The Propositional Calculus (Summary)

Symbols

Atom particles:	PQR	
Atom suffix:	•	(prime)
Prefix operation:	~	(not)
Infix operations:	^ V ⊃	(and, or, if-then/implies)
Infix op boundaries:	< >	(begin op, end op)
Fantasy boundaries:	[]	(push, pop)

Rules of Formation

RULE #0: All atoms are well-formed	atoms
RULE #1: If x is well-formed, then so is $\sim x$	~x
RULE #2: If x and y are well-formed, then so is $\langle x^{y} \rangle$	$\langle x \wedge y \rangle$
RULE #3: If x and y are well-formed, then so is $\langle xvy \rangle$	$\langle x \vee y \rangle$
RULE #4: If x and y are well-formed, then so is $\langle x \supset y \rangle$	$\langle x \supset y \rangle$

Axioms

None

Rules of Inference

Rule	Prior Theorem	Consequent Theorem
JOINING RULE	\boldsymbol{x} and \boldsymbol{y}	$\langle x \wedge y \rangle$
SEPARATION RULE	$\langle x \wedge y \rangle$	\boldsymbol{x} and \boldsymbol{y}
DETACHMENT RULE	<i>x</i> and $\langle x \supset y \rangle$	У
Contrapositive Rule	$ <\!\!\! x \supset \!\!\! y \!\!> \\ <\!\!\! \sim \!\!\! y \supset \!\!\! \sim \!\!\! x \!\!> $	$ \begin{array}{l} < & y \supset \neg x > \\ < & y \supset \neg y > \end{array} $
DE MORGAN'S RULE		$\sim < x \lor y > \\ < \sim x \land \sim y >$
SWITCHEROO RULE	$\langle x \mathbf{v} y \rangle$ $\langle -x \supset y \rangle$	$ <\sim x \supset y > \\ $
DOUBLE-TILDE RULE ^a	Any string with ~~ Any string	Same string with one less ~~ Same string with one more ~~
FANTASY RULE	If y can be derived given x	$\langle x \supset y \rangle$

^{*a*}Valid only if resulting string is well-formed