pseudo-compact, and G 

is not LLC-trivial;  
(vi) Zi and Z~ are metrizable with Z~ not compact, and either G is not 

LLC-tr iv ia l  or Zi is dense-in-itself. 

Then po = 7"~ and Po n s = 7"~. Hence, in this case, the po-cells are just the 
principal right ideals, and if S is a left group, then each different right identity 
represents a different Po-cell. �9 

E x a m p l e s  3.3.  (Rectangular semigroups of real or complex matrices) 
Recall that  GL(n,  F)  is the (General Linear) group of invertible n x n 

matrices with entries in the field F (here F = l:t or C) .  Let G denote a subgroup 
of GL(n,  F ) ,  and let Zi and Zr denote subspaces of R with left zero and right 
zero multiplication, respectively. Define S = Zl x G x Z~ C R m+2 , where m = n 2 
if F = II. and m = 2n 2 if F = C.  Then the rectangular semigroup S with the 
relative usual topology of R m+2 is topologically isomorphic to the semigroup of 
block diagonal matrices of the type 

under matr ix  multiplication, 

21~= 

/ '  2111 0 0 ) 

0 Ma 

where M2 E G and 

b ~ 0) a 

with a ,b  E R .  Note that  if 
(equivalently, 2143 is dropped 
structure of S,  the following 

Zr is a singleton, then S reduces to a left group 
from M ). In discussing the left locally continuous 
cases (among others) arise: 

(a) Zl is discrete (e.g., a E Z in M1 ). In this case, if G x Zr is LLC-trivial  
(e.g., if the subgroup G and the subspace Zr are both  locally compact) ,  
then L L C ( S )  = { L U C ( S ) }  is also LLC-trivial  by Theorem 2.6, p0 is 
the universal relation in S, and U[O] = S (claims about U[O] in these 
examples are easy to prove; or see Corollary 3.4 below). Also by Theorem 
2.6, if G is not LLC-trivial,  then L L C ( S )  is isomorphic to the lattice 
(T'(Z,), U, fl) ,  P0 = 7~ by Corollary 3.2, and U[O] = O. 

(b) Zr is not compact (i.e., Zr is not closed or not bounded). In this case, if 
Zl is dense in R (e.g., a E Q in 21.I1 ) or if Zl is a connected subset of R ,  
then by 2.11 L L C ( S )  is isomorphic to the lattice (P(Zt ) ,U,  VI) for any 
subgroup G of G L ( n , F ) .  On the other hand, if G is not LLC-trivial  
in GL(n,  F ) ,  then by 2.11 again, L L C ( S )  is isomorphic to the lattice 
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('P(Zt), U, FI) for any subset Zt of R .  In either case, U[O] = (~ and by 
3.2 p0 = 7~ in S.  

(c) Z~ is compact and G is not a subgroup of S L ( n , F ) .  In this case, if 
G x Z~ is LLC-trivial ,  then Theorem 2.10 implies that  L L C ( S )  is 
isomorphic to (7~(Z~), U, N), while if G is not LLC-trivial ,  then L L C ( S )  
is isomorphic to (P (Z , ) ,  u, In the first ease, UiO] = ( Z , \ Z D  • a • 
and in the second, U[(~] = 0 .  In either ease, when Zl = Z~, p0 = 7~. 

Now we consider the set relation p and its cells. For each subset A C S, 
Lemma 2.1 implies that U[A] = A~ x G x Z r  and Aa x G x Z r  C U[A] (A~ is some 
subset of Zt which, of course, contains the projection Aa ). The inclusion may be 
strict if, e.g., S is LLC-trivial .  The next corollary lists some non-trivial cases 
in which we can determine the representative maximal element of each p-cell 
exactly. 

C o r o l l a r y  3.4. Let S = Zt x G x Zr be a rectangular semigroup. 

(a) If  any one of conditions (i)-(vi) in Corollary 3.2 holds, then U[A] = 
A1 • G x Zr for every subset A C S.  

(b) If  G x Z~ is LLC-tr iv ial  and either of the two conditions (i) or (ii) in 
2.10 hold, then U[A] = ( ( Zt \ Z~ ) U A1) x G x Zr for every subset A C S . 

P r o o f .  (a) Let U[A] --= A~ x G x Zr ,  as above. Then 

L(A '  1) = LLC(S ,  U[d]) = LLC(S ,  A) = L(A1),  

so that by the injectivity of the L L C  mapping L, A~ -- A1. 
(b) For each A C S, let U[A] = A~ • G x Zr as in Part  (a) above, and 

note that  by Lemma 2.4 and maximality of U[A], (Zl \Z[)  C A'~. Let L' denote 
the restriction of the L L C  mapping L to 7~(Z~) (see the proof of Theorem 2.10) 
and observe that 

L'(A'  t N Z~) = L(A~) = L L C ( S , A )  = L ( A t )  = L ' (Ax N Z~). 

As was shown in Theorem 2.10, L' is injective. Thus A t n Z[ = A1 n Z~. Now 
since 

( Z , \  Z[) U d l  = ( Zz\  Z[) U ( A'I n Z~) = ( Z t \  Z~) U Atl = A'a 

we may conclude that U[A] = ((ZI\Z[)  U A1) x G • Zr.  �9 

Part (a) of the above corollary in conjunction with Corollary 3.2 may 
lead to the conjecture that "if P0 = 7~, then O[A] = A1 x G x ZT for all A C S".  
We further remark that  the converse of this conjecture is true, since then for 
each s E S,  

[s] c u[{s}]  = {Sl}  x a x z r  c 

However, as shown in the next example, the conjecture itself is false. Hence, in 
general, the equality p0 = T~ is not sufficient to determine the relation p and the 
LLC-lat t ice  completely. Stronger hypotheses like those in 3.4(a) are needed. 

E x a m p l e .  Let Z~ = [0, 1] U {2} with the relative usual topology of R ,  and let 
G = (R, +)  denote the usual additive reals. Then Z~ = [0, 1], and denote by 
S the topological left group Zt x G. Note that p0 = T~ for this semigroup S; 
however, if A = [0, 1] x G, then L U C ( S )  = LLC(S ,  A) so that  U[A] = S while 
A1 x G = A .  
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4. T r a n s l a t i o n  I n v a r i a n c e  

When  t rans la t ion  invariant,  the left locally continuous algebras in 
L M C ( S )  result  in semigroup compactifications of S tha t  are universal with 
respect  to a local joint  continuity proper ty  [9]. In rectangular  semigroups, 
left t rans la t ion  invariance is also int imately related to the lattice s t ructure  of 
the LLC-lattice, and has some interesting consequences (see 4.5 below). If 
S -- Zt • Zr  is a rectangular  band, then a s traight-forward computa t ion  shows 
tha t  LsC(S)  C LUC(S) ,  so that  LLC(S ,A)  is left t ranslat ion invariant for 
every A C S .  At the  other  extreme, in certain left groups S,  the only left 
t rans la t ion  invariant members  of LLC(S)  are LUC(S)  and L MC(S )  ([9; 2.4]; 
also see 4.3 and 4.4 below). From this observation, one might infer (perhaps 
ironically) t ha t  the prominence of the group par t  in a rectangular  semigroup 
prevents some members  of LLC(S)  from being left t ransla t ion invariant.  Our 
results  below will support  and clarify this assertion. We begin with a general 
sufficient condit ion for (left) t ranslat ion invariance. 

T h e o r e m  4.1.  Let S = Zt • T,  where T is an LLC-trwial semitopological 
semigroup. Then every C*-algebra in LLC(S)  is left translation invariant. 

P r o o f .  Since LUC(T) = L M C ( T ) ,  if for each fixed z E Zt, q~ is the canonical 
injection y ~-, (z, y) : T ~ S ,  we have q;LMC(S)  C LUC(T) .  Let f �9 L MC(S )  
and note tha t  

IIL(~,y)(L(z,v)f) - L(.,t)( L(z,~)f)ll = IIL(~,.y)f - L(~,vt)fll = I[L~yq*f - L.tq*fH 

for every ( z , v ) , ( x , y ) , ( s , t )  �9 S.  Thus L(~,,,)f �9 LUC(S) ,  implying that  
L s L M C ( S )  c LUC(S) .  In part icular ,  LLC(S ,A)  is left t ransla t ion invari- 
ant  for every subset A C S.  �9 

According to 2.10 and 3.3, there are rectangular  semigroups S = Zt x R 
where the right group R is LLC-trivial and where LLC(S)  is a large Boolean 
la t t ice  whose members  are t ranslat ion invariant by 4.1. In the next corollary, 
the LLC-triviality of the  group G is a necessary condition for left t ransla t ion 
invariance. 

C o r o l l a r y  4.2.  Let S = ZI x G x Zr be a rectangular semigroup in which Zi 
is disconnected. If every member of LLC( S) is left translation invariant, then 
G is LLC-trivial. 

P r o o f .  Suppose tha t  G is not LLC-trivial. Let A1 be a proper  non-empty 
open and closed subset of Zt ,  and define the functions f ,  g and L1 as in the 
proofs of Lemma 2.3 and Theorem 2.6. Then f �9 L l (x ) \L l (a )  for each a C A1 
and x �9 ZI\A1.  If P12 is the project ion of S onto the left group Zt x G,  then 

P~2I �9 P;2LLC(ZI • G, {x} • G) C LLC(S,  {x} • G • Zr) = L(x). 

On the o ther  hand,  if e is the ident i ty  of G then there is a net {ya} in G which 
converges to e, but  {Lyog} does not converge to g in norm. Since for any given 
z �9 Zr  we have 

IIL(z,yo,z)(L( . . . . .  )P;2f)  - L( . . . . .  )(L( . . . . .  )P;2f)ll = ]tL(a,y~,z)P;2f - L(a .... )P~2fll 

= sup I f (a ,y .Y)  - f (a ,Y)  I 
yEG 

= HLy, g - g[{, 

it  follows t ha t  L(~,,,~)p~2 f r LLC(S,  (x, e, z)) = L(x).  Hence L(x) is not left 
t rans la t ion  invariant.  �9 
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Corol lary 4.3. Let S = Zl • G be a semitopological left group in which Zt is 
disconnected. Then every member of L L C ( S )  is left translation invariant if and 
only if G is LLC-trivial.  �9 

We now show what  can happen if G is not LLC-trivial  in 4.2 and 4.3. 

C o r o l l a r y  4.4.  Let S = Zl x G x Zr be a rectangular semigroup in which Zt 
is discrete and G is not LLC-trivial. Then the only left translation invariant 
algebras in L L C ( S )  are the extreme members L U C ( S )  and L M C ( S ) .  

P r o o f .  Let A C S such that  Aa ~ O, Zt,  and let a �9 A1, z E Zt \A1.  Choose 
f �9 L ( A 1 ) \ L ( z )  = L L C ( S , A ) \ L ( z )  and a net {y~} in G x Z,  converging to an 
idempotent  e such that  {L(z ,y . ) f}  does not converge in norm to L(z,~)f. Since 

I[L(a,u,~)(n(~,~)f) - L(a,~)(L(,,~)I)I I = [IL(~,y~)f - L(~,~)fH, 

we may conclude that  L(~,~)f ~ L L C ( S , ( a , e ) )  = L(a) .  Thus L(:,r 
LLC(S ,  A) ,  implying that  LLC(S ,  A) is not left t ranslat ion invariant. �9 

Combining our results in Section 2 and in this section with those of M. 
H. Stone [11], we obta in  a dramat ic  i l lustrat ion of how large and s t ructured the 
class of left locally continuous algebras on a rectangular  semigroup can be. 

C o r o l l a r y  4.5. Let B be a Boolean algebra and let G = (Z, + )  be the discrete 
group of all integers. Then there is a Banach space V and a subspace Zl C V 
such that B can be isomorphically imbedded in the class of all universal semigroup 
compaetifications of the left group S = Zl x G that extend the compactifieation 
S L U C  " 

P r o o f .  Using [2; 3.1.9] and [9; 1.3, 1.6] (with 4.1 above implying translat ion 
invariance), it suffices to show that  L L C ( S )  contains an isomorphic copy of 
B .  According to Stone's  Theorem in [11], B is isomorphic to a field of sets, 
whose union we label X .  Let V be the Banach space of all bounded,  real- 
valued functions on X under the sup-norm (if X is finite with n elements, then 
V = R n ). Now, for each x E X ,  let Is  denote the indicator  (or characterist ic)  
function of the set {x } and define 

o o  

Z , =  U { ( 1 - 1 ) Z x : x e X } u { I x : x e X } .  

Then Z~ = {Ix : x e X} has the same cardinal  number  as X ,  and with the left 
zero mult ipl icat ion on Zt, Theorem 2.10 may be applied to conclude the proof.m 

It  should be clear that  instead of (Z, + )  in 4.5, we could use any L Z C -  
t r ivial  semitopological right group that  satisfies at least one of the two conditions 
2.10(i) or 2.10(it). Thus another  simple choice might be the discrete space N of 
all posit ive integers under the right zero multiplication.  

5. O n  R e p r e s e n t i n g  U n i f o r m  C o n v e r g e n c e  

The main  results of this section, namely, Theorem 5.5 and its corollaries, 
present a ra ther  curious applicat ion of left local continuity. We begin with a few 
prefiminaries to establish the required framework. The next definition resembles 
its almost per iodic  analog in [5]. 
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D e f i n i t i o n  5.1. Let S a semitopological semigroup and let Z be a topological 
space endowed with the left zero multiplication. We define a function f E 
C( Z x S) to be Z-left  uniformly continuous or left uniformly continuous on 
S with respect to parameters in Z if for each fixed z E Z and each y C S,  given 
e > 0, there is a neighborhood N ( z , e )  of y in S such that  

HL(~,~)f - L(~,y)f[I < e, x E N(z ,  e). 

We denote the set of all such fmlctions f by LI(Z ,S) .  We also refer to the 
direct product  Z x S as a left semigroup of S (recall 2.4, 2.12 and 4.1). It is 
evident tha t  given S,  all left selnigroups of S having the same cardinality are 
algebraically isomorphic. Further, every left semigroup of a group is a left group 
and every left semigroup of a right group is a rectangular semigroup. 

When  S = (R, +)  is the group of all additive real numbers, the subset 
of/.4(Z, S) consisting of all functions in C(Z  x S)  for which the neighborhoods 
N ( z ,  e) = N(e)  are independent of z for all z E Z, is the class of all "~-uniformly 
continuous" functions in [5]. These latter functions axe the uniformly continuous 
analogs of the functions that  are "almost periodic uniformly with respect to 
parameters" on ( R , + )  (this uniform dependence with respect to parameters 
relates to H. Bohr's "analytic almost periodic functions", and the discussions 
of almost periodic solutions of differential equations). In [3] it was observed 
that  the pa.rametrized almost periodic functions in [5] correspond exactly to 
the ahnost periodic functions on an associated left group whenever the set of 
parameters is compact. Adopting a somewhat similar point of view, we consider 
parametrizing uniformly continuous functions on right groups with the aim of 
getting to Theorem 5.5 as quickly as possible. 

L e m m a  5.2. Let S be a semitopological semigroup and let Z x S be a left 
semigroup of S.  Denote by qz the canonical injection y ~-~ (z ,y)  : S ~-~ Z • S .  
Then (a) is equivalent to (b), and if S has a lef~ identity e, then (a), (b) and 
(c) are equivalent: 

(a) f c u ( z , s ) ;  
(b) q* f  E L U C ( S )  for all z E Z;  
(c) L(,,r E L U C ( Z  x S)  for all z E Z.  

Proof. Since l lL(z ,~) f -  L(z,~)fli = I I /~q; f  - Lyq*fll,  it follows that  (a) and 
(b) axe equivalent. The equivalence of (b) and (c) is an immediate consequence of 
the identities q* f = q* L(:,~)f , L(~,~)f = p~q* f (P2 : Z x S ~-~ S is the projection 
map) and the inclusions 

q*LUC(Z  x S) C LUC(S ) ,  p~LUC(S)  C L U C ( Z  x S). �9 

T h e o r e n l  5.3. Let Z • S be a left semigroup of a semitopological semigroup 
S .  

(a) / f  S has a left identity e, then b/(Z,S) is a translation invariant C*- 
subalgebra of C (Z  • S )  containing L U C ( Z  x S) .  

(b) y Z is discrete, then U(Z, S) = LUC(Z • s).  
(c) I f  S is LLC-trivial,  then L M C ( Z  • S) C hi(Z, S ) .  

P r o o f .  (a) Proving that U(Z, S) is a right translation invariant C*-algebra is 
routine. The  inclusion L U C ( Z  • S) C LI(Z, S) is a consequence of Lemmas 1.1(c) 
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and 5.2(b). To prove the left translation invariance, let (z, y) E Z x S, f �9 U(Z, S) 
mad note that L(~,y)f = L(~,y)L(,,e)f. Since by 5.2(c) L(z,e)f �9 L U C ( Z  x S) 
and L U C ( Z  x S) is left translation invariant, we have L(,,u)f  �9 L U C ( Z  x S) C 
/g(Z, S). Hence /J (Z ,  S) is left translation invariant. 

(b) If f E U ( Z , S ) ,  then from 5.2(b) and the equality [ [ L ( , , y ) f -  
L(~,t)fi[ = IILyq*f - Ltq*fl], for all z E Z, y , t  �9 S, we conclude that  if Z 
is discrete, then f �9 L U C ( Z  x S) .  

(c) This is clear from q~L3,IC(Z x S) C L M C ( S )  = LUC(S)  for all 
z E Z .  �9 

Def in i t i on  5.4. Let {g~ : n _> 1} be a sequence of functions in C(S) ,  where 
S is a semitopological semigroup, and assume that {gn} has a point-wise limit 
g (for example, if {gn} has a uniformly bounded subsequence). If the one-point 
compactification No~ of the set N of positive integers is endowed with the left 
zero multiplication, then the direct product Nee x S is a left semigroup of ,5', 
which we denote by *S. Define the function f on *S by 

f ( n ,  s) = 9n(s), f(cx~, s) = g(s), s E S. 

We say that  f represents the sequence {gn} on *S, or that f is the left repre- 
sentation of {g,~} and g. Note that g = q * f  and for n >_ 1, gn = q~f.  

T h e o r e m  5.5. Let S be a semitopologieal semigroup with a left identity e, 
and let {gn} be a sequence of functions in L U C ( S ) .  Suppose that {gn} has a 
point-wise limit g and let f be the lef~ representation of {9n} and g. Then {gn} 
converges uniformly to g if and only if f E LLC(*S , (oe ,  e)). 

P r o o f .  Suppose that f E LLC(*S, (oo ,  e)). Since IIL(.,~)f- L(~,~)f[I = 
[Ign - g[[, it follows that gn --* g uniformly. 

Conversely, assume that the sequence {9-} converges to g uniformly. 
Then g E L U C ( S ) ,  implying that  q*,f E LUC(S)  for all z E N ~ .  Also for each 
y , v ~  S ,  

if(n, y) - f ( c c ,  v ) l  = I g . ( y  ) - g ( v ) l  _< IIg- - gll  + Ig(Y) - g (v ) l .  

It follows that  f E C(*S),  and hence, f E U ( N o . , S ) .  Next, we prove that 
f E L M C ( * S )  by showing that the mapping s H # ( L J )  : *S ~-* (2 is continuous 
for each # in the spectrum /~*S. First note that the mapping z ~-* q~f : No~ ~-* 
LUC(S )  is (norm-)continuous at z = co since for n >__ 1, l l q , f - q ~ f l l  = IIg,-vl l .  
Now for (z, y), (co, v) E *S we have 

I . (L ( . . , y ) f )  - #(L(~,~)f)  I _< I ILt . ,y ) f  - L(,~,,,)f[t 

= IIL(:,y)(L(~,~)f)  - L(oo,~)(L(oo,~)f)ll 

<_ Ili(~,y)(L(.,~)f) - L(. ,y)(L(~,~)f)l  I 

+ [Ii(~.y)(L(~,~)f) - L(oo,.)(L(~c,~)f)l I 

< [Iq*f - q~ofl[ + [[L(.,y)h0 - L(cc,.)h0[[, 

where h0 = L(oox)f  E LUC(*S)  (since f E L/(Noo, S) ). Also for each n > 1, 

[ t t ( L ( . , u ) f )  - p ( L ( n , v ) f ) l  < I lL( . ,u ) f  - L ( . , . ) f t l  = llLuq* f - L~q* f l l .  
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It follows that f G LMC(*S) .  Finally, since 

[ ] L ( n , y ) f  - L ( ~ , ~ ) f [ [  - -  [ ILygn  - gll 
<_ l[Lvgn - Lyg][ + !lLyg - g[I 

<- ][g~ - g[I + [[L~g - gH 

we conclude that f e LLC(*S, ( ~ ,  e)). �9 

If S is a right group in 5.5, then *S is a rectangular semigroup and the 
results of Sections 2 and 3 may be used to analyze the LLC structure of *S. 
This proves to be an important special case as the next two corollaries show. For 
instance, when S is a right zero semigroup an application of Theorem 5.5 yields 
the following result for topological spaces. 

Corollary 5.6. Let X be a topological space and let {gn} be a sequence 
of functions in C(X)  which has a point-wise limit g. Give X the right zero 
multiplication 80 that the left semigroup *X is the rectangular band N o  x X .  
Then the following statements are equivalent: 

(a) {g.} c o n v e r g e s  u n i f o r m l y  to g;  
(b) The lef~ representation f is le/~ locally continuous at some point (oc, x) 

of *X;  
(c) f e LUC(*X) .  

Proos In view of Theorem 5.5, we need only show that (b) implies (c). 
* r  X) Since Noo has only one limit point, cr 2.4 implies that LLC(  X , N  x = 

L M C ( * X ) .  Hence, by 2.1 LLC(*X,  (cr x)) = LLC(*X,  {co} x X) = LUC(*X) 
for every x G X.  �9 

Another application of 5.5 in the context of rectangular semigroups 
involves groups. Recall that if G is a topological group, then G has a natural 
uniformity (the right uniform structure) such that LUC(G) coincides with the 
set of all bounded, complex-valued functions that are uniformly continuous with 
respect to this uniformity. Also, if Z is a compact, Hausdorff topological space 
then there is a uniformity that uniquely induces the topology of Z. Thus by [3; 
2.1] LUC(Z  x G) coincides with the set of all bounded complex-valued functions 
that are uniformly continuous with respect to the product uniformity of Z x G. 
These facts lead to the following corollary. 

Corollary 5.7. Let G be an LLC-trivial (e.g., locally compact or complete 
metrizable) topological group, and let {gn} be a sequence of bounded, uniformly 
continuous complex-valued functions on G. Suppose {gn} has a point-wise limit 
g and let f be their left representation. Then {gn} converges uniformly ~o g if 
and only if f is uniformly continuous on the left group *G. 

Proof .  As in the proof of 5.6, it is easy to see that LLC(*G,(oc,  1)) = 
LUC(*G). Since Noo is compact, by the remarks preceeding this corollary and 
by Theorem 5.5 we arrive at the conclusion. �9 

R e m a r k .  Evidently, Corollary 5.7 establishes a one-to-one correspondence be- 
tween the set of all uniformly continuous (bounded and complex valued) functions 
on the left group *G and the family of all uniformly convergent sequences of sim- 
ilar functions on G. However, if the group G above is not LLC-trivial, then 
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the uniform continuity of f is no longer a necessary condition for the uniform 
convergence of the sequence {gn} and the one-to-one correspondence above no 
longer holds. In this case, proper local continuity is involved (as described in 
Sections 2 and 3 and as specified in Theorem 5.5). Indeed, if the group G of 5.7 
is not LLC-trivial, then Theorem 2.10 implies the existence of infinite chains of 
distinct function algebras such as, e.g., 

LLC(*G, {oo} x G) D ' "  D LLC(*G, Jn x G) D .." D LUC(*G) 

where Jn = {oc, l , 2 , . . . n } ,  for n = 1,2,3, . . . .  Since the class LUC(*G) of 
bounded, uniformly continuous functions on *G in this case is so completely 
separated from LLC(*G, (co, 1)) which is required in 5.5, it is clear that the 
representations of uniform convergence discussed in this section involve left local 
continuity in a very fundamental way. 
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