VCU Discrete Mathematics Seminar

Distinguishing Chromatic Number of Graphs with Girth at least 5

Prof. Dan Cranston VCU!

Wednesday, Nov. 7
1:00-1:50
4145 Harris Hall

A coloring of a graph (not necessarily proper) is an assignment of integers to its vertices. A coloring of a graph G is distinguishing if the only automorphism of G that preserves all colors is the identity map. The distinguishing number of a graph G is the minimum number of colors in a distinguishing coloring. The distinguishing chromatic number, denoted $\chi_{D}(G)$, is the minimum number of colors in a distinguishing coloring that is also a proper coloring. It is easy to prove that $\chi_{D}(G) \leqslant 2 \Delta(G)+1$ for every connected graph G and $K_{t, t}$ shows that $2 \Delta(\mathrm{G})$ colors may be necessary. Collins and Trenk conjectured that if G is connected with girth at least 5 (and $G \neq C_{6}$), then $\chi_{D}(G) \leqslant \Delta(G)+1$. We prove this conjecture.

For the DM seminar schedule, see:

