Painting Squares with $\Delta^2 - 1$ shades

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Landon Rabern
Slides available on my webpage

SIAM Discrete Math
19 June 2014
Coloring Squares

Thm [Brooks 1941]: If ∆(G) ≥ 3 and ω(G) ≤ ∆(G), then χ(G) ≤ ∆(G) ≤ ∆(G)^2.

If G is connected and not Petersen, then ω(G) ≤ 8.

Conj [C.–Kim '08]: If G is connected, not a Moore graph, and ∆(G) ≥ 3, then χ_ℓ(G) ≤ ∆(G)^2 − 1.

Thm [C.-Rabern '14+]: If G is connected, not a Moore graph, and ∆(G) ≥ 3, then χ_ℓ(G) ≤ ∆(G)^2 − 1.
Coloring Squares

Thm [Brooks 1941]: If $\Delta(G) \geq 3$ and $\omega(G) \leq \Delta(G)$ then $\chi(G) \leq \Delta(G)$.
Coloring Squares

Thm [Brooks 1941]:
If $\Delta(G^2) \geq 3$ and $\omega(G^2) \leq \Delta(G^2)$, then $\chi(G^2) \leq \Delta(G^2)$
Coloring Squares

Thm [Brooks 1941]:

If $\Delta(G^2) \geq 3$ and $\omega(G^2) \leq \Delta(G^2)$, then $\chi(G^2) \leq \Delta(G^2) \leq \Delta(G)^2$.
Coloring Squares

Thm [Brooks 1941]: If $\Delta(G^2) \geq 3$ and $\omega(G^2) \leq \Delta(G^2)$, then $\chi(G^2) \leq \Delta(G^2) \leq \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi(G^2) \leq 8$.

The Finale

So for $k = 7$ our desired Moore graph exists and is unique!
Coloring Squares

Thm [Brooks 1941]: If $\Delta(G^2) \geq 3$ and $\omega(G^2) \leq \Delta(G^2)$, then $\chi(G^2) \leq \Delta(G^2) \leq \Delta(G)^2$.

Thm [C.–Kim ’08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_l(G^2) \leq 8$.

Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_l(G^2) \leq \Delta(G)^2 - 1$.

The Finale
So for $k = 7$ our desired Moore graph exists and is unique!
Coloring Squares

Thm [Brooks 1941]: If $\Delta(G^2) \geq 3$ and $\omega(G^2) \leq \Delta(G^2)$, then $\chi(G^2) \leq \Delta(G^2) \leq \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi\ell(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(G^2) \leq 8$.

The Finale

So for $k=7$ our desired Moore graph exists and is unique!
Coloring Squares

Thm [Brooks 1941]: If \(\Delta(G^2) \geq 3 \) and \(\omega(G^2) \leq \Delta(G^2) \), then \(\chi(G^2) \leq \Delta(G^2) \leq \Delta(G)^2 \).

Thm [C.–Kim '08]: If \(\Delta(G) = 3 \) and \(\omega(G^2) \leq 8 \), then \(\chi_\ell(G^2) \leq 8 \).
If \(G \) is connected and not Petersen, then \(\omega(G^2) \leq 8 \).

Conj [C.–Kim '08]: If \(G \) is connected, not a Moore graph, and \(\Delta(G) \geq 3 \), then \(\chi_\ell(G^2) \leq \Delta(G)^2 - 1 \).
Coloring Squares

Thm [Brooks 1941]:
If $\Delta(G^2) \geq 3$ and $\omega(G^2) \leq \Delta(G^2)$, then $\chi(G^2) \leq \Delta(G^2) \leq \Delta(G)^2$.

Thm [C.–Kim ’08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_\ell(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(G^2) \leq 8$.

Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_\ell(G^2) \leq \Delta(G)^2 - 1$.
Coloring Squares

Thm [Brooks 1941]: If $\Delta(G^2) \geq 3$ and $\omega(G^2) \leq \Delta(G^2)$, then $\chi(G^2) \leq \Delta(G^2) \leq \Delta(G)^2$.

Thm [C.–Kim ’08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_\ell(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(G^2) \leq 8$.

Conj [C.–Kim ’08]: If G is connected not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_\ell(G^2) \leq \Delta(G)^2 - 1$.

![Graphs and diagrams related to coloring squares.](image-url)
Coloring Squares

Thm [Brooks 1941]: If $\Delta(G^2) \geq 3$ and $\omega(G^2) \leq \Delta(G^2)$, then $\chi(G^2) \leq \Delta(G^2) \leq \Delta(G)^2$.

Thm [C.–Kim '08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_G(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(G^2) \leq 8$.

Conj [C.–Kim '08]: If G is connected, not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_G(G^2) \leq \Delta(G)^2 - 1$.

Thm [C.-Rabern '14+]: If G is connected, not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_G(G^2) \leq \Delta(G)^2 - 1$.
Coloring Squares

Thm [Brooks 1941]: If $\Delta(G^2) \geq 3$ and $\omega(G^2) \leq \Delta(G^2)$, then $\chi(G^2) \leq \Delta(G^2) \leq \Delta(G)^2$.

Thm [C.–Kim ’08]: If $\Delta(G) = 3$ and $\omega(G^2) \leq 8$, then $\chi_\ell(G^2) \leq 8$. If G is connected and not Petersen, then $\omega(G^2) \leq 8$.

Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_\ell(G^2) \leq \Delta(G)^2 - 1$.

Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and $\Delta(G) \geq 3$, then $\chi_p(G^2) \leq \Delta(G)^2 - 1$.
Related Problems

Wegner's (Very General) Conjecture [1977]:
If G_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1 = \max_{G \in G_k} \chi(G)$

$\max_{G \in G_k} \omega(G)$.

Our result implies Wegner's conj. for $d = 2$ and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]:
If $\Delta(G) \geq 9$ and $\omega(G) \leq \Delta(G) - 1$, then $\chi(G) \leq \Delta(G) - 1$.

Our result implies B–K conj. for G_2 when G has girth ≥ 9.
Related Problems

Wegner’s (Very General) Conjecture [1977]:
If G_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G \in G_k} \chi(G^d) = \max_{G \in G_k} \omega(G^d).$$
Related Problems

Wegner’s (Very General) Conjecture [1977]:
If G_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G \in G_k} \chi(G^d) = \max_{G \in G_k} \omega(G^d).$$

- Our result implies Wegner’s conj. for $d = 2$ and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]:
If $\Delta(G) \geq 9$ and $\omega(G) \leq \Delta(G) - 1$, then $\chi(G) \leq \Delta(G) - 1$.

- Our result implies B–K conj. for G_2 when G has girth ≥ 9.
Related Problems

Wegner’s (Very General) Conjecture [1977]:
If G_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G \in G_k} \chi(G^d) = \max_{G \in G_k} \omega(G^d).$$

- Our result implies Wegner’s conj. for $d = 2$ and $k \in \{4, 5\}.$

Borodin–Kostochka Conjecture [1977]:
If $\Delta(G) \geq 9$ and $\omega(G) \leq \Delta(G) - 1$, then $\chi(G) \leq \Delta(G) - 1.$

- Our result implies B–K conj. for G^2 when G has girth $\geq 9.$
Wegner’s (Very General) Conjecture [1977]:
If G_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G \in \mathcal{G}_k} \chi(G^d) = \max_{G \in \mathcal{G}_k} \omega(G^d).$$

- Our result implies Wegner’s conj. for $d = 2$ and $k \in \{4, 5\}$.
Related Problems

Wegner’s (Very General) Conjecture [1977]:
If G_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G \in G_k} \chi(G^d) = \max_{G \in G_k} \omega(G^d).$$

- Our result implies Wegner’s conj. for $d = 2$ and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]:
Related Problems

Wegner’s (Very General) Conjecture [1977]:
If \mathcal{G}_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G \in \mathcal{G}_k} \chi(G^d) = \max_{G \in \mathcal{G}_k} \omega(G^d).$$

- Our result implies Wegner’s conj. for $d = 2$ and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]:
If $\Delta(G) \geq 9$ and $\omega(G) \leq \Delta(G) - 1$, then $\chi(G) \leq \Delta(G) - 1$.
Wegner’s (Very General) Conjecture [1977]:

If G_k is the class of all graphs with $\Delta \leq k$, then for all $k \geq 3$, $d \geq 1$

$$\max_{G \in G_k} \chi(G^d) = \max_{G \in G_k} \omega(G^d).$$

Our result implies Wegner’s conj. for $d = 2$ and $k \in \{4, 5\}$.

Borodin–Kostochka Conjecture [1977]:

If $\Delta(G) \geq 9$ and $\omega(G) \leq \Delta(G) - 1$, then $\chi(G) \leq \Delta(G) - 1$.

Our result implies B–K conj. for G^2 when G has girth ≥ 9.
Key Idea: d_1-choosable graphs
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G_2 contains no induced d_1-choosable subgraph H.

Pf: Color $G_2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least $\Delta^2 - 1 - (d_{G_2}(v) - d_H(v)) \geq \Delta^2 - 1 - (\Delta^2 - d_H(v)) = d_H(v) - 1$. Extend coloring to $V(H)$, since H is d_1-choosable.

Where to find d_1-choosable subgraph?
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf:
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf:
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf:
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf: Color $G^2 \setminus V(H)$ by minimality.
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf: Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$.

![Diagram showing G^2 with H as a subset, illustrating the concept of d_1-choosable graphs.](image-url)
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf: Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$.
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf: Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least

$$\Delta^2 - 1 - (d_{G^2}(v) - d_H(v))$$
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf: Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least

$$\Delta^2 - 1 - (d_{G^2}(v) - d_H(v)) \geq \Delta^2 - 1 - (\Delta^2 - d_H(v))$$
Key Idea: \(d_1\)-choosable graphs

Def: A graph \(G\) is \(d_1\)-choosable if it has an \(L\)-coloring whenever \(|L(v)| = d(v) - 1\) for all \(v \in V(G)\).

Lem: Minimal c/e \(G^2\) contains no induced \(d_1\)-choosable subgraph \(H\).

Pf: Color \(G^2 \setminus V(H)\) by minimality. Consider a vertex \(v \in V(H)\). Its number of colors available is at least

\[
\Delta^2 - 1 - (d_{G^2}(v) - d_H(v)) \geq \Delta^2 - 1 - (\Delta^2 - d_H(v)) = d_H(v) - 1.
\]
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf: Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least
\[
\Delta^2 - 1 - (d_{G^2}(v) - d_H(v)) \geq \Delta^2 - 1 - (\Delta^2 - d_H(v)) = d_H(v) - 1.
\]
Extend coloring to $V(H)$, since H is d_1-choosable.
Key Idea: d_1-choosable graphs

Def: A graph G is d_1-choosable if it has an L-coloring whenever $|L(v)| = d(v) - 1$ for all $v \in V(G)$.

Lem: Minimal c/e G^2 contains no induced d_1-choosable subgraph H.

Pf: Color $G^2 \setminus V(H)$ by minimality. Consider a vertex $v \in V(H)$. Its number of colors available is at least

$$\Delta^2 - 1 - (d_{G^2}(v) - d_H(v)) \geq \Delta^2 - 1 - (\Delta^2 - d_H(v)) = d_H(v) - 1.$$

Extend coloring to $V(H)$, since H is d_1-choosable.

Where to find d_1-choosable subgraph?
Proof Outline

Consider a shortest cycle C in G.

▶ 3-cycle: $d_G(v) \leq \Delta^2 - 2$ for each v on C.

▶ 4-cycle: $d_G(v) \leq \Delta^2 - 1$ for each v on C.

▶ 6-cycle: C_6 is 4-regular and 3-choosable.

▶ 7-cycle: Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G_2[V(H)] = H_2$ (no extra edges). Use Alon–Tarsi Theorem to prove H_2 is d_1-choosable.

▶ 8+ cycle: similar but may need two pendant edges.

▶ 5-cycle: structural analysis to find d_1-choosable subgraph.

How do we prove that ($cycle + pendant edge$)$_2$ is d_1-choosable?
Proof Outline

Consider a shortest cycle C in G.

- ▶ 3-cycle: $d_{G}^{2}(v) \leq \Delta^{2} - 2$ for each v on C.
- ▶ 4-cycle: $d_{G}^{2}(v) \leq \Delta^{2} - 1$ for each v on C.
- ▶ 6-cycle: C^{2}_{6} is 4-regular and 3-choosable.
- ▶ 7-cycle: Let H be $C^{2} +$ pendant edge. Now since G has no shorter cycles, $G^{2}[V(H)] \approx H^{2}$ (no extra edges). Use Alon–Tarsi Theorem to prove H^{2} is d_{1}-choosable.
- ▶ 8+ cycle: similar but may need two pendant edges.
- ▶ 5-cycle: structural analysis to find d_{1}-choosable subgraph.

How do we prove that (cycle + pendant edge) 2 is d_{1}-choosable?
Proof Outline

Consider a shortest cycle C in G.

- 3-cycle:

- 4-cycle:

- 6-cycle: C^2_6 is 4-regular and 3-choosable.

- 7-cycle: Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G_2[V(H)] \sim H^2_2$ (no extra edges). Use Alon–Tarsi Theorem to prove H^2_2 is d_1-choosable.

- 8+-cycle: similar but may need two pendant edges.

- 5-cycle: structural analysis to find d_1-choosable subgraph

How do we prove that $(cycle + pendant edge)^2$ is d_1-choosable?
Proof Outline

Consider a shortest cycle C in G.

- 3-cycle: $d_G(v) \leq \Delta^2 - 2$ for each v on C.

- 4-cycle: $d_G(v) \leq \Delta^2 - 1$ for each v on C.

- 6-cycle: C^2_6 is 4-regular and 3-choosable.

- 7-cycle: Let H be $C^2 +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \sim H^2$(no extra edges). Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.

- 8+ cycle: similar but may need two pendant edges.

- 5-cycle: structural analysis to find d_1-choosable subgraph.

How do we prove that $(cycle + pendant edge)^2$ is d_1-choosable?
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle:**

\[\text{How do we prove that (cycle + pendant edge)} G^2 \text{ is } d_1\text{-choosable?}\]
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle**: $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle**: $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle:** $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle:**

Now since G has no shorter cycles, $G^2[V(H)] \sim H^2$ (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.

- **7-cycle:** Let H be $C +$ pendant edge.
- **8+ cycle:** similar but may need two pendant edges.
- **5-cycle:** structural analysis to find d_1-choosable subgraph.
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.

- **4-cycle:** $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.

- **6-cycle:** C_6^2 is 4-regular and 3-choosable.

- **7-cycle:** Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \sim = H^2$ (no extra edges). Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.

- **8+ cycle:** similar but may need two pendant edges.

- **5-cycle:** structural analysis to find d_1-choosable subgraph.

How do we prove that (cycle + pendant edge) 2 is d_1-choosable?
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle:** $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle:** C_6^2 is 4-regular and 3-choosable.
- **7-cycle:**

Let H be C + pendant edge. Now since G has no shorter cycles, $G^2[V(H)] = H^2$ (no extra edges). Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.

8+/-cycle: similar but may need two pendant edges.

5-cycle: structural analysis to find d_1-choosable subgraph.

How do we prove that (cycle + pendant edge) 2 is d_1-choosable?
Proof Outline

Consider a shortest cycle C in G.

- 3-cycle: $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- 4-cycle: $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- 6-cycle: C_6^2 is 4-regular and 3-choosable.
- 7-cycle: Let H be $C +$ pendant edge.

Now since G has no shorter cycles, $G^2[V(H)] \sim = H^2$ (no extra edges). Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.

- 8+ cycle: similar but may need two pendant edges.
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle:** $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle:** C_6^2 is 4-regular and 3-choosable.
- **7-cycle:** Let H be $C +$ pendant edge.

Now since G has no shorter cycles, $G^2[V(H)] \sim H^2$ (no extra edges).
Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.

8+-cycle: similar but may need two pendant edges.

5-cycle: structural analysis to find d_1-choosable subgraph.
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle:** $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle:** C_6^2 is 4-regular and 3-choosable.
- **7-cycle:** Let H be C + pendant edge.

Now since G has no shorter cycles,
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle**: $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle**: $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle**: C_6^2 is 4-regular and 3-choosable.
- **7-cycle**: Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle:** $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle:** C_6^2 is 4-regular and 3-choosable.
- **7-cycle:** Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

△

▶ 3-cycle: $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
▶ 4-cycle: $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
▶ 6-cycle: C_6^2 is 4-regular and 3-choosable.
▶ 7-cycle: Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle**: $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle**: $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle**: C_6^2 is 4-regular and 3-choosable.
- **7-cycle**: Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

 Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle:** $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle:** C_6^2 is 4-regular and 3-choosable.
- **7-cycle:** Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle**: $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle**: $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle**: C_6^2 is 4-regular and 3-choosable.
- **7-cycle**: Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).
 Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.
- **8+-cycle**:

[Diagram of a graph with cycles and pendant edges]
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle:** $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle:** C_6^2 is 4-regular and 3-choosable.
- **7-cycle:** Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.

- **8+ -cycle:** similar but may need two pendant edges.
Proof Outline

Consider a shortest cycle \(C \) in \(G \).

- **3-cycle:** \(d_{G^2}(v) \leq \Delta^2 - 2 \) for each \(v \) on \(C \).
- **4-cycle:** \(d_{G^2}(v) \leq \Delta^2 - 1 \) for each \(v \) on \(C \).
- **6-cycle:** \(C_6^2 \) is 4-regular and 3-choosable.
- **7-cycle:** Let \(H \) be \(C + \) pendant edge. Now since \(G \) has no shorter cycles, \(G^2[V(H)] \cong H^2 \) (no extra edges).

 Use Alon–Tarsi Theorem to prove \(H^2 \) is \(d_1 \)-choosable.

- **8+-cycle:** similar but may need two pendant edges.
- **5-cycle:**
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle**: $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle**: $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle**: C_6^2 is 4-regular and 3-choosable.
- **7-cycle**: Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).

Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.

- **8+-cycle**: similar but may need two pendant edges.
- **5-cycle**: structural analysis to find d_1-choosable subgraph
Proof Outline

Consider a shortest cycle C in G.

- **3-cycle:** $d_{G^2}(v) \leq \Delta^2 - 2$ for each v on C.
- **4-cycle:** $d_{G^2}(v) \leq \Delta^2 - 1$ for each v on C.
- **6-cycle:** C_6^2 is 4-regular and 3-choosable.
- **7-cycle:** Let H be $C +$ pendant edge. Now since G has no shorter cycles, $G^2[V(H)] \cong H^2$ (no extra edges).
 Use Alon–Tarsi Theorem to prove H^2 is d_1-choosable.
- **8+-cycle:** similar but may need two pendant edges.
- **5-cycle:** structural analysis to find d_1-choosable subgraph

How do we prove that $(\text{cycle } + \text{ pendant edge})^2$ is d_1-choosable?
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_\vec{D}(v)$ for all v.
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$;
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$; just count $|EE| - |EO|$.
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$; just count $|EE| - |EO|$. How?
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$; just count $|EE| - |EO|$. How? Parity-reversing bijections:
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$; just count $|EE| - |EO|$.

How? Parity-reversing bijections: Pair most of EE and EO.
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$; just count $|EE| - |EO|$. How? Parity-reversing bijections: Pair most of EE and EO.

![Graph diagram](image.png)
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$; just count $|EE| - |EO|$. How? Parity-reversing bijections: Pair most of EE and EO.

![Graph Diagram]

Lemma If \vec{D}_n is the square of C_n, with all edges oriented clockwise, then $|EE(\vec{D}_n)| - |EO(\vec{D}_n)|$ only depends on $n \pmod{3}$.

Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$; just count $|EE| - |EO|$.

How? Parity-reversing bijections: Pair most of EE and EO.

\[\begin{array}{ccccccc}
1 & \rightarrow & 2 & \rightarrow & 3 & \ldots & n \\
\end{array} \quad \leftrightarrow \quad \begin{array}{ccccccc}
1 & \rightarrow & 2 & \rightarrow & 3 & \ldots & n \\
\end{array} \]

\[\begin{array}{ccccccc}
1 & \rightarrow & 2 & \rightarrow & 3 & \rightarrow & 4 & \ldots & n \\
\end{array} \]
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$; just count $|EE| - |EO|$.
How? Parity-reversing bijections: Pair most of EE and EO.

![Parity-reversing bijections diagram]
Alon–Tarsi to prove d_1-choosability

Alon–Tarsi: For a digraph \vec{D}, if $|EE(\vec{D})| \neq |EO(\vec{D})|$, then \vec{D} is f-choosable, where $f(v) = 1 + d_{\vec{D}}(v)$ for all v.

Don’t count $|EE|$ and $|EO|$; just count $|EE| - |EO|$. How? Parity-reversing bijections: Pair most of EE and EO.

Lemma If \vec{D}_n is the square of C_n, with all edges oriented clockwise, then $|EE(\vec{D}_n)| - |EO(\vec{D}_n)|$ only depends on $n \pmod{3}$.
A Gallery of d_1-choosable graphs
A Gallery of d_1-choosable graphs

(a) $EE=30$, $EO=28$

(b) $EE=108$, $EO=107$

(c) $EE=88$, $EO=87$

(d) $EE=512$, $EO=515$

(e) $EE=751$, $EO=750$

(f) $EE=1097$, $EO=1096$
In Summary

Main Theorem: If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care?
▶ Solves conjecture of Cranston–Kim, even for paintability.
▶ Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
▶ Verifies Borodin–Kostoch Conj. for G^2 when $girth(G) \geq 9$.

Key idea: G^2 can't contain induced d_1-paintable subgraph.
▶ Where is one?
Shortest cycle in $G +$ few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)
▶ Neat trick: Don't count $|EE|$ and $|EO|$, just $|EE| - |EO|$.
▶ How?
Parity reversing bijections pair up most of EE and EO.
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care?
- Relevant to multiple conjectures.
- Serves as a solution to the Cranston–Kim conjecture, even for paintability.
- Verifies Wegner's Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- Verifies the Borodin–Kostoch Conjecture for G^2 when $girth(G) \geq 9$.

Key idea: G^2 can't contain an induced d-paintable subgraph.

Where is one?
Shortest cycle in $G +$ few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)

Neat trick: Don't count $|EE|$ and $|EO|$, just $|EE| - |EO|$.

How? Parity reversing bijections pair up most of EE and EO.
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.
In Summary

Main Theorem:
If \(G \) is connected and not Petersen, Hoffman–Singleton, or a Moore graph with \(\Delta = 57 \), then \(\chi_p(G^2) \leq \Delta^2 - 1 \).

Why do we care? Relevant to multiple conjectures.
- Solves conjecture of Cranston–Kim, even for paintability.
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.
- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner’s Conjecture for $d = 2$ and $k \in \{4, 5\}$.

Key idea:
G^2 can’t contain induced d_1-paintable subgraph.
- Where is one?
 - Shortest cycle in G + few pendant edges.

Main tool:
Alon–Tarsi Theorem (for paintability)
- Neat trick:
 - Don’t count $|EE|$ and $|EO|$, just $|EE| - |EO|$.
- How?
 - Parity reversing bijections pair up most of EE and EO.

In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.
- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner’s Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Key idea:
G^2 can’t contain induced d_1-paintable subgraph.

Where is one?
Shortest cycle in G + few pendant edges.

Main tool:
Alon–Tarsi Theorem (for paintability)

Neat trick:
Don’t count $|EE|$ and $|EO|$, just $|EE| - |EO|$.

How?
Parity reversing bijections pair up most of EE and EO.
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.
- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner’s Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- Verifies Borodin–Kostoch Conj. for G^2 when $\text{girth}(G) \geq 9$.

Key idea: G^2 can’t contain induced d_1-paintable subgraph.
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.
- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner’s Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- Verifies Borodin–Kostoch Conj. for G^2 when $\text{girth}(G) \geq 9$.

Key idea: G^2 can’t contain induced d_1-paintable subgraph.
- Where is one?
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.

- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner’s Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- Verifies Borodin–Kostoch Conj. for G^2 when $\text{girth}(G) \geq 9$.

Key idea: G^2 can’t contain induced d_1-paintable subgraph.

- Where is one? Shortest cycle in $G +$ few pendant edges.
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.
- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner’s Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- Verifies Borodin–Kostoch Conj. for G^2 when $\text{girth}(G) \geq 9$.

Key idea: G^2 can’t contain induced d_1-paintable subgraph.
- Where is one? Shortest cycle in $G +$ few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.
- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner’s Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- Verifies Borodin–Kostoch Conj. for G^2 when $\text{girth}(G) \geq 9$.

Key idea: G^2 can’t contain induced d_1-paintable subgraph.
- **Where is one?** Shortest cycle in G + few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)
- **Neat trick:** Don’t count $|EE|$ and $|EO|$, just $|EE| - |EO|$.
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.
- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner’s Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- Verifies Borodin–Kostoch Conj. for G^2 when $\text{girth}(G) \geq 9$.

Key idea: G^2 can’t contain induced d_1-paintable subgraph.
- **Where is one?** Shortest cycle in G + few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)
- **Neat trick:** Don’t count $|EE|$ and $|EO|$, just $|EE| - |EO|$.
- **How?**
In Summary

Main Theorem:
If G is connected and not Petersen, Hoffman–Singleton, or a Moore graph with $\Delta = 57$, then $\chi_p(G^2) \leq \Delta^2 - 1$.

Why do we care? Relevant to multiple conjectures.
- Solves conjecture of Cranston–Kim, even for paintability.
- Verifies Wegner’s Conjecture for $d = 2$ and $k \in \{4, 5\}$.
- Verifies Borodin–Kostoch Conj. for G^2 when girth(G) ≥ 9.

Key idea: G^2 can’t contain induced d_1-paintable subgraph.
- Where is one? Shortest cycle in $G +$ few pendant edges.

Main tool: Alon–Tarsi Theorem (for paintability)
- Neat trick: Don’t count $|EE|$ and $|EO|$, just $|EE| - |EO|$.
- How? Parity reversing bijections pair up most of EE and EO.