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Summary. In their utilization of R&D (information) output, different sectors of
a heterogeneous industry display different reaction times. This paper analyzes the
effects of this temporal heterogeniety on output and productivity for an extended
version of the Baumol-Wolff model. Results include conditions implying persis-
tent, non-decaying oscillations in the output and hence also in the productivity
rate.
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1 Introduction

In a 1992 paper [2], Baumol and Wolff argue that the existence of a feedback
loop between the output of the R&D (research and development) sector, namely,
information, and the outside or non-R&D industries’ demand for this product
can be an endogeneous source of instability in the aggregate productivity growth
rate of the economy. They capture this feedback loop in a mathematical model
that relates the productivity rate to the relative rate of change in the price of
information and then to the relative rate of change in the output of the R&D
sector.

In this paper, we propose and mathematically analyze a multisector exten-
sion of the Baumol-Wolff feedback model in which a heterogeneous non-R&D
industry utilizes information in a temporally non-uniform fashion. Suppose that
there arem sectors outside the R&D sector and that each sector has its own
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productivity growth rater i
t in period t , wherei = 1, 2, . . . , m. We assume, as is

done in the BW model, thatr i
t is an increasing function of the R&D output level

in a past time period; however, here this past period need not be the immediately
preceding one, but rathert − ki . The positive integerki , which we may call the
reaction timeof sector i , represents the time period ittypically takes sectori
to properly integrate the new information (its share of the R&D output) in its
production processes to the extent that affects its productivity rate. It is assumed
for simplicity that eachki is independent of time and is a characteristic feature
of the corresponding sector.

We show that this temporally heterogeneous version of the BW model will
have a unique nonzero equilibrium whose stability characteristics are generally
different from (and often less stable than) the first order or temporally homoge-
neous BW. This identifies another inherent source, namely, temporal heterogeni-
ety among the reaction times of various sectors, that is capable of significantly
influencing the growth rate of (aggregate) productivity. We also derive condi-
tions on the various parameters that imply disequilibrium and bounded, persis-
tent oscillations in the productivity rate in the case of two or more temporally
heterogeneous sectors. These results are based on some recent developments in
the theory of nonlinear higher order difference equations.

2 The extended BW model

Following [2] and the above Introduction, we consider the following equations,
only the first of which is new:

rt =
∑m

i =1 fi (yt−ki ), f ′
i ≥ 0,

∑m
i =1 f ′

i > 0
(pt − pt−1)/pt−1 = h(rt ), h′ > 0, h(0) = 0
(yt − yt−1)/yt−1 = g[(pt − pt−1)/pt−1], g′ < 0, g(0) = 0

(1)

Whenki = 1 for all i , then all sectors aretemporallyhomogeneous; in this case,
defining

f =
m∑

i =1

fi (2)

we obtain the original BW equations. The quantityrt is the aggregate productivity
rate, defined here as the sum of productivity ratesr i

t = fi (yt−ki ) of the m R&D
client sectors, withyt denoting the output level of the R&D sector in each period
t . As in [2], pt denotes the price of information in periodt .

Making the obvious substitutions into the bottom demand equation, shows
system (1) to be equivalent to the single scalar equation

yt = yt−1(1 + g[h[
m∑

i =1

fi (yt−ki )]]) (3)

whose nonzero equilibria of (3) must satisfy the equation
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g[h[
m∑

i =1

fi (y)]] = 0. (4)

Now, using (2) and the monotonicity hypotheses signified by the derivative in-
equalities in (1), we obtain a unique solution for (4)

ȳ = f −1(h−1(g−1(0))) = f −1(0).

Sincef is increasing, we see that ¯y > 0 if and only if f (0) < 0. The number
f (0) = α is refered to as the “autonomous rate” in [2],which we assume to be
negative in the sequel. Note that this does not implyfi (0) < 0 for all i , which
allows for the possibility that some industries (evidently, not the high technology
ones) may have a non-negative autonomous rate.

Next, to assure thatyt is always non-negative, we assume throughout the
sequel that

g[h[
m∑

i =1

fi (xi )]] > −1, (x1, . . . , xm) ∈ [0,∞)m.

At this stage, we recall some standard facts concerning the linearization of
(3) at ȳ. For simplicity, letki = i ;1 define

F (x1, . . . , xm) = x1(1 + g[h[
m∑

i =1

fi (xi )]]) (5)

and let
VF (x1, . . . , xm) = [F (x1, . . . , xm), x1, x2, . . . , xm−1]

be the usual vectorization ofF . The standard theory ([3], [5], [8]) gives the
characteristic polynomial of the linearization ofVF as

P(λ) = λm − [1 − cȳf ′
1(ȳ)]λm−1 + cȳ

m∑

i =2

f ′
i (ȳ)λm−i

where
c = −g′(0)h′(0) > 0. (6)

In the Mathematical Appendix of [4] it is proved (essentially2) that the
following inequality on the sum-norm of the gradient ofF ,

‖∇F (ȳ, . . . , ȳ)‖ = |1 − cȳf ′
1(ȳ)| + cȳ

m∑

i =2

f ′
i (ȳ) < 1 (7)

1 This assumption can be dropped if we wish to considerall mathematically possible cases, e.g.,
different possible forms for the characteristic polynomialP(λ).

2 Although Hicks only worked with linear maps, certainly his induction argument may be applied
to the linearization of a nonlinear map; moreover, as shown in [12], this condition extends to mappings
F which need not be differentiable. Hicks’s linearization inequality (7) was rediscovered some years
later in the mathematical and scientific literature with a shorter proof than Hicks’s that is a simple
consequence of Rouché’s theorem; see, e.g., [3], [5] and [6].
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implies that all roots of the characteristic polynomialP(λ) are inside the unit
disk in the complex plane; i.e., ¯y is locally asymptotically stable. We may refer
to (7) as theHicks condition. The next result applies Hicks’s observation to the
BW model.

Proposition 1. The positive equilibrium̄y of (3) is locally asymptotically stable
if:

f ′(ȳ) < 2 min{1/cȳ, f ′
1(ȳ)}. (8)

Proof. Using (7), we obtain

cȳ
m∑

i =2

f ′
i (ȳ) < 1 − |1 − cȳf ′

1(ȳ)| (9)

which may be re-written as

cȳ
m∑

i =1

f ′
i (ȳ) = −cȳf ′(ȳ) < 1 + cȳf ′

1(ȳ) − |1 − cȳf ′
1(ȳ)|

Since (α+β)−|α − β| = 2 min{α, β}, the last inequality is the same as (8).�

To compare the stability profiles of the higher order model with that of
the temporally homogeneous model, define theequivalent first order BW model
corresponding to (3) as

yt = yt−1[1 + g(h(f (yt−1))] (10)

wheref is defined by (2) - this occurs if the reaction-time differences between
sectors are ignored. Note that this equivalent first order BWstructurally or spa-
tially heterogeneous, i.e., different sectors can have different rate characteristics
fi . Equation (10) has precisely the same equilibria as (3), and withF now defined
as F (x) = x[1 + g(h(f (x))], the standard result|F ′(ȳ)| < 1 yields the sufficient
condition

f ′(ȳ) < 2/cȳ (11)

for the local stability of ¯y. Also, the reverse inequality in (11) implies that ¯y is
unstable. It is clear thatthis discrepancy in stability profiles is due solely to the
temporal heterogeniety of equation(3). A comparison of inequalities (11) and (8)
proves the following.

Corollary 1 . If f ′
1(ȳ) ≥ 1/cȳ, i.e., if Sector 1 reacts at a sufficiently high rate,

then the stability of̄y in the first order case implies the stability ofȳ in the higher
order cases for all m. �

Additional results concerning local stability of the positive equilibrium can
be obtained from some new results in the literature. For instance, a very detailed
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stability profile can be obtained in the case of two temporally distinguished
sectors, the slower of which may lag behind the other byk periods,k ≥ 2; see
[6] and [10]. Also, some new stability and instability conditions of anonlocal
and nonlinear nature have recently been published that apply to certain special
cases of (3); see [12].

Next, define an equilibrium point to bestrongly unstable(or repelling) if
all roots of the characteristic polynomial are outside the unit disk. The zero
equilibrium of (3) is unstable, though not strongly unstable whenm > 1, as may
be infered from the characteristic polynomial. On the other hand, the positive
equilibrium ȳ can be strongly unstable as in the next result.

Proposition 2. The positive equilibrium̄y of (3) is strongly unstable if:

cȳf ′
m(ȳ) > 1 + |1 − cȳf ′

1(ȳ)| + cȳ
m−1∑

i =2

f ′
i (ȳ). (12)

Proof. Note that all roots ofP(λ) are outside the unit disk if all roots of the
polynomial

Q(λ) = cȳf ′
m(ȳ)λmP(1/λ)

are inside the disk. Now (12) is obtained by applying the Hicks condition (7) to
the coefficients ofQ. �

3 Instability and oscillations

There are a number of results in the first order theory that imply persistent
oscillation of trajectories and chaotic behavior; perhaps the most often quoted is
the now familiar result of [9]. However, such results have no bearing on higher
order equations and an important question in the BW model beyond stability
and instability is whether bounded trajectories will oscillate without converging.
Conditions on the various parameters that imply such behavior for (almost) all
trajectories establish possible endogenous sources of complex behavior.

We define a trajectory{yt} as persistently oscillatingif, as a sequence of
points, it is bounded and has more than one limit point. LetY0 = (y0, y−1, . . . ,
y1−m) represent a set of initial values, i.e., a point on a trajectory of (3) from
which we start measuring the output and other quantities. Equation (3) is said to
be positively permanentif there arepositive real numbersµ < ω such that for
everyY0 (with y0 > 0) there is a positive integert0 = t0(Y0) such thatµ ≤ yt ≤ ω
for all t ≥ t0.

It is clear that if positively permanent, then all positive solutions of (3) are
eventually bounded within thesame interval regardless of initial values, and
that no subsequence of the output sequence can approach 0. In the next result,
X = (x1, . . . , xm) denotes a vector in [0,∞)m and‖X‖ = max{x1, . . . , xm}.
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Theorem 1. (a) If the following inequality holds (see Corollary 2 below):

lim inf
||X||→∞

m∑

i =1

fi (xi ) > 0 (13)

then Eq.(3) is positively permanent exempting zero solutions; that is, if y0 > 0
then yt ∈ [µ, ω] for all sufficiently large t, whereω ≥ ȳ ≥ µ > 0.

(b) If (13) holds and ifȳ is strongly unstable, then every nontrivial solution
of (3) oscillates persistently in a bounded interval[µ, ω] whereω > ȳ > µ > 0.

Proof. (a) Under our hypotheses ong, h, inequality (13) is equivalent to

lim sup
||X||→∞

g(h(
m∑

i =1

fi (xi ))) < 0

which is essentially the hypothesis of Corollary 1 in [11]; thus there existsω ≥ ȳ
such that every trajectory of (3) is eventually within the interval [0, ω].

Next, defineγ = 1 + g(h(f (ω + 1))) and note that 0< γ < 1. Let t0 be the
(least) positive integer such thatt > t0 implies yt ≤ ω < ω + 1. For t > t0 + m,
we have

∑m
i =1 fi (yt−i ) < f (ω + 1), so that

g(h(
m∑

i =1

fi (yt−i ))) > g(h(f (ω + 1))).

which implies thatyt > γyt−1 for all t > t0+m. Now, either (i) there isk ≥ t0+m
such thatyk ≥ ȳ, or (ii) no suchk exists. In case (i),

yk+1 > γyk ≥ γȳ

and by induction,yk+m > γm ȳ. For t > k + m, if yt−i < ȳ for all i = 1, . . . , m
then g(h(

∑m
i =1 fi (yt−i ))) > 0 so thatyt > yt−1. This implies thatyt ≥ γm ȳ for

all t > t0 + m, so we may letµ = γm ȳ to conclude the proof of (a).
If case (ii) above holds, thenyt < ȳ for all large t so that

∑m
i =1 fi (yt−i ) <

f (ȳ) = 0. Therefore,g(h(
∑m

i =1 fi (yt−i ))) > 0 which shows thatyt > yt−1 for all
large t . Since the increasing sequence{yt} must then converge to ¯y, it is clear
that eventuallyyt ≥ µ for all large t .

(b) Because every trajectory is eventually in the compact set [µ, ω] as argued
in Part (a), there is at least one limit pointy∗ > 0 for each trajectory through
Y0 with y0 > 0. Suppose that forsomesuch trajectory{yt}, y∗ is theonly limit
point, so thaty∗ = ȳ. Given the unstable nature of ¯y, we now show that this is
impossible for nontrivial trajectories. First note that

F (ȳ, . . . , ȳ, y) = ȳ (14)

if and only if y = ȳ. To prove this assertion, observe that (14) is equivalent to
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fm(y) = −
m−1∑

i =1

fi (ȳ). (15)

From the strong instability of ¯y, it follows that f ′
m(ȳ) /= 0 so it must be that

f ′
m(ȳ) > 0. Sincefm is a nondecreasing function everywhere, this proves that ¯y

is the unique solution of (15) and hence also of (14). Next, if there is a positive
integern such thatyt = ȳ for all t ≥ n, then in particular,

ȳ = yn+m−1 = F (yn+m−2, . . . , yn−1) = F (ȳ, . . . , ȳ, yn−1)

from which it follows thatyn−1 = ȳ. Continuing in this way, we see thatyt = ȳ
for t < n as well, so nontrivial trajectories cannot reach ¯y in a finite number of
steps.

Next, since∂F/∂xm(ȳ, . . . , ȳ) = −cȳf ′
m(ȳ) /= 0, the implicit function the-

orem (see [7]) implies that there is an open neighborhoodU ⊂ (0,∞)m of
(ȳ, . . . , ȳ) on which the vectorizationVF is a C1-diffeomorphism. Defining
Yt = (yt , . . . , yt−m+1) for eacht ≥ 1, the convergence of{yt} to ȳ implies that
the vector sequence{Yt} = {V t

F (Y0)} is eventually inU andYt → (ȳ, . . . , ȳ) as
t → ∞. But (ȳ, . . . , ȳ) is strongly unstable, and since by the Hartman-Grobman
theorem (see, e.g., [1]) the behavior of{Yt} matches that of its linearization near
(ȳ, . . . , ȳ), we have reached a contradiction. This contradiction can be avoided
only by assuming that nontrivial trajectories have more than one limit point; i.e.,
all such trajectories must persistently oscillate.

Finally, we note thatω > ȳ whenȳ is unstable, since ifω = ȳ then as argued
in (a), every nonzero sequence{yt} is nondecreasing and converges to ¯y from
below, which is impossible. �

Corollary 2 . Any one of the following conditions implies(13), hence positive
permamence and if̄y is strongly unstable, also persistent oscillations:

(a) F in (5) is bounded;
(b) For some i= 1, . . . , m, the function fi is unbounded on[0,∞);
(c) For every i = 1, . . . , m there is x∗i ≥ 0 such that fi (x∗

i ) = 0. �

Interestingly, Theorem 1 (or its variant in [13]) is not true in the first order
case, especially for the bounded unimodal or hill-shaped mappings of interest in
[2], since the stable set of ¯y contains points other than ¯y itself even when ¯y is
strongly unstable. Indeed, it can be rigorously shown that for mappingsF that
are topologically conjugate to the well-known logistic map 4x(1− x) (which has
chaotic dynamics over its invariant interval [0, 1]) the stable set of ¯y is dense in
the invariant interval ofF .
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