VCU Discrete Mathematics Seminar

Distinguishing Chromatic Number of Graphs with Girth at least 5

Prof. Dan Cranston VCU!

Wednesday, Nov. 7 1:00-1:50 4145 Harris Hall

A coloring of a graph (not necessarily proper) is an assignment of integers to its vertices. A coloring of a graph G is *distinguishing* if the only automorphism of G that preserves all colors is the identity map. The *distinguishing number* of a graph G is the minimum number of colors in a distinguishing coloring. The *distinguishing chromatic number*, denoted $\chi_D(G)$, is the minimum number of colors in a distinguishing coloring that is also a proper coloring. It is easy to prove that $\chi_D(G) \leq 2\Delta(G) + 1$ for every connected graph G and K_{t,t} shows that $2\Delta(G)$ colors may be necessary. Collins and Trenk conjectured that if G is connected with girth at least 5 (and $G \neq C_6$), then $\chi_D(G) \leq \Delta(G) + 1$. We prove this conjecture.

For the DM seminar schedule, see:

http://www.people.vcu.edu/~dcranston/DM-seminar