Graphs with $\chi = \Delta$ have big cliques

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Landon Rabern
Slides available on my webpage

Discrete Math Days of the Northeast
Wesleyan University, 5 October 2013
Coloring graphs with roughly Δ colors
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?
$\Delta = 8$, $\omega = 6$, $\alpha = 2$
$\chi = \lceil \frac{15}{2} \rceil = 8$

Why $\Delta - 1$?
K_{t-4} where $\Delta = t$, $\omega = t - 2$
$\chi = (t - 4) + 3 = t - 1$
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?
Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?

$\Delta = 8$

Graphs with $\chi = \Delta$ have big cliques
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?

$\Delta = 8$, $\omega = 6$
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?

$\Delta = 8, \omega = 6, \alpha = 2$
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?

$\Delta = 8$, $\omega = 6$, $\alpha = 2$

$\chi = \lceil 15/2 \rceil = 8$
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?

$\Delta = 8$, $\omega = 6$, $\alpha = 2$

$\chi = \lceil 15/2 \rceil = 8$

Why $\Delta - 1$?

K_{t-4}
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?

Why $\Delta - 1$?

$\Delta = 8$, $\omega = 6$, $\alpha = 2$
$\chi = \lceil 15/2 \rceil = 8$

$\Delta = t$

K_{t-4}
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?

\[\Delta = 8, \omega = 6, \alpha = 2 \]
\[\chi = \left\lceil \frac{15}{2} \right\rceil = 8 \]

Why $\Delta - 1$?

\[\Delta = t, \omega = t - 2 \]
Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta + 1$.

Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \geq 9$?

$$\Delta = 8, \omega = 6, \alpha = 2$$
$$\chi = \lceil 15/2 \rceil = 8$$

Why $\Delta - 1$?

$$\Delta = t, \omega = t - 2$$
$$\chi = (t - 4) + 3 = t - 1$$
Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98]
Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
Introduction

What do we know?

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern ’13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed ’98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka ’80]
Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98]
 and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]
- Finding big cliques: If $\chi = \Delta$,

Dan Cranston (VCU)
Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern ’13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed ’98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka ’80]
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \left\lfloor \frac{\Delta + 1}{2} \right\rfloor$ [Borodin-Kostochka ’77]
Previous Results

- B-K Conjecture is true for claw-free graphs \([\text{C.-Rabern '13}]\)

- B-K Conjecture is true when \(\Delta \geq 10^{14}\) \([\text{Reed '98}]\) and likely \(\Delta \geq 10^6\) suffices

- B-K Conjecture is true, if it is true when \(\chi = \Delta = 9\) \([\text{Kostochka '80}]\)

- Finding big cliques: If \(\chi = \Delta\),
 - then \(\omega \geq \left\lfloor \frac{\Delta+1}{2} \right\rfloor\) \([\text{Borodin-Kostochka '77}]\)
 - then \(\omega \geq \left\lfloor \frac{2\Delta+1}{3} \right\rfloor\) \([\text{Mozhan '83}]\)
Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]

Finding big cliques: If $\chi = \Delta$,
- then $\omega \geq \left\lfloor \frac{\Delta+1}{2} \right\rfloor$ [Borodin-Kostochka '77]
- then $\omega \geq \left\lfloor \frac{2\Delta+1}{3} \right\rfloor$ [Mozhan '83]
- then $\omega \geq \Delta - 28$ [Kostochka '80]
Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]

Finding big cliques: If $\chi = \Delta$,
- then $\omega \geq \left\lfloor \frac{\Delta + 1}{2} \right\rfloor$ [Borodin-Kostochka '77]
- then $\omega \geq \left\lfloor \frac{2\Delta + 1}{3} \right\rfloor$ [Mozhan '83]
- then $\omega \geq \Delta - 28$ [Kostochka '80]
- then $\omega \geq \Delta - 3$ when $\Delta \geq 31$ [Mozhan '87]
Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern ‘13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed ‘98]
 and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka ‘80]

Finding big cliques: If $\chi = \Delta$,
- then $\omega \geq \left\lfloor \frac{\Delta+1}{2} \right\rfloor$ [Borodin-Kostochka ‘77]
- then $\omega \geq \left\lfloor \frac{2\Delta+1}{3} \right\rfloor$ [Mozhan ‘83]
- then $\omega \geq \Delta - 28$ [Kostochka ‘80]
- then $\omega \geq \Delta - 3$ when $\Delta \geq 31$ [Mozhan ‘87]
- then $\omega \geq \Delta - 3$ when $\Delta \geq 13$ [C.-Rabern ‘13+]
Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]

Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \left\lfloor \frac{\Delta + 1}{2} \right\rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \left\lfloor \frac{2\Delta + 1}{3} \right\rfloor$ [Mozhan '83]
 - then $\omega \geq \Delta - 28$ [Kostochka '80]
 - then $\omega \geq \Delta - 3$ when $\Delta \geq 31$ [Mozhan '87]
 - then $\omega \geq \Delta - 3$ when $\Delta \geq 13$ [C.-Rabern '13+]
 - then $\omega \geq \Delta - 4$ for all Δ
Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.
Main Theorem

Def: A hitting set is an independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \geq 14$ and $\omega = \Delta - 4$ has a hitting set.
Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \geq 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10}.
Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.

 Lemma 1: Every G with $\chi = \Delta \geq 14$ and $\omega = \Delta - 4$ has a hitting set.

 Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10}.

Main Theorem: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta-3}$.
Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \geq 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10}.

Main Theorem: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta-3}$.

Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2.
Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \geq 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10}.

Main Theorem: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta - 3}$.

Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2. If $\omega = \Delta - 4$, then let I be a hitting set expanded to be a maximal independent set; otherwise let I be any maximal independent set.
Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \geq 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10}.

Main Theorem: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta - 3}$.

Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2.

If $\omega = \Delta - 4$, then let I be a hitting set expanded to be a maximal independent set; otherwise let I be any maximal independent set.

- If $\Delta(G - I) \leq \Delta(G) - 2$, then win by Brooks’ Theorem.
Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \geq 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10}.

Main Theorem: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta - 3}$.

Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2. If $\omega = \Delta - 4$, then let I be a hitting set expanded to be a maximal independent set; otherwise let I be any maximal independent set.

- If $\Delta(G - I) \leq \Delta(G) - 2$, then win by Brooks’ Theorem.
- If $\Delta(G - I) = \Delta(G) - 1$, then $G - I$ is a smaller counterexample, contradiction!
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that
- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let \(\mathcal{E} = \{E_1, E_2, \ldots\} \) be a set of bad events such that
- \(\Pr(E_i) \leq p < 1 \) for all \(i \), and
- each \(E_i \) is mutually independent of all but \(d \) events.

If \(4dp \leq 1 \), then with positive probability no bad events occur.

Lemma 1’: Every \(G \) with \(\chi = \Delta \geq 89 \) and \(\omega = \Delta - 4 \) has a hitting set \(I \).
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1’: Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I.

Proof: Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one.
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that
- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.
If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I.
Proof: Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly.
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that

- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1’: Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I.

Proof: Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i, event E_{uv} is that u, v both chosen for I.

Dan Cranston (VCU)
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that
- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I.

Proof: Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i, event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$.

Dan Cranston (VCU)
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that
- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1’: Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I.

Proof: Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i, event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$. E_{uv} is independent of all but $2k(\Delta - (k - 1)) = 20k$ events.
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that
- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I.

Proof: Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i, event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \cdot \frac{1}{|S_v|} = k^{-2}$. E_{uv} is independent of all but $2k(\Delta - (k - 1)) = 20k$ events. Finally, $4(20k)k^{-2} \leq 1$.
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let \(\mathcal{E} = \{E_1, E_2, \ldots\} \) be a set of bad events such that

- \(\Pr(E_i) \leq p < 1 \) for all \(i \), and
- each \(E_i \) is mutually independent of all but \(d \) events.

If \(4dp \leq 1 \), then with positive probability no bad events occur.

Lemma 1’: Every \(G \) with \(\chi = \Delta \geq 89 \) and \(\omega = \Delta - 4 \) has a hitting set \(I \).

Proof: Get disjoint cliques \(S_1, S_2, \ldots \) of size \(k := \Delta - 9 \) so each maximum clique contains one. To form \(I \), choose one vertex from each \(S_i \) randomly. For each edge \(uv \) with endpoints \(u, v \) in distinct \(S_i \), event \(E_{uv} \) is that \(u, v \) both chosen for \(I \). \(\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2} \).

\(E_{uv} \) is independent of all but \(2k(\Delta - (k - 1)) = 20k \) events. Finally, \(4(20k)k^{-2} \leq 1 \iff k \geq 80 \).
Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, \ldots\}$ be a set of bad events such that
- $\Pr(E_i) \leq p < 1$ for all i, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1’: Every G with $\chi = \Delta \geq 89$ and $\omega = \Delta - 4$ has a hitting set I.

Proof: Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly.

For each edge uv with endpoints u, v in distinct S_i, event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$. E_{uv} is independent of all but $2k(\Delta - (k - 1)) = 20k$ events. Finally, $4(20k)k^{-2} \leq 1 \Leftrightarrow k \geq 80 \Leftrightarrow \Delta \geq 89$.
Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties.
Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties. For each V_i, components of $G[V_i]$ are clubs meeting in clubhouse V_i.

Lem: Every Δ-critical graph with $\Delta = 13$ has a Mozhan partition.

Dan Cranston (VCU)
Graphs with $\chi = \Delta$ have big cliques
Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties. For each V_i, components of $G[V_i]$ are clubs meeting in clubhouse V_i.

- The club R containing v is a K_4.
Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties. For each V_i, components of $G[V_i]$ are clubs meeting in clubhouse V_i.

- The club R containing v is a K_4.
- All other clubs are 3-colorable.
Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties. For each V_i, components of $G[V_i]$ are clubs meeting in clubhouse V_i.

- The club R containing v is a K_4.
- All other clubs are 3-colorable.

For $w \in V(R)$ and $j \in \{1, \ldots, 4\}$:
- If $d_{V_j}(w) = 3$, then $G[V_j + w]$ has a K_4 component.
- If w has 2 neighbors in club S of clubhouse V_i, then $\chi(S + w) = 4$.

Lem: Every Δ-critical graph with $\Delta = 13$ has a Mozhan partition.
Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties. For each V_i, components of $G[V_i]$ are clubs meeting in clubhouse V_i.

- The club R containing v is a K_4.
- All other clubs are 3-colorable.
- For $w \in V(R)$ and $j \in \{1, \ldots, 4\}$:
 - If $d_{V_j}(w) = 3$, then $G[V_j + w]$ has a K_4 component.
Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties. For each V_i, components of $G[V_i]$ are clubs meeting in clubhouse V_i.

- The club R containing v is a K_4.
- All other clubs are 3-colorable.
- For $w \in V(R)$ and $j \in \{1, \ldots, 4\}$:
 - If $d_{V_j}(w) = 3$, then $G[V_j + w]$ has a K_4 component.
- For $w \in V(R)$ and $j \in \{1, \ldots, 4\}$:
 - If w has 2 neighbors in club S of clubhouse V_i, then $\chi(S + w) = 4$.
Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties. For each V_i, components of $G[V_i]$ are clubs meeting in clubhouse V_i.

- The club R containing v is a K_4.
- All other clubs are 3-colorable.
- For $w \in V(R)$ and $j \in \{1, \ldots, 4\}$: If $d_{V_j}(w) = 3$, then $G[V_j + w]$ has a K_4 component.
- For $w \in V(R)$ and $j \in \{1, \ldots, 4\}$: If w has 2 neighbors in club S of clubhouse V_i, then $\chi(S + w) = 4$.

Lem: Every Δ-critical graph with $\Delta = 13$ has a Mozhan partition.
The Vertex Shuffle

Lemma 2: If \(G \) has \(\chi = \Delta = 13 \), then \(G \) has a \(K_{10} \).
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3’s in two other clubhouses, then G has K_{10}.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3's in two other clubhouses, then G has K_{10}.

Claim 3: Each club is active at most three times.

Claim 4: G contains K_{10}.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3's in two other clubhouses, then G has K_{10}.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3’s in two other clubhouses, then G has K_{10}.

Claim 3: Each club is active at most three times.

Claim 4: G contains K_{10}.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3's in two other clubhouses, then G has K_{10}.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3's in two other clubhouses, then G has K_{10}.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3's in two other clubhouses, then G has K_{10}.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3's in two other clubhouses, then G has K_{10}.

Claim 3: Each club is active at most three times.
The Vertex Shuffle

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10}.

Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3's in two other clubhouses, then G has K_{10}.

Claim 3: Each club is active at most three times.

Claim 4: G contains K_{10}.
What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. –William Tutte

Reed's Conjecture:

\[\chi \leq \left\lceil \omega + \Delta + 1 \right\rceil \]

Theorem (Reed):

There exists \(\epsilon > 0 \) such that

\[\chi \leq \left\lceil \epsilon \omega + (1 - \epsilon)(\Delta + 1) \right\rceil \]

Conjectured that \(\epsilon = \frac{1}{2} \) works.
What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring.
–William Tutte
The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. –William Tutte

Reed’s Conjecture: \(\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \).
What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. –William Tutte

Reed’s Conjecture: \(\chi \leq \left\lfloor \frac{\omega + \Delta + 1}{2} \right\rfloor \).

Theorem (Reed): There exists \(\epsilon > 0 \) such that \(\chi \leq \left\lfloor \epsilon \omega + (1 - \epsilon)(\Delta + 1) \right\rfloor \).
What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. –William Tutte

Reed’s Conjecture: \(\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \).

Theorem (Reed): There exists \(\epsilon > 0 \) such that \(\chi \leq \left\lceil \epsilon \omega + (1 - \epsilon)(\Delta + 1) \right\rceil \). Conjectured that \(\epsilon = \frac{1}{2} \) works.
B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_Δ.
In Review

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_Δ.

- If true, then best possible.
In Review

B-K Conj: Every graph with \(\chi = \Delta \geq 9 \) contains \(K_\Delta \).
- If true, then best possible.
- True for claw-free graphs, and also for large \(\Delta \).
B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_Δ.

- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta-3}$.
In Review

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_Δ.
- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta - 3}$.
- Hitting sets reduce to the case $\Delta = 13$.

Dan Cranston (VCU)

Graphs with $\chi = \Delta$ have big cliques
In Review

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_Δ.
- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta-3}$.
- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \geq 89$.

Dan Cranston (VCU)
In Review

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_{Δ}.
- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta - 3}$.
- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \geq 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
In Review

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_Δ.
- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta-3}$.
- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \geq 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- Mozhan Partitions and Vertex Shuffle show that if $\Delta = 13$, then $\chi \leq 12$ or G has K_{10}.

Idea: a partial coloring minimizing number of edges within clubhouses.

The Iceberg (Reed's Conj): $\chi \leq \left\lceil \omega + \Delta + 1 \right\rceil / 2$.

Dan Cranston (VCU)
Graphs with $\chi = \Delta$ have big cliques
In Review

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_{Δ}.
- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta-3}$.
- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \geq 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- Mozhan Partitions and Vertex Shuffle show that if $\Delta = 13$, then $\chi \leq 12$ or G has K_{10}.
 - Idea: a partial coloring minimizing number of edges within clubhouses.
In Review

B-K Conj: Every graph with $\chi = \Delta \geq 9$ contains K_Δ.
- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi = \Delta \geq 13$ contains $K_{\Delta-3}$.
- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \geq 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- Mozhan Partitions and Vertex Shuffle show that if $\Delta = 13$, then $\chi \leq 12$ or G has K_{10}.
 - Idea: a partial coloring minimizing number of edges within clubhouses.

The Iceberg (Reed’s Conj): $\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$.