Rules of Derivation for TNT

All the rules for the Propositional Calculus are also rules of TNT

Rule of Specification:

If $\forall u: x\{u\}$ is a theorem, then so is $x\{u\}$ and so is $x\{v/u\}$ where v is any term **Restriction**: v cannot be quantified within $x\{u\}$ If it's true for all, it's true for one.

Rule of Generalization:

If $x\{u\}$ is a theorem, then so is $\forall u: x\{u\}$ **Restriction:** u must be free If something is true for something without restrictions, then it's true for all.

Rule of Interchange:

The strings $\forall u:\sim$ and $\sim \exists u:$ are interchangeable If it isn't true for all, then there doesn't exist any for which it's true

Rule of Existence:

Any instance of a term may be replaced by u, if $\exists u$: is placed in front. *Restriction*: The term cannot contain variables that aren't free.

Rules of Equality:

Symmetry: If r = s is a theorem, then so is s = rTransitivity: If r = s and s = t are theorems, then so is s = t

Rule of Successorship:

Add S: If r = t is a theorem, then so is Sr = StDrop S: If Sr = St is a theorem, then so is r = t

Rule of Induction:

If $\forall u: \langle x\{u\} \supset x\{Su/u\} \rangle$ is a theorem and $x\{0/u\} \rangle$ is a theorem then $\forall u: x\{u\}$ is a theorem *Restrictions*: $x\{u\}$ is well-formed; u is free