MATH 195: Gödel, Escher, and Bach (Spring 2001)

Problem Set 12: Derivations To be discussed Thursday, April 5

- 1. On p.260, Hofstadter gives HIS solution to the MU-puzzle, which (gratifyingly) is about the same as what we found a few weeks ago. In his solution, he appeals to "a simple fact from number theory". Let's treat this statement as a challenge to our budding abilities within TNT.
 - **1a**. Complete the outline of the proof of this simple fact, a fact that may be represented semi-symbolically as:

"
$$\mathbf{b}$$
: $<$ (3 divides (2· \mathbf{b})) $\acute{\mathbf{E}}$ (3 divides \mathbf{b}) $>$

To make the proof short enough for our purposes, we've introduced an unofficial shorthand notation "(m divides n)" (represented in regular font rather than **bold** to remind you that it is not part of TNT. We'll expand the short hand in problem **1b**. Also, we've given you two theorems (lines 1 and 2), which you may consider as already proven.

(1)	" a: " b: $<$ (3 divides (a·b)) $\acute{\mathbf{E}}$ $<$ (3 divides a) $\acute{\mathbf{U}}$ (3 divides b)>> (given)				
(2)	~ (3 divides 2)	(given)			
(3)	[Push			
(4)	(3 divides 2·b)	premise			
(5)	" a: " b: $<$ (3 divides (a·b)) $\acute{\mathbf{E}}$ $<$ (3 divides a) $\acute{\mathbf{U}}$ (3 divides b)>>	Carry-over			
(6)	" b: $<$ (3 divides (2·b)) $\acute{\mathbf{E}}$ $<$ (3 divides 2) $\acute{\mathbf{U}}$ (3 divides b)>>	Specification, with			
(7)		Specification, with b=b			
(8)		Detachment, lines (2) and ()			
(9)	< ~ (3 divides 2) É >	Switcheroo, line ()			
(10)	~ (3 divides 2)				
(11)	(3 divides b)	Detachment			
(12)]	Pop			
(13)		Fantasy rule			
(14)	" b: $\langle (3 \text{ divides } (2 \cdot b)) \acute{\mathbf{E}} (3 \text{ divides } b) \rangle$				

1b. Translate ~ (3 divides 2) completely into symbols in two ways:

~\$a:	
" a·	

Preliminaries for problems 2 and 3.

The rules on p.263 refer to 8 different "NUMBER FORMS" (note that Forms 1a and 1b are found in Rule 1, etc.):

Form 1a:	$10 \cdot m+1$	Form 1b:	$10 \cdot (10 \cdot m+1)$
Form 2a:	$3 \cdot 10^{\mathrm{m}} + \mathrm{n}$	Form 2b:	$10^{\mathrm{m}}\cdot(3\cdot10^{\mathrm{m}}+\mathrm{n})+\mathrm{n}$
Form 3a:	$k \cdot 10^{m+3} + 111 \cdot 10^m + n$	Form 3b:	$k\cdot 10^{^{m+1}}+n$
Form 4a:	$k \cdot 10^{m+2} + n$	Form 4b:	$k \cdot 10^m + n$

- **2.** Using the four rules in the forward direction.
 - **2a.** Show that 31 can be written in the NUMBER FORMS 1a and 2a by finding appropriate values for m and n.
 - **2b.** Using the values of m and n from your answer to **2a**, what numbers are produced by NUMBER FORMS 1b and 2b?

- **2c**. What numbers can be produced from the four rules using 31 as input?
- 2d. Does the answer to question 2c make sense in terms of the isomorphism at the level of symbols between the MIU-system and the 310-system? Explain.
- **3.** Using the four rules in the backwards direction.
 - **3a**. Show that 31 can be written in the NUMBER FORM 4b in two different ways by finding appropriate values for k, m, and n (use n<10^m). HINT: 0 is a natural number.
 - **3b**. With the values of m and n from part a., what two numbers are produced by NUMBER FORM 4a?
 - **3c**. What input numbers can produce 31 as output?
 - **3d**. Does the answer to question **3c** make sense in terms of the isomorphism at the level of symbols between the **MIU**-system and the **310**-system? Explain.
- **4.** Using the numbering shown on p.261, translate the following strings into derivations within the **MIU** system ("," means "new line"):

```
4a. 31,311,31111,311110
```

4b. 311111111,3011111,30110

5. Translate the following **MIU** strings into 310 numbering:

```
5a. MIUIUIU
```

5b. UIMMM

6. Which of the following numerical strings, when translated, are theorems within the **MIU** system?

```
6a. 30101
```

```
6b. 31111011011100111101
```

(If this last one throws you, then you need to read pp.260-261)

7. Complete the following derivations within the 310 system, using the rules (translated from **MIU**) shown on p.263.

- (1) 31 Axiom
 (2) _____ Rule 2, m=1, n=1
 (3) ____ Rule 2, m=2, n=11
 (4) ___ Rule 1, m=3111
 (5) ___ Rule 3, m=1, n=0, k=31
 (6) ___ Rule 4, m=0, n=0, k=31
- **8.** Translate the derivation below from the **MIU** system to the 310 system. Be sure to provide the number of the rule and the appropriate values or **m**, **n**, and **k**, as needed.
 - (1) **MI** Axiom
 - (2) **MII**
 - (3) **MIIII**
 - (4) **MIIIIIII**
 - (5) MIUIII
 - (6) MIUUI
 - (7) **MII**