MATH 195: Gödel, Escher, and Bach (Spring 2001)

Typographical Number Theory: Translations and Well-Formed Formula

Hints for translating TNT sentences to English

- Don't try to understand an entire sentence all at once
- Understand chunks of a sentence; replace chunks as you go along
- Usually it's easier to go right to left
- Test reasonableness as you go along

Example

Two times $\boldsymbol{b}=\boldsymbol{c} . .$. reasonable, but not so interesting. There EXISTS some \boldsymbol{b} for which this is true... If so, then \boldsymbol{c} must be even

For every c, c is even...doesn't sound reasonable to me, but that's what it says. If it's true for every number c, then it's true for all numbers.

Not all numbers are even
...which is a true statement. Note that negating the statement, "All numbers are even" does NOT give "No numbers are even."

Well-Formed Formula in TNT

Do the symbol strings below qualify as "well-formed formulas of TNT"?

1) $\exists \mathbf{b}:<\mathbf{a}=\mathbf{S S} \mathbf{0}^{\wedge}(\mathbf{a}+\mathbf{b})=\mathbf{S} \mathbf{0}>$ compare with $<\mathbf{a}=\mathbf{S S} \boldsymbol{0}^{\wedge} \exists \mathbf{b}:(\mathbf{a}+\mathbf{b})=\mathbf{S} \mathbf{0}>$
2)

$$
\forall \mathbf{a}:<\mathbf{a}=\mathbf{S S 0} \supset \exists \mathbf{b}>
$$

3) $(\exists \mathbf{b}: \exists \mathbf{c}: \mathbf{S S b} \cdot \mathbf{S S c}=\sim \mathbf{a}) \quad$ compare with $\quad(\sim \exists \mathbf{b}: \exists \mathbf{c}: \mathbf{S S b} \cdot \mathbf{S S c}=\mathbf{a})$
4) $<\mathbf{S 0}=\mathbf{0} \vee \mathbf{S 0}>$
