Fractionally Coloring the Plane

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Landon Rabern
Slides available on my webpage

VCU Discrete Math Seminar
1 September 2015
Coloring the Plane

Goal:

Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.

Min number of colors needed is $\chi(\mathbb{R}^2)$.

What's known:

- $\chi(\mathbb{R}^2) \geq 4$
- (a) The Moser spindle
- (b) The Golomb graph
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2

What's known?

- The Moser spindle
 - $\chi(\mathbb{R}^2) \geq 4$
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

What's known?

3

1

2

(a) The Moser spindle

3

2

2

3

2

(b) The Golomb graph

So $\chi(\mathbb{R}^2) \geq 4$
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.
- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$.

What's known?
- 3^2?
- 1^3?
- 2^2?
- 3^2?
- 2^2?
- 1^3?
- 1^3?

(a) The Moser spindle
(b) The Golomb graph
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.
Min number of colors needed is $\chi(\mathbb{R}^2)$.

What’s known?
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.
- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$.

What’s known?

![Diagram](image)
(a) The Moser spindle
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.
Min number of colors needed is $\chi(\mathbb{R}^2)$.

What’s known?

(a) The Moser spindle
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph.
Min number of colors needed is $\chi(\mathbb{R}^2)$.

What’s known?

(a) The Moser spindle
(b) The Golomb graph
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$.

What’s known?

(a) The Moser spindle

(b) The Golomb graph
Coloring the Plane

Goal: Color the plane so points at distance 1 get distinct colors.

- vertices are points of \mathbb{R}^2
- two vertices adjacent if points are at distance 1

Unit distance graph is any subgraph of this graph. Min number of colors needed is $\chi(\mathbb{R}^2)$.

What’s known?

(a) The Moser spindle

(b) The Golomb graph

So $\chi(\mathbb{R}^2) \geq 4$
Coloring the Plane: an Upper Bound
Coloring the Plane: an Upper Bound

Also, \(\chi(\mathbb{R}^2) \leq 7 \)
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\begin{align*}
2,4 & \quad 3,5 \\
1,4 & \quad 2,5 \\
1,3 & \quad 2,4,6 \\
3,5,7 & \quad 2,4,7 \\
2,5,7 & \quad 1,3,6 \\
2,4,7 & \quad 3,5,7 \\
\end{align*}

Weight \(w \in [0,1] \) for each ind. set \(I \) so each vert in sets that sum to 1; min sum of weights is \(\chi_f(G) \); weights in \(\{0,1\} \) give \(\chi(G) \).

Prop. \(\chi_f(G) \geq |V(G)| \alpha(G) \).

\begin{align*}
|V(G)| &= \sum_{v \in V(G)} \sum_{I \ni v} w_I \\
&= \sum_{I \in I} w_I |I| \\
&\leq \alpha(G) \sum_{I \in I} w_I = \alpha(G) \chi_f(G).
\end{align*}

When \(G \) is vertex transitive, \(\chi_f(G) = |V(G)| \alpha(G) \).
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

![Graph diagram with vertices labeled 1, 2, 3, 4, 5, 6, and 7. Edges connect vertices as follows: 1-2, 1-4, 2-4, 2-5, 3-5, 3-7, 4-7, 5-7, and 6-7.]

- Weight $w_I \in [0, 1]$ for each independent set I so each vertex in sets that sum to 1;
- Minimum sum of weights is $\chi_f(G)$;
- Weights in $\{0, 1\}$ gives $\chi(G)$.

Prop. $\chi_f(G) \geq |\text{V}(G)| \alpha(G)$.

$|\text{V}(G)| = \sum_{v \in \text{V}(G)} \sum_{I \ni v} w_I = \sum_{I \in I} w_I |I| \leq \alpha(G) \sum_{I \in I} w_I = \alpha(G) \chi_f(G)$.

When G is vertex transitive, $\chi_f(G) = |\text{V}(G)| \alpha(G)$.
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

$\chi_f(C_5) \leq \frac{5}{2}$
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[\chi_f(C_5) = \frac{5}{2} \]
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[\chi_f(C_5) = \frac{5}{2} \]
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[
\chi_f(C_5) = \frac{5}{2}
\]

\[
\chi_f(C_7) \leq \frac{7}{3}
\]
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[
\chi_f(C_5) = \frac{5}{2}
\]

\[
\chi_f(C_7) = \frac{7}{3}
\]
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[
\chi_f(C_5) = \frac{5}{2} \quad \chi_f(C_7) = \frac{7}{3}
\]

Weight \(w_I \in [0, 1] \) for each ind. set \(I \) so each vert in sets that sum to 1;
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[
\chi_f(C_5) = \frac{5}{2} \quad \chi_f(C_7) = \frac{7}{3}
\]

Weight \(w_I \in [0, 1] \) for each ind. set \(I \) so each vert in sets that sum to 1; min sum of weights is \(\chi_f(G) \);
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[\chi_f(C_5) = \frac{5}{2} \]
\[\chi_f(C_7) = \frac{7}{3} \]

Weight \(w_I \in [0, 1] \) for each ind. set \(I \) so each vert in sets that sum to 1; min sum of weights is \(\chi_f(G) \); weights in \(\{0, 1\} \) gives \(\chi(G) \).
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

Weight $w_I \in [0, 1]$ for each ind. set I so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$; weights in $\{0, 1\}$ gives $\chi(G)$.

Prop. $\chi_f(G) \geq \frac{|V(G)|}{\alpha(G)}$.
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\begin{align*}
\chi_f(C_5) &= \frac{5}{2} \\
\chi_f(C_7) &= \frac{7}{3}
\end{align*}

Weight $w_I \in [0, 1]$ for each ind. set I so each vert in sets that sum to 1; min sum of weights is $\chi_f(G)$; weights in $\{0, 1\}$ gives $\chi(G)$.

Prop. $\chi_f(G) \geq \frac{|V(G)|}{\alpha(G)}$.

$|V(G)|$
Fractional Coloring
Like coloring, but we can color a vertex part red and part blue.

\[\chi_f(C_5) = \frac{5}{2} \]

\[\chi_f(C_7) = \frac{7}{3} \]

Weight \(w_I \in [0, 1] \) for each ind. set \(I \) so each vert in sets that sum to 1; min sum of weights is \(\chi_f(G) \); weights in \(\{0, 1\} \) gives \(\chi(G) \).

Prop. \(\chi_f(G) \geq \frac{|V(G)|}{\alpha(G)} \).

\[|V(G)| = \sum_{v \in V} \sum_{I \ni v} w_I \]
Fractional Coloring
Like coloring, but we can color a vertex part red and part blue.

\[
\chi_f(C_5) = \frac{5}{2}
\]

\[
\chi_f(C_7) = \frac{7}{3}
\]

Weight \(w_I \in [0, 1] \) for each ind. set \(I \) so each vert in sets that sum to 1; min sum of weights is \(\chi_f(G) \); weights in \(\{0, 1\} \) gives \(\chi(G) \).

Prop. \(\chi_f(G) \geq \frac{|V(G)|}{\alpha(G)} \).

\[
|V(G)| = \sum_{v \in V} \sum_{I \ni v \forall v} w_I = \sum_{I \in \mathcal{I}} w_I |I|
\]
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[
\chi_f(C_5) = \frac{5}{2}
\]

\[
\chi_f(C_7) = \frac{7}{3}
\]

Weight \(w_I \in [0, 1] \) for each ind. set \(I \) so each vert in sets that sum to 1; min sum of weights is \(\chi_f(G) \); weights in \(\{0, 1\} \) gives \(\chi(G) \).

Prop. \(\chi_f(G) \geq \frac{|V(G)|}{\alpha(G)} \).

\[
|V(G)| = \sum_{v \in V} \sum_{l \ni v} w_l = \sum_{l \in I} w_l |l| \leq \alpha(G) \sum_{l \in I} w_l
\]
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[\chi_f(C_5) = \frac{5}{2} \]

\[\chi_f(C_7) = \frac{7}{3} \]

Weight \(w_I \in [0, 1] \) for each ind. set \(I \) so each vert in sets that sum to 1; min sum of weights is \(\chi_f(G) \); weights in \(\{0, 1\} \) gives \(\chi(G) \).

Prop. \(\chi_f(G) \geq \frac{|V(G)|}{\alpha(G)} \).

\[|V(G)| = \sum_{v \in V} \sum_{l \ni v} w_I = \sum_{l \in I} w_I |I| \leq \alpha(G) \sum_{l \in I} w_I = \alpha(G) \chi_f(G). \]
Fractional Coloring

Like coloring, but we can color a vertex part red and part blue.

\[\chi_f(C_5) = \frac{5}{2} \]

\[\chi_f(C_7) = \frac{7}{3} \]

Weight \(w_I \in [0, 1] \) for each ind. set \(I \) so each vert in sets that sum to 1; min sum of weights is \(\chi_f(G) \); weights in \(\{0, 1\} \) gives \(\chi(G) \).

Prop. \(\chi_f(G) \geq \frac{|V(G)|}{\alpha(G)} \).

\[
|V(G)| = \sum_{v \in V} \sum_{l \ni v} w_I = \sum_{l \in I} w_I |l| \leq \alpha(G) \sum_{l \in I} w_I = \alpha(G) \chi_f(G).
\]

When \(G \) is vertex transitive, \(\chi_f(G) = \frac{|V(G)|}{\alpha(G)} \).
Recall $\chi_f(G) \geq |V(G)|/\alpha(G)$.

More generally:

- $\mu: V(G) \to \mathbb{R} \geq 0$ is a weight function
- $|V(\mu(G))| := \sum_{v \in V} \mu(v)$ and $\alpha(\mu(G)) := \max_{I \in I} \sum_{v \in I} \mu(v)$

For every μ, $\chi_f(G) \geq |V(\mu(G))|/\alpha(\mu(G))$.
Recall $\chi_f(G) \geq |V(G)|/\alpha(G)$.
Recall $\chi_f(G) \geq |V(G)|/\alpha(G)$.
Recall $\chi_f(G) \geq |V(G)|/\alpha(G)$.

More generally:

$\mu: V(G) \rightarrow \mathbb{R} \geq 0$ is a weight function

$|V_\mu(G)| := \sum_{v \in V} \mu(v)$ and $\alpha_\mu(G) := \max_{I \in I} \sum_{v \in I} \mu(v)$

For every μ, $\chi_f(G) \geq |V_\mu(G)|/\alpha_\mu(G)$.
Recall \(\chi_f(G) \geq |V(G)|/\alpha(G) \).
Fractional Coloring, II

Recall $\chi_f(G) \geq |V(G)|/\alpha(G)$.

More generally:

- $\mu: V(G) \to \mathbb{R} \geq 0$ is a weight function
- $|V_\mu(G)| := \sum_{v \in V} \mu(v)$ and $\alpha_\mu(G) := \max_{I \in I} \sum_{v \in I} \mu(v)$

For every μ, $\chi_f(G) \geq |V_\mu(G)|/\alpha_\mu(G)$.
Fractional Coloring, II

Recall $\chi_f(G) \geq |V(G)|/\alpha(G)$.

More generally:
Fractional Coloring, II

Recall $\chi_f(G) \geq |V(G)|/\alpha(G)$.

More generally:

- $\mu : V(G) \rightarrow \mathbb{R}_{\geq 0}$ is a weight function
Fractional Coloring, II

Recall $\chi_f(G) \geq |V(G)|/\alpha(G)$.

More generally:

- $\mu : V(G) \rightarrow \mathbb{R}^{\geq 0}$ is a weight function
- $|V_\mu(G)| := \sum_{v \in V} \mu(v)$ and $\alpha_\mu(G) := \max_{I \in \mathcal{I}} \sum_{v \in I} \mu(v)$
Fractional Coloring, II

Recall $\chi_f(G) \geq |V(G)|/\alpha(G)$.

More generally:

- $\mu : V(G) \rightarrow \mathbb{R}^{\geq 0}$ is a weight function
- $|V_{\mu}(G)| := \sum_{v \in V} \mu(v)$ and $\alpha_{\mu}(G) := \max_{I \in \mathcal{I}} \sum_{v \in I} \mu(v)$
- For every μ, $\chi_f(G) \geq |V_{\mu}(G)|/\alpha_{\mu}(G)$.
A Computational Approach

Goal:
Find unit distance H with $\chi_f(H) > 3.5$.

Idea:
Recall $\chi_f($spindle$) = 3.5$.
Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: 51 + 45 = 96. Max independent set weight: 27. $\chi_f(H) \geq \frac{96}{27} = 3.5555...$
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$.

Core vertices from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: 51 + 45 = 96.

Max independent set weight: 27.

$\chi_f(H) \geq 96/27 = 3.5555...$
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact;
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally.
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. **Core vertices** from triangular lattice;

![Graph Diagram]

Core weights above, spindle weights 1, total weight: 51 + 45 = 96. Max independent set weight: 27. $\chi_f(H) \geq 96/27 = 3.5555$...
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles;
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. **Core vertices** from triangular lattice; attach many spindles;
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. *Core vertices* from triangular lattice; attach many spindles;

![Diagram of a graph with core vertices and spindles]
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall χ_f (spindle) = 3.5. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles;
Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles; solve for best weights.
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. **Core vertices** from triangular lattice; attach many spindles; solve for best weights.

![Graph Diagram]

Core weights above, spindle weights 1, total weight: $51 + 45 = 96$.
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. **Core vertices** from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: $51 + 45 = 96$. Max independent set weight: 27.
A Computational Approach

Goal: Find unit distance H with $\chi_f(H) > 3.5$.

Idea: Recall $\chi_f(\text{spindle}) = 3.5$. Find graph with many spindles that interact; at least one colored suboptimally. Core vertices from triangular lattice; attach many spindles; solve for best weights.

Core weights above, spindle weights 1, total weight: $51 + 45 = 96$. Max independent set weight: 27.

$$\chi_f(H) \geq \frac{96}{27} = \frac{32}{9} = 3.5555\ldots$$
Bigger Cores

\[
\chi_f \geq 168.47
\approx 3.5744
\]

\[
\chi_f \geq 491.137
\approx 3.5839
\]
Bigger Cores

Spindle weight 1 gives

\[\chi f \geq \frac{168}{47} \approx 3.5744 \]
Bigger Cores

Spindle weight 1 gives
\[\chi_f \geq \frac{168}{47} \approx 3.5744 \]

Spindle weight 2 gives
\[\chi_f \geq \frac{491}{137} \approx 3.5839 \]
Our Biggest Core

\[\chi_f \geq 1732.481 \approx 3.6008 \]
Spindle weight 3 gives \(\chi_f \geq \frac{1732}{481} \approx 3.6008 \)
A “By Hand” Approach

Big Idea:
- Extend same approach to entire plane.
 - Core is entire triangular lattice.
 - Use all possible spindles in 3 directions.
 - Each core vertex: weight 12
 - Each spindle vertex: weight 1
 - Avoid ∞: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: $M + 9$ $M - o(M)$
Total weight: $12M + 9$ $M - o(M) = 21M - o(M)$

Lem: Each independent set hits weight at most $6M$.

Pf: Next slide.

$\chi_f \geq \frac{21M}{6M} = \frac{7}{2} = 3.5$.
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
- Core is entire triangular lattice.

- Core vertices: M
- Total vertices: $M + 9$
- Total weight: $12M + 9 - o(M)$
 - Total weight: $21M - o(M)$

Lemma: Each independent set hits weight at most $6M$.

Proof: Next slide.

$$\chi_f \geq \frac{21M}{(6M)} = \frac{7}{2} = 3.5$$
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight **12**
- Each spindle vertex: weight **1**
- Avoid ∞: consider limit of bigger and bigger cores.
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞: consider limit of bigger and bigger cores.

Core vertices: M
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.

- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: $M + 9M - o(M)$
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid \(\infty \): consider limit of bigger and bigger cores.

Core vertices: \(M \)
Total vertices: \(M + 9M - o(M) \)
Total weight: \(12M + 9M - o(M) = 21M - o(M) \)
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: $M + 9M - o(M)$
Total weight: $12M + 9M - o(M) = 21M - o(M)$

Lem: Each independent set hits weight at most $6M$.
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: $M + 9M - o(M)$
Total weight: $12M + 9M - o(M) = 21M - o(M)$

Lem: Each independent set hits weight at most $6M$.
Pf: Next slide.
A “By Hand” Approach

Big Idea: Extend same approach to entire plane.
- Core is entire triangular lattice.
- Use all possible spindles in 3 directions.
- Each core vertex: weight 12
- Each spindle vertex: weight 1
- Avoid ∞: consider limit of bigger and bigger cores.

Core vertices: M
Total vertices: $M + 9M - o(M)$
Total weight: $12M + 9M - o(M) = 21M - o(M)$

Lem: Each independent set hits weight at most $6M$.

Pf: Next slide.

$$\chi_f \geq \frac{21M}{(6M)} = \frac{7}{2} = 3.5$$
The Discharging

Given independent set I, discharge weight of I as follows:

$(R1)$ Each core vertex in I gives 1 to each core nbr

$(R2)$ Each spindle vertex in I splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:

- $\sum_{v \in I} \mu(v) \leq 6M$, so $\chi_f \geq \frac{21M}{6M} = 3.5$.

- $\sum_{v \in I} \mu(v) = 6M$.
The Discharging

Given independent set I, discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr

\[
\begin{align*}
\text{Final weight on core vertices:} & \\
\text{▶ in I:} & \quad 12 - 6(1) = 6 \\
\text{▶ 3 nbrs in I:} & \quad 0 + 3 + \frac{6}{2} = 6 \\
\text{▶ 2 nbrs in I:} & \quad 0 + 2 + \frac{4}{2} + 2 = 6 \\
\text{▶ 1 nbr in I:} & \quad 0 + 1 + \frac{2}{2} + 4 = 6 \\
\text{▶ 0 nbrs in I:} & \quad 0 + 0 + \frac{0}{2} + 6 = 6
\end{align*}
\]

Now $\sum_{v \in I} \mu(v) \leq 6M$, so $\chi_f \geq \frac{21M}{6M} = 3.5$.
The Discharging

Given independent set I, discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in I splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:
- $\triangledown I$: $12 - 6(1) = 6$
- 3 nbrs in I: $0 + 3 + 6 = 6$
- 2 nbrs in I: $0 + 2 + 4 = 6$
- 1 nbr in I: $0 + 1 + 2 = 6$
- 0 nbrs in I: $0 + 0 + 6 = 6$

Now $\sum_{v \in I} \mu(v) \leq 6M$, so $\chi_f \geq \frac{21M}{6M} = 3.5$.
The Discharging

Given independent set I, discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in I splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:
The Discharging

Given independent set I, discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in I splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:

- in I: $12 - 6(1) = 6$
The Discharging

Given independent set I, discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr

(R2) Each spindle vertex in I splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:

- in I: $12 - 6(1) = 6$
- 3 nbrs in I: $0 + 3 + \frac{6}{2} = 6$
The Discharging

Given independent set \(I \), discharge weight of \(I \) as follows:

(R1) Each core vertex in \(I \) gives 1 to each core nbr

(R2) Each spindle vertex in \(I \) splits its weight equally between the core vertices incident to its spindle that are *not* in \(I \)

Final weight on core vertices:

- in \(I \): \(12 - 6(1) = 6 \)
- 3 nbrs in \(I \): \(0 + 3 + \frac{6}{2} = 6 \)
- 2 nbrs in \(I \): \(0 + 2 + \frac{4}{2} + 2 = 6 \)
The Discharging

Given independent set \(I \), discharge weight of \(I \) as follows:

\((R1)\) Each core vertex in \(I \) gives 1 to each core nbr

\((R2)\) Each spindle vertex in \(I \) splits its weight equally between the core vertices incident to its spindle that are \textit{not} in \(I \)

Final weight on core vertices:

- in \(I \): \(12 - 6(1) = 6 \)
- 3 nbrs in \(I \): \(0 + 3 + \frac{6}{2} = 6 \)
- 2 nbrs in \(I \): \(0 + 2 + \frac{4}{2} + 2 = 6 \)
- 1 nbr in \(I \): \(0 + 1 + \frac{2}{2} + 4 = 6 \)
The Discharging

Given independent set I, discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr
(R2) Each spindle vertex in I splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:

- in I: $12 - 6(1) = 6$
- 3 nbrs in I: $0 + 3 + \frac{6}{2} = 6$
- 2 nbrs in I: $0 + 2 + \frac{4}{2} + 2 = 6$
- 1 nbr in I: $0 + 1 + \frac{2}{2} + 4 = 6$
- 0 nbrs in I: $0 + 0 + \frac{0}{2} + 6 = 6$
The Discharging

Given independent set I, discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr
(R2) Each spindle vertex in I splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:

- in I: $12 - 6(1) = 6$
- 3 nbrs in I: $0 + 3 + \frac{6}{2} = 6$
- 2 nbrs in I: $0 + 2 + \frac{4}{2} + 2 = 6$
- 1 nbr in I: $0 + 1 + \frac{2}{2} + 4 = 6$
- 0 nbrs in I: $0 + 0 + \frac{0}{2} + 6 = 6$

Now $\sum_{v \in I} \mu(v) \leq 6M$,
The Discharging

Given independent set I, discharge weight of I as follows:

(R1) Each core vertex in I gives 1 to each core nbr
(R2) Each spindle vertex in I splits its weight equally between the core vertices incident to its spindle that are not in I

Final weight on core vertices:

- in I: $12 - 6(1) = 6$
- 3 nbrs in I: $0 + 3 + \frac{6}{2} = 6$
- 2 nbrs in I: $0 + 2 + \frac{4}{2} + 2 = 6$
- 1 nbr in I: $0 + 1 + \frac{2}{2} + 4 = 6$
- 0 nbrs in I: $0 + 0 + \frac{0}{2} + 6 = 6$

Now $\sum_{v \in I} \mu(v) \leq 6M$, so

$$\chi_f \geq \frac{21M}{6M} = 3.5$$
A Hint of a Better Bound

To improve bound:

- Optimize the ratio of core weight and spindle weight

Now compute the final weight, averaged over each tile.

\[\chi_f(R_2) \geq \frac{105}{29} \approx 3.6207 \]
A Hint of a Better Bound

To improve bound:

▶ Optimize the ratio of core weight and spindle weight
▶ Average final weights over bigger sets of core vertices

Now compute the final weight, averaged over each tile.

\[\chi_f(R) \geq 10^{5.29} \approx 3.6207 \]
A Hint of a Better Bound

To improve bound:
- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?
- Partition core into *tiles* with verts of I as corners

\[
\chi_f(R^2) \geq \frac{105}{29} \approx 3.6207
\]
A Hint of a Better Bound

To improve bound:

▶ Optimize the ratio of core weight and spindle weight

▶ Average final weights over bigger sets of core vertices

Which subsets to average over?

▶ Partition core into tiles with verts of \(I \) as corners

▶ Assume \(I \) intersects core in maximal independent set

\[\chi_f(R^2) \geq \frac{105}{29} \approx 3.6207 \]
A Hint of a Better Bound

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of I as corners
- Assume I intersects core in maximal independent set
- If not, modify I to hit more weight

Now compute the final weight, averaged over each tile.

\[\chi_f(R_2) \geq \frac{105}{29} \approx 3.6207 \]
A Hint of a Better Bound

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of \(I \) as corners
- Assume \(I \) intersects core in \textit{maximal} independent set
- If not, modify \(I \) to hit more weight

Why is this good?
A Hint of a Better Bound

To improve bound:
- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?
- Partition core into *tiles* with verts of *I* as corners
- Assume *I* intersects core in *maximal* independent set
- If not, modify *I* to hit more weight

Why is this good?
- Averaging over tiles allows better bound on final weight.
A Hint of a Better Bound

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of \(I \) as corners
- Assume \(I \) intersects core in maximal independent set
- If not, modify \(I \) to hit more weight

Why is this good?

- Averaging over tiles allows better bound on final weight.
- Only 8 shapes of tiles (because \(I \) is maximal);
A Hint of a Better Bound

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into *tiles* with verts of I as corners
- Assume I intersects core in *maximal* independent set
- If not, modify I to hit more weight

Why is this good?

- Averaging over tiles allows better bound on final weight.
- Only 8 shapes of tiles (because I is maximal); avoids combinatorial explosion.
A Hint of a Better Bound

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into tiles with verts of \(I \) as corners
- Assume \(I \) intersects core in maximal independent set
- If not, modify \(I \) to hit more weight

Why is this good?

- Averaging over tiles allows better bound on final weight.
- Only 8 shapes of tiles (because \(I \) is maximal); avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.
A Hint of a Better Bound

To improve bound:

- Optimize the ratio of core weight and spindle weight
- Average final weights over bigger sets of core vertices

Which subsets to average over?

- Partition core into *tiles* with verts of \(I \) as corners
- Assume \(I \) intersects core in *maximal* independent set
- If not, modify \(I \) to hit more weight

Why is this good?

- Averaging over tiles allows better bound on final weight.
- Only 8 shapes of tiles (because \(I \) is maximal); avoids combinatorial explosion.

Now compute the final weight, averaged over each tile.

\[
\chi_f(\mathbb{R}^2) \geq \frac{105}{29} \approx 3.6207
\]
A Tiling for a Better Bound
Summary

$\chi(R^2) \leq 7$; bounds unchanged since 50s

Lower bounds for $\chi_f(R^2)$ come from unit distance graphs

Moser spindle shows $\chi_f(R^2) \geq 3.5$

Main tool: $\chi_f \geq |V(G)|/\alpha(G)$

Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$

Fisher–Ullman proved $\chi_f(R^2) \geq 3.555$

Core from triangular lattice

Attach many spindles (all with weight 1)

Max. weight sum so no independent set hits more than 27 (solve LP)

Now $\chi_f(R^2) \geq 96/27 = 32/9 = 3.555$

Bigger cores give $\chi_f \geq 3.6008$

By hand: consider entire triangular lattice (via limits)

Core with M vertices: total weight $21M$

Max independent set hits weight $6M$ (via discharging)

This proves $\chi_f(R^2) \geq (21M)/(6M) = 3.5$

Average over larger subsets of vertices: $\chi_f(R^2) \geq 3.6206$
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s

- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$ Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$

- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.5$.

- Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \geq 96/27 = 32/9 = 3.5$

- Bigger cores give $\chi_f \geq 3.6008$

- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight $21M$
 - Max independent set hits weight $6M$ (via discharging)
 - This proves $\chi_f(\mathbb{R}^2) \geq (21M)/(6M) = 3.5$

- Average over larger subsets of vertices: $\chi_f \geq 3.6206$...
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$ Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555 \ldots$
Summary

- \(4 \leq \chi(\mathbb{R}^2) \leq 7\); bounds unchanged since 50s

- Lower bounds for \(\chi_f(\mathbb{R}^2)\) come from unit distance graphs
 - Moser spindle shows \(\chi_f(\mathbb{R}^2) \geq 3.5\)
 - Main tool: \(\chi_f \geq |V(G)|/\alpha(G)\)
 Weighted: \(\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)\)

- Fisher–Ullman proved \(\chi_f(\mathbb{R}^2) \geq 3.555\ldots\)
 - Core from triangular lattice
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s

- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$ Weighted:
 $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$

- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555 \ldots$
 - Core from triangular lattice
 - Attach many spindles
Summary

- \(4 \leq \chi(\mathbb{R}^2) \leq 7 \); bounds unchanged since 50s
- Lower bounds for \(\chi_f(\mathbb{R}^2) \) come from unit distance graphs
 - Moser spindle shows \(\chi_f(\mathbb{R}^2) \geq 3.5 \)
 - Main tool: \(\chi_f \geq |V(G)|/\alpha(G) \)
 Weighted: \(\chi_f \geq |V_\mu(G)|/\alpha_\mu(G) \)
- Fisher–Ullman proved \(\chi_f(\mathbb{R}^2) \geq 3.555 \ldots \)
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s

- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_{\mu}(G)|/\alpha_{\mu}(G)$

- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$ Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \geq 96/27 = 32/9 = 3.555\ldots$
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s

- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 - Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$

- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555 \ldots$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \geq 96/27 = 32/9 = 3.555 \ldots$
 - Bigger cores give $\chi_f \geq 3.6008$
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$ Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555 \ldots$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \geq 96/27 = 32/9 = 3.555 \ldots$
 - Bigger cores give $\chi_f \geq 3.6008$
- By hand: consider entire triangular lattice (via limits)
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s
- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$ Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$
- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555 \ldots$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \geq 96/27 = 32/9 = 3.555 \ldots$
 - Bigger cores give $\chi_f \geq 3.6008$
- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight $21M$
Summary

1. $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s

2. Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$
 Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$

3. Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555 \ldots$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \geq 96/27 = 32/9 = 3.555 \ldots$
 - Bigger cores give $\chi_f \geq 3.6008$

4. By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight $21M$
 - Max independent set hits weight $6M$ (via discharging)
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s

- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$ Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$

- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555\ldots$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \geq 96/27 = 32/9 = 3.555\ldots$
 - Bigger cores give $\chi_f \geq 3.6008$

- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight $21M$
 - Max independent set hits weight $6M$ (via discharging)
 - This proves $\chi_f(\mathbb{R}^2) \geq (21M)/(6M) = 3.5$
Summary

- $4 \leq \chi(\mathbb{R}^2) \leq 7$; bounds unchanged since 50s

- Lower bounds for $\chi_f(\mathbb{R}^2)$ come from unit distance graphs
 - Moser spindle shows $\chi_f(\mathbb{R}^2) \geq 3.5$
 - Main tool: $\chi_f \geq |V(G)|/\alpha(G)$ Weighted: $\chi_f \geq |V_\mu(G)|/\alpha_\mu(G)$

- Fisher–Ullman proved $\chi_f(\mathbb{R}^2) \geq 3.555 \ldots$
 - Core from triangular lattice
 - Attach many spindles (all with weight 1)
 - Max. weight sum so no ind. set hits more than 27 (solve LP)
 - Now $\chi_f(\mathbb{R}^2) \geq 96/27 = 32/9 = 3.555 \ldots$
 - Bigger cores give $\chi_f \geq 3.6008$

- By hand: consider entire triangular lattice (via limits)
 - Core with M vertices: total weight $21M$
 - Max independent set hits weight $6M$ (via discharging)
 - This proves $\chi_f(\mathbb{R}^2) \geq (21M)/(6M) = 3.5$
 - Average over larger subsets of vertices: $\chi_f(\mathbb{R}^2) \geq 3.6206 \ldots$