VCU Discrete Mathematics Seminar

Using the Potential Method to Color Near-Bipartite Graphs

Prof Dan Cranston VCU!

Wednesday, Sept. 11
1:00-1:50 4145 Harris Hall

K_{4}

J_{7}

W_{5}

M_{7}

$\mathrm{K}_{2,2,2}$

A graph G is near-bipartite if we can partition $V(G)$ as (I,F) where I is an independent set and F induces a forest. Similar to the problem of 3-coloring, deciding whether a graph is near-bipartite is NP-hard. Thus, we seek sufficient conditions. We show that a multigraph G is near-bipartite if $3|W|-$ $2|\mathrm{E}(\mathrm{G}[\mathrm{W}])| \geqslant-1$ for every $\mathrm{W} \subseteq \mathrm{V}(\mathrm{G})$, and G contains no K_{4} and no Moser spindle. We show that a simple graph G is near-bipartite if $8|W|-5|E(G[W])| \geqslant$ -4 for every $\mathrm{W} \subseteq \mathrm{V}(\mathrm{G})$ and G contains no subgraph in some finite family (each member of which is not near-bipartite). Both results are proved using the potential method, a powerful technique for coloring sparse graphs. This is joint work with Matthew Yancey. (No prior background will be assumed.)

For the DM seminar schedule, see:

